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Based on the development of new hybrid machines consisting of an MRI and a linear
accelerator, magnetic resonance image guided radiotherapy (MRgRT) has revolutionized
the field of adaptive treatment in recent years. Although an increasing number of studies
have been published, investigating technical and clinical aspects of this technique for
various indications, utilizations of MRgRT for adaptive treatment of head and neck cancer
(HNC) remains in its infancy. Yet, the possible benefits of this novel technology for HNC
patients, allowing for better soft-tissue delineation, intra- and interfractional treatment
monitoring and more frequent plan adaptations appear more than obvious. At the same
time, new technical, clinical, and logistic challenges emerge. The purpose of this article is
to summarize and discuss the rationale, recent developments, and future perspectives of
this promising radiotherapy modality for treating HNC.

Keywords: MRI, MR-guidance, IGRT (Image Guided Radiation Therapy), head and neck (H&N) cancer, adaptive
radiotherapy, xerostoma, salivary gland
INTRODUCTION

In recent years magnetic resonance guidance (MRg) emerged as a new promising modality within
the spectrum of image-guided radiotherapy (IGRT) (1), allowing for better tumor and soft tissue
visualization, repetitive imaging without additional dose exposure, target volume gating, and online
plan adaptation (2). Following the first platforms with these features, including low-field MR-
imaging facilities and a cobalt source (3), soon the first hybrid platforms were developed combining
this image modality with a linear accelerator (MR-Linacs) (4).

At present, MR-Linacs are widely used for treating various indications and tumor localizations,
e.g., stereotactic body radiotherapy (SBRT) of the upper abdomen or the lung, prostate cancer, and
other pelvic targets like the rectum (5). These applications are predominantly chosen due to the
obvious benefits of daily plan adaptations when including target volumes and organs at risk (OAR)
with distinct inter- and intrafractional motion or anatomical changes and due to the often used
hypofractionated regimens limiting the efforts of repetitive adaptations (6, 7). On the other hand,
implementation of this novel technology for treating head and neck cancer (HNC) remains at its
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infancy, and published data about its technical and clinical
applications are scarce (8) and mainly limited to MR-cobalt
platforms (9). However, despite the technical and clinical
challenges of HNC-radiotherapy such as long-course regimens,
enhanced acute toxicity, and patient immobilization using masks
compromising treatment tolerance and more complex plans with
a multitude of OAR, the first research groups have already
started exploiting possible benefits of MR-Linacs for this
indication (10–13).

The goal of this article is to present current developments in
the field of MR-guided, adaptive radiotherapy for HNC and
discuss clinical benefits and difficulties of the adoption of this
promising technique. For this purpose, and because of the lack of
a broad consensus regarding the MRg-definition, also data and
knowledge gained from MR-planning guidance before x-ray
IGRT were included.
ADAPTIVE TREATMENT FOR HEAD AND
NECK CANCER AND POTENTIAL
BENEFITS

The concept of adaptive radiotherapy (ART) for HNC relies on
accounting for potential anatomic changes during the treatment
course, associated with, amongst others, tumor shrinkage, weight
loss, or organ/structure migration and has been heavily exercised
in the last two decades.
Frontiers in Oncology | www.frontiersin.org 2
The original purpose of ART was to compensate for target
position variability during radiotherapy in order to ensure
correct dose accumulation, which led to the development of
on-line 3D-imaging in the form of cone-beam-CT (CBCT) (14).
Yet, most modern ART-approaches focus more on improving
dose-sparing for specific OARs like the parotids (15–17).
Although there is a lack of prospective clinical trials evaluating
the objective benefit of ART for HNC, several dosimetric studies
have been published so far, e.g. , demonstrating an
underestimation of the cumulative dose to the parotids when
using the original non-adapted plan only, leading to increased
probability for xerostomia (15, 18). Raghavan et al. were one of
the first groups to demonstrate both a migration of the center of
mass of the parotids, as well as a bilateral volume shrinkage in 6
HNC-patients, using an MRgRT-dedicated platform (19). An
example of parotid migration and volume reduction
demonstrated with the help of longitudinal imaging on the
MR-Linac is shown on Figure 1A. An example of actual dose
delivered to the parotid glands contoured offline after completion
of treatment on a MR-Linac is shown in Figure 1B (20).
Mohamad et al. showed that MRgART may be beneficial
especially for swallowing related toxicities in HPV+ low risk
HNC patients, especially at risk for long term toxicity due to the
excellent outcome of these patients (21).

