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Abstract

Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChRs)

in a similar way to neonicotinoids. However, sufloxaflor (SFX) is thought to act in a different

manner and is thus proposed as an alternative in crop protection. The goal of this study is to

evaluate the toxicity of SFX and its sublethal effect on the honeybee Apis mellifera after

acute exposure. In toxicological assay studies, the LD50 value and sublethal dose (corre-

sponding to the NOEL: no observed effect level) were 96 and 15 ng/bee, respectively. Using

the proboscis extension response paradigm, we found that an SFX dose of 15 ng/bee signif-

icantly impairs learning and memory retrieval when applied 12 h before conditioning or 24 h

after olfactory conditioning. SFX had no effect on honeybee olfactory performance when

exposure happened after the conditioning. Relative quantitative PCR experiments per-

formed on the six nicotinic acetylcholine receptor subunits demonstrated that they are differ-

ently expressed in the honeybee brain after SFX exposure, whether before or after

conditioning. We found that intoxicated bees with learning defects showed a strong expres-

sion of the Amelβ1 subunit. They displayed overexpression of Amelα9 and Amelβ2, and

down-regulation of Amelα1, Amelα3 and Amelα7 subunits. These results demonstrated for

the first time that a sublethal dose of SFX could affect honeybee learning and memory per-

formance and modulate the expression of specific nAChR subunits in the brain.

Introduction

Honeybees are major pollinators for crops and plants, and are consequently essential for the

agricultural economy. Several studies have described pesticide exposure as one of the major

threats to colony survival [1]. In particular, neonicotinoid insecticides, which are widely used

to control a broad range of insect pests [2], are largely to blame for the decline of honeybee
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colonies [3, 4]. Exposure of honeybees to sublethal doses of neonicotinoid insecticides has led

to behavioral and physiological impairments [5]. For example, low doses of clothianidin and

imidacloprid affect honeybee foraging abilities [3], resulting in a significant decrease in colony

survival [6–8]. Moreover, a recent study showed that neonicotinoids have compound-specific

effects on the ability of bees to perform a complex olfactory learning task [9, 10]. Three neoni-

cotinoids, clothianidin (CLT), imidacloprid (IMI) and thiamethoxam (TMX) were banned by

the European Union in 2013 due to their adverse effects on honeybees [11].

The adverse effects of neonicotinoids on the honeybee have highlighted the importance of

developing new compounds that are efficient against insect pests and safer for non-target

species such as pollinators. Sulfoxaflor (SFX) is a relatively new compound belonging to sul-

foximine insecticides [12] and has been marketed as being able to replace neonicotinoid insec-

ticides [13]. SFX demonstrated high levels of insecticidal potency against sap-feeding insect

species such as the sweetpotato whitefly, Bemisia tabaci, and the brown planthopper Nilapar-
vata lugens, which have developed resistance to IMI [13]. SFX’s effect was studied by the Inter-

national Organization for biological Control (IOBC), and revealed a low impact on beneficial

arthropods such as Macrolophus caliginosus (Hemiptera), and Harmonia axyridis (Coleoptera)

[14]. It was recently shown that exposure of solitary bees to a field-realistic dose of SFX leads

to impairment of foraging and flight performances [15]. Other authors described no major

impacts of SFX on honeybees in a realistic-exposure protocol [16].

Unfortunately, no studies have evaluated the effect of a sublethal dose of SFX in relation to

the expression of nicotinic acetylcholine receptor (nAChR) subunits in the brain. Indeed, SFX

is classified as a neuronal nAChR competitive modulator by the Insecticide Resistance Action

Committee (IRAC). SFX acts on nicotinic acetylcholine receptors (nAChRs) present in the

central nervous system of insects in a similar way to neonicotinoid insecticides. These recep-

tors are made of five subunits arranged around a central pore. nAChRs are involved in fast

neurosynaptic transmission and are thus a good molecular target for neurotoxic insecticides

[17]. They are also implicated in learning and memory processes [18]. Consequently, it is not

surprising that the binding of neonicotinoids to honeybee nAChRs leads to behavioral and for-

aging impairment [19, 20]. In honeybees, eleven genes encoding nAChR subunits have been

identified, with 9 α subunits and 2 non-α (or β subunits) [21]. The subunit composition of

nAChR subtypes is known to influence their pharmacological properties [20], as well as neoni-

cotinoid binding and toxicity in honeybees [22].