In general, the use of MRI during the course of HNC
treatment is beneficial because of the superior soft-tissue
contrast, thereby allowing for more precise tumor delineation
and margin reduction (22). Therefore, daily online adaptive
A B

FIGURE 1 | (A) Example of volume changes and migration of parotid glands during the course of fractionated radiotherapy at an 0.35 T MR-Linac or a large base of
tongue carcinoma between treatment start (left image) and beginning of the 7th treatment week - boost (right image). Left and right parotid glands are delineated in
orange and violet respectively and the gross tumor volume in blue. The volume of the left and right parotid glands decreased by 8.2 cc and 10.0 cc, respectively.
The inter-parotids distance changed from 11.0 cm to 10.3 cm. (B) Example of a post treatment analysis for a patient treated for a hypopharyngeal carcinoma with
70 Gy in 35 fractions. Parotid glands were contoured for each daily MRI during the course of fractionated radiotherapy at a 1.5 T MR-Linac and propagated to the
T2w planning MRI, with the total plan DVH for each daily delivered plan in the upper right corner, showing the variance in actual delivered dose depending on volume
of the parotid gland. Averaged Dmean of the anatomically corrected and daily adapted plans was 24.4 Gy and 16.5 Gy for the left and right parotid glands,
respectively. The Dmean of the reference plan was 25.9 Gy for the left and 16.7 Gy for the right parotid gland. Baseline volume was 31.0 ccm for the right and 34.5
ccm for the left parotid gland. Mean volume (range) during treatment was 30.3 ccm (29.5–32.1) and 31.4 ccm (29.1–34.7). The example was presented as a poster
at the congresses of DEGRO and AIRO 2019 by Monica lo Russo, MD (20).
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MR-guided RT could potentially be beneficial for fast responding
tumors, e.g., Epstein-Barr positive nasopharyngeal cancers or
HPV-positive oropharyngeal cancers (OPC) (23). Also, patients
with large respiration- or swallowing induced tumor motion, like
in the case of laryngeal carcinoma could benefit fromMRgRT (24).
But, generally, anatomical changes in the head-and-neck region
are slower, e.g., caused by weight loss or target volume changes.
Several studies have investigated adaptive RT for head and neck
treatments, but not many studies have considered this in the
presence of a magnetic field. One study in 2018 has investigated
plan quality after weight loss in the presence of a magnetic field
(10), showing that the current approaches of offline planning once
or twice per week might be sufficient for reducing the dosimetric
impact of weight changes.

Besides improved soft-tissue contrast, another advantage of
MRgRT is the potential for tumor response monitoring
throughout treatment without additional imaging dose (25). One
study from 2016 has studied the feasibility of treatment response
assessment of head and neck cancer patients using diffusion-
weighted (DW) MRI on a Cobalt-60 ViewRay system (26). This
study showed variation in tumor apparent diffusion coefficient
(ADC) values and consistent brainstem ADC values throughout
treatment, potentially allowing for early treatment response
assessment. Especially DWI is a promising candidate as a
prognostic imaging biomarker in HNC (25, 27–31), but with still
conflicting results depending on the parameters analyzed (32).
Moreover, early changes in quantitative MR parameters in OAR
such as parotid glands may help to predict late toxicity like
xerostomia, enabling therapeutic interventions or plan
adaptations (33, 34). Thus, MR-Linacs with their capability of
longitudinal DWI, may facilitate a biologically adaptive
treatment, depending on therapy response for tumors and/or
OARs (35).
MR-GUIDANCE IN HEAD AND NECK
RADIOTHERAPY: CURRENT STATE
OF RESEARCH

Besides FDG-PET/CT, MRI has become an essential imaging
modality in staging of HNC (36–39). Moreover MRI enables a
better visualization of the macroscopic tumor for target volume
definition and estimation/reduction of PTV margins during
radical radiotherapy (40–42), as well as reduced interobserver
variability (16, 18, 43–45), although prospective evaluation on
primary outcome is lacking. Moreover, offline image registration
remains a pitfall, if MRI is not performed in treatment position
(46, 47). For treatment on the MR-Linac a simulation scan in RT
position is readily available to overcome these difficulties and
simultaneously offers one of the main benefits of these platforms.