In a previous study, we demonstrated that the toxic effect of neonicotinoid insecticides on

the pea aphid Acyrthosiphon pisum is associated with differential expression of nAChR sub-

units after neonicotinoid exposure [23]. In this study, we further investigate the effects of a

sublethal dose of SFX on A. mellifera’s learning and memory by using olfactory conditioning

of the proboscis extension response (PER) paradigm. Firstly, the mortality curve from the toxi-

cological assay allowed the sublethal dose to be determined (15 ng/bee) in order to be used in

the olfactory conditioning assay. Next, we evaluated the effect of this SFX sublethal dose on

learning ability, memory consolidation, and memory retrieval. In order to determine the

molecular mechanisms implicated in the behavioral changes, we evaluated the changes in

nAChR subunits expression levels after SFX exposure.

Material and methods

Honeybees

All experiments were carried out on the foraging adult honeybees Apis mellifera. The bees

were collected between june and october 2019 from different hives located at the University of

Orleans. No treatments or insecticides were applied on campus. Bees were kept in plexiglass
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cages (6 cm x 15 cm, 10 cm high) in groups of 30 individuals and fed with 50% (w/v) sucrose

solution according to the protocol established in previous studies [24, 25]. As described in pre-

vious literature [26, 27], bees were placed in a temperature-controlled chamber at 28 ± 2˚C

[26].

Determination of sulfoxaflor oral toxicity

The toxicological assay was performed according to the OECD guidelines [28] and previous

studies led by Tosi and Iturbe-Requena [29, 30]. We tested a control dose (0 ng/bee) corre-

sponding to the 50% sucrose solution, and 11 doses of SFX (15, 20, 30, 50, 100, 125, 150, 175,

200, 300 and 500 ng/bee). Bees were randomly affected to the control or to the treated groups

(exposed to different SFX solutions). They were kept in a cage and were food-deprived for 2 h

before the toxicological assay. Then, 10 μl of solution per bee was added to each cage using an

eppendorf cap and was completely consumed within 60 min [28, 29]. After oral intoxication,

honeybees were fed with 50% (w/v) sucrose solution ad libitum [24, 31, 32]. Mortality was

recorded 48h after oral administration of SFX [29, 33]. The corrected mortality percentages

were calculated according to Henderson-Tilton’s equation [34, 35] as follows:

Corrected mortality % ¼ 1 �
n in Co before treatment � n in T after treatment
n in Co after treatment � n in T before treatment

� �

� 100

with n = number of honeybees, T = treated group, Co = control group.

A mortality curve was determined using the different mortality percentages as a function of

SFX dose. LD50 and the sublethal dose were identified as described in the statistical section.

Olfactory conditioning of the PER

Honeybee sampling and selection. Adult foraging honeybees (Apis mellifera) were col-

lected the evening before the test around the hives of the University of Orleans, France. Bees

were anesthetized with CO2 and placed on ice for manipulation. Each individual was placed

individually in a tube (allowing free movement of the antennae and mouthparts) and fed to

satiation with a 50% (w/v) sucrose solution. Bees were maintained in an incubator at 28˚C

until the next day. In the morning, the responsive bees were selected for olfactory condition-

ing. Each bee’s antennae were stimulated with sucrose solution (50% w/v). Only bees showing

PER after stimulation were kept for the following experiments. This verification stage is used

to check the sensory-motor components of the PER [32, 36].

Olfactory conditioning. Classical olfactory conditioning of the proboscis extension reflex

(PER) was carried out following a well-established protocol [37, 38]. The 50% (w/v) sucrose

solution was used as the unconditioned stimulus (US), with lavender being used as the condi-

tioned stimulus (CS), as described in a recent study [39]. The CS was presented for 5s and the

50% (w/v) sucrose solution was presented for 5s, 3s after the CS [36]. Honeybees received five

paired CS–US presentations with a 10 min inter-trial interval between the CS presentations

[24] (Fig 1). Bees that did not extend their proboscis (PER) during conditioning were not con-

served for the next steps of the experiment. According to a previous study [40], only bees that

showed PER had assimilated the movement and could thus be used to quantify the process of

acquisition and retrieval. The retrieval test was evaluated 24h and 48h after the end of the

olfactory conditioning by presenting the CS to the bee’s antennae. Results are represented as

percentage of PER in each group.

Honeybee exposure to sulfoxaflor before or after olfactory conditioning. Selected hon-

eybees were randomly assigned to control and treated groups, with 30 individuals per group.

The treated group was fed orally with 2 μl of 50% (w/v) sucrose solution containing 15 ng of
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SFX. This concentration corresponds to the NOEL (non-observed effect level) maximum dose

displaying no toxicity and was defined as the sublethal dose for the next experiments [41, 42].

Note that in this experiment, the final solution of dimethyl sulfoxide (DMSO) was 0.5%. The

control group was fed with 2 μl of 50% (w/v) sucrose solution containing 0.5% DMSO. To test

the effect of SFX exposure on learning memory performance, honeybees were treated 30 min

and 12 h before the first olfactory conditioning trial [36] or 3 h 30 and 23 h 30 after the last

olfactory conditioning trial.

Determination of nAChR subunit expression level

Experimental design. Quantitative PCR (qPCR) experiments were used to quantify the

expression level of bee nAChR subunits, for which the nucleotide sequences have been pub-

lished in a previous study [21]. Only bees showing significant alteration of the PER after SFX

exposure were selected for qPCR experiments. Thus, we selected treated bees which were not

able to master the olfactory conditioning, as well as treated bees which were able to learn but

were unable to show a retrieval test at 24 h. Expression level in each group was determined as

a relative expression ratio compared to those in the corresponding control group.

Total RNA extraction and cDNA preparation. Total RNA from 10 bee brains was

extracted using the RNeasy micro kit (Qiagen, Courtaboeuf France) according to manufac-

turer recommendations. To avoid genomic DNA contamination, the protocol includes RNA

treatment with DNAse I. RNA was retro-transcribed using random hexamers with Proto-

Script1 II Reverse Transcriptase (NEB, Evry France), dissolved in RNAse-free water and con-

served at -20˚C.

Primer design and reference gene validation. Primer sets (Table 1) were designed using

Primer3 software based on sequences available on the Genbank database (http://www.ncbi.nl

m.nih.gov/genabnk/). Under quantitative PCR conditions, amplification efficiencies were

between 80 and 110%, allowing validation of each primer set for qPCR experiments. Accord-

ing to the literature, 6 candidate reference genes (rpL32, rpS18, gapdh rp49, RPS5 and Tbp-af)
[43, 44] were tested for their expression stabilities with the Normfinder program [45]. Gapdh

Fig 1. Olfactory classical PER conditioning protocol. Experimental procedure of paired group olfactory classical PER conditioning (inspired by

Matsumoto et al. 2012). Lavender (conditioning stimulus, CS) was applied for 5s. After 3s, sucrose 50% (unconditioning stimulus, US) was

presented. Each bee received five paired CS–US presentations (noted trial T1 to T5) with a 10 min inter-trial delay. Retention tests were performed

24 h and 48 h after the last conditioning trial and consisted of presentation of the CS without US.

https://doi.org/10.1371/journal.pone.0272514.g001
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and rp49 were the optimal reference genes in our conditions and were both selected for accu-

rate normalization.

Quantitative PCR experiment. qPCR experiments were optimized according to MIQE

Guideline recommendations [46] using the AriaMix Real-Time PCR System (Agilent, Santa

Clara, USA) and GoTaq1 qPCR Master Mix (Promega, Fitchburg, Wisconsin USA). Experi-

ments were performed in triplicate using 25 ng of total RNA and 150 nM of primer for a final

volume of 13.5 μl. We followed standard qPCR protocol with a 10 min hot start at 95˚C, 40

amplification cycles (30s at 95˚C, 30s at 60˚C, 1 min at 72˚C), and a final melting curve deter-

mination. Product specificity was further assessed by dissociation curves giving rise to a single

peak at the specific melting temperature [47]. Relative expression ratio (R) was calculated

according to Pfaffl’s formula [48], using primer efficiency (E) and CP value variation between

controls, and treated (ΔCP = CP control–CP treated) for each nAChR subunit. Gene expres-

sion levels after SFX exposure were calculated as a relative expression ratio, normalized using

the geometric mean of the two reference genes (gapdh and rp49) and relative to control condi-

tions, according to the following formula:

R ¼
ðEsubunitÞDCPsubunit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE gapdhÞDCPgapdh�ðE rp49Þ
DCPrp49

q

Chemicals. SFX was prepared in the CEISAM laboratory (UMR CNRS 6230, Nantes,

France) as a mixture of diastereoisomers (See S1 File), following the procedure described in a

previous study [49]. It was solubilized in DMSO at a final concentration of 1 mg/mL for the

stock solution, as previously described [50]. For the toxicological assay, SFX was diluted in

50% (w/v) sucrose solution for all tested concentrations.