Repetitive offlineMR scans show, especially forHPV-associated
OPC, a shrinkage already in the first weeks of therapy (48) up to a
complete response in imaging in around 50% of the patients mid-
treatment (49). Most of the existing data about MR-guidance in
HNC treatment is in the setting of offlineMRI, as onlineMRgRT is
still a new development with only a handful of institutions treating
Frontiers in Oncology | www.frontiersin.org 3
patients with HNC on MR-Linacs and only limited data on
feasibility of MRgRT in HNC published (8, 9). Tabular overview
of published series or recruiting trials is provided in Table 1. With
the above mentioned potential benefits for OAR sparing with ART
(21) and theobvious advantageofdailyMR-guided therapy athand,
a first prospective phase II trial for low risk HPV-associated OPC
patients was initialized by the MD Anderson Cancer Center
[NCT03224000 (50)]. In this trial, low risk HPV-associated OPC
patients will be treated on the MR-Linac with a protocol based
adaptation for the high dose volume depending on the shrinkage of
the GTV. For adaptation to shrinkage of macroscopic disease an
important issue may be the blurring of the tumor borders in MR-
images, which is seen in studies of serial MRI during RT (48, 49).
Because of this, there might be the necessity to include a GTV to
CTV margin to account for these uncertainties, which need to be
addressed in proper prospective clinical trials and post hoc analyses
of the acquired imaging data with regimens not adapting the high
dose target volume.

Several more prospective protocols are open for recruitment or
will beopenedsoon to explore the role ofMRgRT inHNCinvarious
aspects: prospective basket trials, including various tumors and
localizations, explore the feasibility of MRgRT depended on slots
and patient burden, due to longer treatment time, noise, and
claustrophobia (NCT04172753). Concerning clinical trials
dedicated to HNC, the MARTHA-trial investigates potential
benefits of weekly offline adaptation, narrow CTV to PTV
margins and daily MRg-IGRT for reducing xerostomia in
bilaterally irradiated patients over a conventionally fractionated,
curative irradiation course of 7 weeks [NCT03972072 (13)]. Patient
comfort and compliance will be also evaluated as secondary
endpoints. Another trial will test the capability of SBRT in HNC
for patients not fit for concomitant radiochemotherapy in
combination with immune checkpoint inhibition (DEHART trial,
NCT04477759). This is an intriguing approach for combined
treatment, especially in HNC with a strong biological rationale,
including the immunosensitizing effects of radiotherapy for this
indication (51) or the interplay between hypoxia and
immunotherapy (52). The number of running prospective trials
for HNC cancer is limited so far and the existing studies do not
implement identical approaches regarding the frequency and
modality of adaptation, i.e., daily versus weekly, or online versus
offline adaptive radiotherapy. Up to the present day, no results of
prospective trials or registrieshavebeenpublishedas a full paperbut
there were several presentations on congresses (1, 53–55).
CHALLENGES TOWARD ONLINE
ADAPTATION

Although the number of patients with HNC treated in all of the
commercially available MRgRT platforms is increasing
worldwide, there still exist several open questions, both in
terms of physics and logistics.

One technical challenge in treatments on the MR-Linac that is
also relevant in HNC, is the electron return effect (ERE), caused by
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the influence of the magnetic field on secondary electrons, which
results indose enhancement andattenuationat interfaces between
high/low density and low/high density tissue, respectively (56).
The effect is more pronounced at higher magnetic field strength.
Although this effect is taken into account during plan
optimization, air-tissue interfaces, common in HNC-targets,
might change during the course of treatment, resulting in
variation in dose deposition and risk of hotspots where beams
traverse from tissue to air. A recent study investigated the
robustness of treatment plans with varying sinus filling (10),
and showed that more robust plans can be generated by
optimizing with an empty cavity, since the optimizer will then
take into account the ERE. A recent planning study including ten
patients with hypopharyngeal carcinoma studied the possible
effect of a 1.5 T magnetic field on plan quality and dose to OAR.
Overall there had been no significant differences in plan quality or
doses to OAR, if the plan is optimized for the presence of the
magnetic field (57). Nevertheless, the mean and maximal dose to
the skin andmaximal dose to larynx and trachea was significantly
higher, which needs to be critically reviewed, when assessing
clinical treatment plans. Moreover, differences in homogeneity
and conformity can be observed, when compared to standard
VMAT plans for conventional linacs, with unknown impact on
outcome or QoL and future trials might need to address these
differences, like when IMRT was introduced (58).

Another difficulty in head and neck treatments on the MR-
Linac is the limitedfield of view (FOV), due to the design inwhich
the MR gradient coil is physically split to enable a radiation
window. The gap allows for maximum superior-inferior field
sizes at isocenter of 22 cm for the Elekta Unity, and 28 cm for the
ViewrayMRIdian (59). Therefore, patients with extensive, multi-
level, lymph node involvement, and/or tumors of the
nasopharynx/sinonasal cavities might not be suitable for MR-
Linac treatments with a single-isocenter. This, however, depends
on the institutional delineation protocols and applied margins, as
well on individual anatomic variations. A study fromChuter et al.
(60) showed that 66.3% of the HNC-patients with a three dose-
level treatment plan could be treated on the Elekta Unity, using a
cranio-caudalmarginof 1 cm.A reduction of thismargin to 5mm
could increase the number of eligible patients by more than 15%.
Another recent study showed that 6 out of 110 patients were not
eligible for MR-Linac treatment with a single isocenter, including
two nasopharynx patients, one oropharynx patient and three
paranasal sinus patients (11). The authors stated that neutral
neck position, as opposed to extended neck position, is favorable
to maximise the number of patients treatable on the MR-Linac.
Figure 2 depicts a real-life patient positioning forHNC treatment
on both commercially available types of MR-Linacs,
implementing neutral neck position and flexible receiver coils
over a thermoplastic mask.

Up to this day, a planningCTis still used for routine treatments
in most institutions. However, a straightforward solution for the
problemofCT/MRmismatchmentioned abovewould be anMR-
only workflow with the problem of the missing electron density
information from the CT. In the adaptive online workflow of the
Elekta Unity (Elekta AB, Sweden), a contour based bulk electron
density override of structures such as soft tissue, bones and air
T

A
B
LE

1
|
O
ve
rv
ie
w

of
pu

bl
is
he

d
an

d
on

go
in
g
st
ud

ie
s
on

M
R
-li
na

c-
ba

se
d
ad

ap
tiv
e
ra
di
ot
he

ra
py

fo
r
he

ad
an

d
ne

ck
ca

nc
er
.

Fi
rs
t

A
ut
ho

r/
P
I

Y
ea

r
S
tu
d
y
d
es

ig
n

P
la
tf
o
rm

T
o
ta
l

p
at
ie
nt
sn

T
im

ep
o
in
ts

o
f

an
al
ys

is
/

ad
ap

ta
ti
o
n

A
im

M
ai
n
fi
nd

in
g
/s
tu
d
y
en

d
p
o
in
t

R
el
ev

an
ce

R
ag

ha
va
n

(1
9)

20
16

R
et
ro
sp

ec
tiv
e

an
al
ys
is

0.
35

T
M
R
I-g

ui
de

d
tr
i-c

ob
al
t
60

6
W
ee

kl
y

Q
ua

nt
ify

vo
lu
m
e

ch
an

ge
s
of

pa
ro
tid

gl
an

ds
an

d
G
TV

Vo
lu
m
e
de

cr
ea

se
of

31
.3
%

(ip
si
la
te
ra
l)

an
d
21

.8
%

(c
on

tr
al
at
er
al
)a

nd
ce

nt
er

of
m
as
s
m
iti
ga

tio
n
w
ith

in
cr
ea

se
d
do

se
co

m
pa

re
d
to

th
e
re
fe
re
nc

e
pl
an

;
G
TV

sh
rin

ka
ge

of
38

.7
%

P
os

si
bi
lit
y
of

un
de

re
st
im
at
io
n
of

do
se

to
th
e

pa
ro
tid

gl
an

ds
w
ith
ou

t
ad

ap
ta
tio

n
re
ga

rd
in
g
in

in
cr
ea

se
d
ris
k
of

xe
ro
st
om

ia

C
he

n
(8
)