Statistical analysis. To estimate LD50 values, data were analyzed using Graphpad Prism

5 (GraphPad Software Inc., La Jolla, CA). Statistical analysis used to evaluate the effect of

SFX on olfactory conditioning was described by Tison et al. [32]. During the conditioning

trial and restitution test, the responses of each bee were scored as binary responses (PER, 1;

no response, 0). A generalized linear mixed model analysis was applied on R software to

Table 1. Primers used to amplify nicotinic acetylcholine receptor subunits and selected reference genes in quantitative PCR experiments.

gene Forward primer Reverse primer Efficiency (%)

Amelα1 CAACTACAACCGCCTCATCC CGACACCGCCATAATCATCC 110

Amelα2 CCGACATCTTCTTCAACATCAC AAAGCGAGCACCGATAAATAC 81

Amelα3 CGCCCTCACCGTTAAAATC TTCCACCCCACCATATTCC 104

Amelα4 CTAACGCCAAAACGATTTCAC CGGAGGACAGGACTTTTAAC 97

Amelα5 CGGACATCACTTACGAGATAC AGAATACCAACAGGGCGAC 90

Amelα6 ATAGTGCCGCAAATCCTCC ATAATCTCGTCGCTTTCATCC 92

Amelα7 AGTGATAAGGAGGAGAGGGAG TTATTGTGGGACGCCAGAG 84

Amelα8 CGAGAAGATGATGCTCGAC TGAGCAATAAAACGCACACC 92

Amelα9 TCTCGTCCCATCAAATCGCC ACCCAAATATCGTCGCTCTTC 101

Amelβ1 TCCTCAAGTATCTGCCCAC ACAACTCCATCACCTCCATC 80

Amelβ2 ATCCTCCGTCACTGAATCG GCATAAAAAAGCACTCCATCC 83

Amel gapdh CACCTTCTGCAAAATTATGGCG ACCTTTGCCAAGTCTAACTGTTAA 90

Amel Rp49 CGTCATATGTTGCCAACTGGT TTGAGCACGTTCAACAATGG 86

Gapdh = Glyceraldehyde 3-phosphate dehydrogenase; rp49 = Ribosomal protein 49

https://doi.org/10.1371/journal.pone.0272514.t001
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study the relationship between PER and SFX’s effect [32, 51] (See S2 File). The best model

was selected using the Akaike information criterion and validated by assessing normal Q–Q

plots and residual versus fitted data plots [32, 40]. We used a χ2 test to compare control and

treated groups 24 h and 48 h after olfactory conditioning. Relative expression ratios of

nAChR subunit genes were compared to theoretical non-modified expression level (R = 1),

(to determine whether modifications to gene expression levels were significant after SFX

exposure), using a one-way ANOVA with a Dunnett post-hoc test for multiple comparison

(α = 0.05) [23].

Results

Effect of sulfoxaflor on learning ability when administered before the

conditioning

The first step of our study was to determine the sublethal dose of SFX, which was used for

olfactory conditioning. The toxicological assay demonstrated a dose-dependent mortality at 48

h with a LD50 value of 95.88 ± 0.09 ng/bee (Fig 2). Thus, as in previous studies, the NOEL was

15 ng/bee, and was defined as the sublethal dose for the next experiments [41, 42].

Two exposure procedures were tested to assess the effect of a sublethal dose of SFX on

learning and memory. In the first experiment, bees were exposed to 15 ng of SFX 30 min

before the conditioning (Fig 3A). No significant difference was found during olfactory condi-

tioning (n > 80 bees, χ2 = 6.35, df = 7, P = 0.09, Fig 3B), or for the retrieval performance of

the PER between the control and treated groups at 24h after the conditioning (n > 35 bees, χ2

= 0.35, df = 1, P = 0.55, Fig 3C) and 48 h (n > 25 bees, χ2 = 0.3 df = 1, P = 0.58, Fig 3C).