20
17

P
ro
sp

ec
tiv
e

in
st
itu
tio

na
lr
eg

is
tr
y

0.
35

T
M
R
I-g

ui
de

d
tr
i-c

ob
al
t
60

12
N
o
pr
e-
pl
an

ne
d

ad
ap

ta
tio

n
Fe

as
ib
ilit
y
of

M
R
g-
S
B
R
T

in
re
cu

rr
en

t
H
N
C

M
R
g-
S
B
R
T
fe
as
ib
le
,e

ar
ly
to
xi
ci
ty

w
ith
in

ex
pe

ct
ed

ra
ng

e
D
ue

to
M
R
-g
ui
da

nc
e
po

te
nt
ia
lt
o
re
du

ce
m
ar
gi
ns

C
he

n
(9
)

20
18

P
ro
sp

ec
tiv
e

in
st
itu
tio

na
lr
eg

is
tr
y

0.
35

T
M
R
I-g

ui
de

d
tr
i-c

ob
al
t
60

18
N
o
pr
e-
pl
an

ne
d

ad
ap

ta
tio

n
Fe

as
ib
ilit
y
of

M
R
gR

T
in

H
N
C

M
R
gR

T
fe
as
ib
le
in

pr
im
ar
y
tr
ea

tm
en

t
of

H
N
C

N
on

-r
an

do
m
iz
ed

da
ta

re
po

rt
in
g
fe
as
ib
ilit
y
of

M
R
gR

T
in

H
N
C

w
ith

to
xi
ci
ty

in
ex
pe

ct
ed

ra
ng

e
M
oh

am
ed

(2
1)

20
18

P
ro
sp

ec
tiv
e

pl
an

ni
ng

st
ud

y
O
ffl
in
e
M
R
I

5
W
ee

ks
2,

4,
6

A
da

pa
tiv
e
R
T
re
ga

rd
in
g

G
TV

sh
rin

ka
ge

in
H
P
V+

O
P
C

an
d
im
pa

ct
on

do
se

to
O
A
R

G
TV

sh
rin

ka
ge

of
up

to
10

0%
in

pr
im
ar
y
an

d
80

%
in

LN
;a

da
pt
iv
e

M
R
gR

T
lo
w
er
s
N
TC

P
fo
r
D
ys
ph

ag
ia

an
d
P
EG

de
pe

nd
en

cy
,n

o
ch

an
ge

in
m
ea

n
do

se
to

pa
ro
tid

gl
an

ds

S
tr
uc

tu
re
d
ad

ap
tiv
e
M
R
gR

T
fo
r
lo
w

ris
k
H
P
V+

O
P
C

m
ay

de
cr
ea

se
ris
k
fo
r
D
ys
ph

ag
ia
/P
EG

de
pe

nd
en

cy

B
ah

ig
(5
0)

20
18

P
ro
sp

ec
tiv
e
tw

o-
st
ag

e
P
ha

se
II
tr
ia
l

O
ffl
in
e
M
R
Ia

nd
U
ni
ty

15
+
60

W
ee

kl
y
ad

ap
ta
tio

n
A
da

pt
iv
e
R
T
fo
r
G
TV

sh
rin

ka
ge

in
H
P
V+

O
P
C

w
ith

do
se

re
du

ct
io
n

LR
C

at
6
m
on

th
Tr
ia
la
im
in
g
to

sh
ow

sa
fe

do
se

re
du

ct
io
n
w
ith

ad
ap

tiv
e
M
R
gR

T
fo
r
sh

rin
ki
ng

G
TV

in
lo
w

ris
k

H
P
V+

O
P
C

B
al
er
m
pa

s
(1
3)

20
19

P
ro
sp

ec
tiv
e
ph

as
e

II
tr
ia
l

(N
C
T0

42
42

45
9)

M
R
Id
ia
n

44
W
ee

kl
y
ad

ap
ta
tio

n
R
ed

uc
e
in
ci
de

nc
e
of

Xe
ro
st
om

ia
n.
a.

P
ro
sp

ec
tiv
e
st
ud

y
try
in
g
to

sh
ow

th
e
po

te
nt
ia
l

be
ne
fi
to

fa
da

pt
iv
e
M
R
gR

T
to

re
du

ce
Xe

ro
st
om

ia
in

H
N
C
;fi
nd

in
g
ne
w

pr
og

no
st
ic
im
ag

in
g
bi
om

ar
ke
rs
March 2021 | Volume 11 | Article 616156

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Boeke et al. MR-Guided Radiotherapy for Head and Neck Cancer
contouredon theCTandpropagated to thedailyMR isprovided for
an online reoptimization. This delineation process is time
consuming and error prone and could be overcome by the means
of deep learning for bone structure delineation (61–63). When
usingbulkelectrondensities for dose calculation, theCTdensities of
patient positioning aids cannot be used. Therefore, all positioning
devices, e.g., headrests, must be contoured with sufficient detail.

Furthermore, there is concern due to the noise for HNC
patients on MR-Linacs, as headphones are not compatible with
standard masks, so standard foam earplugs with the maximum
noise reduction of up to 37 dB is recommended. Today, there is
no prospective data published to assess the possible inner ear
damage, but clinical experience for HNC patients treated in our
institutions so far did not show any toxicity. To the author’s
knowledge, the same problem is unsolved for MR-simulations,
which are routinely used in daily routine.

Finally, at the present moment, there exist several aspects that
make MRgRT for HNC time consuming with currently
approximately 30 min needed for applying a single fraction,
and 45–50 min if online-adaptation is performed (64, 65). One of
the reasons is the limited dose rate due to the larger source
isocenter distance on the Unity system (5), although this is more
Frontiers in Oncology | www.frontiersin.org 5
important for SBRT with large doses per fraction compared to
conventionally fractionated HNC-treatment. The dose rate of the
MRIdian system is 600 cGy/minute at 90 cm SAD and such
comparable to that of a conventional linac. This prolonged
treatment time leads to limitations regarding the number of
patients treated daily and to compliance problems over a 6 or 7
week-course of radiotherapy as is usually performed for HNC
treated with curative intent. Nevertheless, some of the reasons for
this time- and resource-consuming procedures could be
eliminated in the near future. Both commercially available
platforms (MRIdian, ViewRay Inc, Oakwood, USA and Elekta
Unity, Elekta AB, Stockholm, Sweden) are only capable of
delivering step-and-shoot IMRT, but there do not seem to
exist any insurmountable hardware limitations for introducing
dynamic MLC or VMAT (66), which will lead to significantly
faster radiotherapy applications. Moreover, recent research has
demonstrated that a “full” online plan adaptation does not
always show significant benefits (64) and that a simple plan re-
optimization is often enough for providing plans of sufficient
quality (7). Applying modern developments in artificial
intelligence and machine learning, in order to improve image
registration and automated segmentation, could further
considerably reduce time for adaptation (67).

The above facts (noise, longer treatment-time etc.) demonstrate
that current practice of MRgRT is most times associated with
limitations, not only of technical nature (like VMAT versus
IMRT), but also with a smaller or larger compromise in terms of
patient comfort. This issue becomes evenmore significant as most
of our current treatments are applied over 6–7 weeks.

For the intriguing concept of response or biologically adaptive
radiotherapy, e.g., by the means of functional imaging, several
important prerequisites, like accuracy and repeatability of the
measured values as well as geometrical distortions need to be
taken into account. First phantom studies showed that both
platforms are capable of meeting these prerequisites (24).
Nevertheless, as especially the head and neck area with
movement of tissue due to breathing and swallowing as well as
air-tissue interfaces and the missing dedicated head and neck
coils, in-vivo data for serial DWI onMR-Linacs acquired with the
recommended procedures (68, 69) is missing (70).
DISCUSSION

Although MRgRT has advanced to an established modality for
treating various tumor types, even for challenging tumor
localizations like prostate cancer and moving targets like liver
malignancies, implementation of this novel technique for
irradiating HNC remains at its infancy. This article
summarizes the most important rationales and obstacles
behind this IGRT method so far and tries to present future
directions of research in this quickly evolving field.