To test the hypothesis of a delayed SFX effect, we investigated the impact that an acute

long-term exposure of SFX had on learning and retrieval performance. Thus, bees received

SFX 12h before the first conditioning trial (Fig 4A). In this condition, treated bees showed a

significant decrease in their learning ability (n > 100 bees, χ2 = 29.98, df = 7, P < 0.001, Fig

4B). Moreover, SFX exposure led to a decrease in memory retrieval at 24h (n > 25 bees, χ2 =

5.09, df = 1, P = 0.024, Fig 4C). This effect was not seen at the 48h retention test (n < 30 bees,

Fig 2. In vivo oral toxicity of sulfoxaflor to the honeybees, Apis mellifera. Toxicity curve of sulfoxaflor for adult

forager honeybees. 30 bees were placed into each cage and 300 μl of the test solutions (10 μl.bee-1) were provided inside

the cage using an eppendorf cap. SFX doses ranging from 15 ng to 500 ng/bee were tested. Mortality rate was assessed

48 h after intoxication. Each value is the mean ± SEM of three independent experiments.

https://doi.org/10.1371/journal.pone.0272514.g002
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χ2 = 0, df = 1, P = 0.95, Fig 4C), suggesting a transient effect of SFX on the retrieval

performance.

Effect of sublethal administration of sulfoxaflor after the conditioning

To further investigate the impact of SFX on memory consolidation, we designed a second set

of experiments. For that purpose, similarly to a previous study [40], bees were exposed to SFX

3.5 h after the last olfactory conditioning trial (Fig 5A). As expected, bees from treated and

control groups had similar learning ability during the PER conditioning (Fig 5B). In addition,

no significant difference between the two groups was observed during the restitution test at 24

h (n> 35 bees, χ2 = 1,59, df = 1, P = 0.2), or 48 h (n > 30 bees, χ2 = 2,23, df = 1, P = 0.13, Fig

5C).

These results demonstrated that bees exposed to a sublethal dose of SFX during the memory

consolidation did not impair the retrieval performance. In the last set of experiments SFX was

administered to bees 23.5 h after the last olfactory conditioning trial, corresponding to 30 min

before the retrieval test at 24 h (Fig 6A) (Tison et al. 2017). As in previous experiments, bees

from treated and control groups had similar learning ability during the olfactory PER condi-

tioning (Fig 6B). Interestingly, during the 24 h retrieval test, no significant difference was

observed between control and treated bees (n > 50 bees, χ2 = 1.75, df = 1, P = 0.18, Fig 6C),

but a significant difference was found at 48 h after the conditioning (n> 40 bees, χ2 = 4.58,

Fig 3. Effect of sulfoxafor sublethal dose on learning ability and memory formation after 30 minutes exposure

before conditioning. A. Experimental procedure used: 30 min before the first olfactory conditioning trial (T1), treated

and control bees received 2 μL of SFX solution (15 ng/bee) or 50% (w/v) sucrose solution respectively. B. The response

(PER or no PER) of each bee was registered during each conditioning trial. Only surviving bees showing a proboscis

extension response at the end of the olfactory conditioning were considered for the restitution test. C. The restitution

tests were performed 24 h and 48 h after the last olfactory conditioning trial. No significant difference was observed

between the treated and control groups (P > 0.05). The number of individuals in each group is given in the brackets.

https://doi.org/10.1371/journal.pone.0272514.g003
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df = 1, P = 0.03, Fig 6C). These results sustained the hypothesis that SFX has a delayed effect

on bee memory retrieval.