The possible benefits of adaptive MRgRT for HNC are obvious
and have been exercised before with means of CT-scans, cone-
beam-CT (CBCT) (16), or diagnostic MRI- (22, 45) and
PET-imaging (71, 72) to serve as basis for adaptation during the
FIGURE 2 | Patient positioning for MR-Linac based treatment for head and
neck cancer in the two commercially available systems.
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6-7 week treatment course. There are three main goals of adaptive
RT cancer that can be more easily pursued with MRgRT as have
been recently summarized by Corradini et al. (5): 1) adaptation to
anatomical changes, 2) adaptation to tumor response, and 3)
motion management. All of these issues are crucial for an effective
and high-quality treatment of HNC and can be easily addressed
with the new hybrid MR-Linac-platforms without additional dose
exposure. The improved soft-tissue contrastation can provide
-compared to CBCT- additional information not only about the
external body contour and the tissue/air or tissue/bone interface,
but also about relative interfractional changes of organs like the
salivary glands or surgical flaps in the postoperative setting. Due to
the better visualization and with more advanced adaptation
algorithms and motion management strategies, classical
irradiation masks may become obsolete potentially enhancing the
patients comfort. First proof of principle for dedicated mask free
radiotherapy planning for SRS in brain tumors showed good results
for themask freeworkflow(73). Furthermore, a dailymonitoring of
and quick reaction to tumor shrinkage, like in the case of viral-
induced tumors will allow not only better sparing of OARs, but
could pave the way for more elaborate dose-(des-)intensification
and dose-painting trials (74), or even temporospatial fractionation
approaches. Last but not least, the live, online, PTV-gating andcine-
imaging allows for both 4D-planning and intrafractional motion
monitoring to compensate for breathing or swallowingmovement,
an important feature in HNC, e.g., when treating glottic laryngeal
cancer (75, 76). However, online motion management is not the
only solution for such issues: Regarding motion-depended
planning- and dosimetry uncertainties, offline-adaptation in
different breathing/swallowing positions and calculation of the
dosimetric impact might be an additional solution in these cases.
Furthermore, exception gating could be applied in order to stop
treatment in case of excessive motion (e.g., caused by coughing).

There still exist hurdles and handicaps in treatment planning
and delivery, prohibiting a wider clinical use of MRgRT for HNC,
with the most important ones being the lack of dynamic IMRT-
approaches such as VMAT or dynamic MLC and the increased
treatment delivery time with a potential higher treatment burden
for the patient. Yet, technical advances are expected to solve these
issues in the near future,making this innovative technique available
for most HNC-patients. Until then, careful patient selection is of
major importance. Patients with advanced tumors or nodal
involvement, bilateral neck irradiation, target in proximity to
sensible OARs and moving volumes are the most eager to benefit
fromMRgRT. Mathematical models to predict clinical benefit and
guide slot allocation could facilitate patient selection, similar to the
ones developed for proton treatment (77–79). Nevertheless, inter-
and intra-fractional changes in head andneck tumors and anatomy
donot usually takeplace asquickas, e.g., in themovingorgansof the
upper abdomen and as most of the times only conventional or
slightly hypofractionated regimens are used, the potential
additional benefits of online- over offline-adaptation should be
always weighted against an extension of treatment time and
compromise of the patient comfort. Until less time-consuming
and more comfortable procedures are established, the decision
regarding the time-point and frequency of plan adaptation has to
be critically discussed, also considering the real clinical benefit. An,
Frontiers in Oncology | www.frontiersin.org 6
e.g., only weekly adaptation could be sufficient for many HN
patients. In this case, the images could of course be directly
acquired on the MR-Linac. Sufficient quality of these images and
an MR-only planning procedure would simplify the process
compared to an “external” MR-simulation with or without
additional planning CT. Running and future trials should focus
on possible toxicity reduction, but also on patient comfort, always
involving patient reported outcomes (PROMs). Establishing novel,
standardized patient positioning and immobilization devices or
even treatment withoutmasks based on the experience gathered by
PROMs, aswell asdecision trees andstandardoperatingprocedures
for the need of re-planning could facilitate a broader clinical
implementation of MRgRT for head and neck cancer.

While there is still only a small number of prospective trials
investigating applications of MRgRT for HNC, this is expected to
increase in the next few years. Challenging fields of research could
benot only the decrease of toxicity and thepatient selection, but also
the development of more advanced hardware, e.g., allowing for
VMAT, or software, e.g., for monitor unit verification (66). Finally,
the possibility to have access to daily, repetitive imaging during the
whole course of radiotherapy could open completely new
dimensions with respect to both functional imaging, like
diffusion-weighted-MRI (80, 81), and radiomics (82) for
predicting tumor response and normal tissue toxicity. This aspect
becomes even more interesting through the possibility of
comparison of high- (1.5 T) and low-field (0.35 T) magnetic
resonance imaging provided by the different platforms.

This study has several limitations, most of all the non-systematic
character of the review. Nevertheless, it is the first attempt to
summarize the current stand of knowledge regarding MRgRT for
the specific and challenging indication of head and neck cancer.
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