Sulfoxaflor effect on nicotinic acetylcholine receptor subunit expression in

the honeybee brain

In order to investigate the link between SFX impairment on learning and memory, and bee

nAChR expression, we quantified the relative expression level of genes encoding nAChR sub-

units. We therefore selected treated bees that were not able to learn during olfactory condition-

ing (Fig 4) in order to identify possible modifications to gene expression levels compared to

the control bees that learned correctly. In this condition, we observed high variations in gene

expression levels in treated bees compared to the control group (Fig 7A). In particular,

Amelβ1 expression was 762 ± 30% higher in the treated group compared to the control. We

also observed a significant increase in Amelα6 (+123 ± 12%), Amelα7 (+129 ± 16%), Amelα3

(+91 ± 4%), Amelα1 (+89 ± 8%) and Amelβ2 (+79 ± 5%). These results suggested that modifi-

cations to the subunit expression could be linked to the learning defect induced by SFX. Con-

sidering this hypothesis, the same approach was applied to treated bees that did not

demonstrate PER during the 48 h retrieval test (see Fig 6). Compared to control bees that dem-

onstrated correct memory retrieval, bees from this experiment presented significant modifica-

tions to gene expression levels (Fig 7B). Indeed, we found that three nAChR subunit genes

were down-regulated during the retrieval performance. This was the case for Amelα1

(-49 ± 2%), Amelα3 (-51 ± 0.2%) and Amelα7 (-49 ± 2%), whereas Amelα9 (+75 ± 4%) and

Fig 4. Effect of sulfoxaflor sublethal dose on learning ability and memory formation after exposure 12 h before

conditioning. A. Experimental procedure used: 12 h before the first olfactory conditioning trial (T1), treated and control

bees received 2 μL of SFX solution (15 ng/bee) or 50% (w/v) sucrose solution respectively. B. The response (PER or no

PER) of each bee was registered during each conditioning trial. Only surviving bees showing a proboscis extension

response at the end of the olfactory conditioning were considered for the restitution test. C. The restitution tests were

performed 24h and 48h after the last olfactory conditioning trial. Asterisks indicate statistically significant differences in

the treated group response compared to the control group (P< 0.05). The number of individuals in each group is given

in the brackets.

https://doi.org/10.1371/journal.pone.0272514.g004
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Amelβ2 (+67 ± 3%) were up-regulated in bees exposed to SFX, confirming that SFX applica-

tion to bees alters behavioral performance and modifies bee nAChR subunit expression.

Discussion

Effects of a sublethal dose of SFX on learning and memory performance

Firstly, we evaluated the in vivo toxicity of SFX to the honeybee Apis mellifera. The mortality

curve enabled us to estimate the LD50 of SFX as being 96 ng/bee. This result is slightly lower

than that presented in the EFSA report, which indicated an LD50 of 146 ng/bee after acute oral

exposure [52], which can be linked to the fact that in our experiments, we only used summer

forager bees, which may have different genotypes or ages. Indeed, a previous study highlighted

high variations in neonicotinoid toxicity, with IMI having an LD50 between 2.5 ng/bee and

83.3 ng/bee, depending on honeybee genotype and age [53]. In addition, we also found that

SFX was less toxic to bees than neonicotinoid insecticides such as IMI, CLT or TMX [54]. This

toxicological assay enabled us to determine the sublethal dose used in learning and memory

tests which was selected as the sublethal dose for the PER experiments. Our results indicated

that a sublethal dose of SFX can affect learning and memory processes in different ways

depending on the exposure protocol. In the first set of experiments, we found a strong SFX

effect when bees were intoxicated 12h before the olfactory conditioning, but no effect was

observed when SFX exposure took place 30 min before conditioning. In a previous study, Sivi-

ter et al. (2019) demonstrated that SFX did not impair learning performance when honeybees

were exposed to very low doses just before olfactory training [39]. The discrepancy in our

Fig 5. Effect of sulfoxaflor sublethal dose on memory processes after exposure 3h30 after conditioning. A.

Experimental procedure used in protocol 3: 3 h 30 after the last olfactory conditioning trial (T5), treated and control bees

received 2 μL of SFX solution (15 ng/bee) or 50% (w/v) sucrose solution respectively. B. The response (PER or no PER) of

each bee was registered during each conditioning trial. Only survival bees showing a proboscis extension response at the

end of the olfactory conditioning were considered for the restitution test. C. The restitution tests were performed 24 h and

48 h after the last olfactory conditioning trial. Asterisks indicate statistically significant differences in the treated group

response compared to the control group (P< 0.05). The number of individuals in each group is given in the brackets.

https://doi.org/10.1371/journal.pone.0272514.g005
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study could be associated to the finding that we used a higher concentration of SFX compared

to the study by Siviter et al. [39]. Again, such variability could be linked to different genotype

backgrounds in bees [53]. Interestingly, a similar learning defect was observed when bees were

exposed to high concentrations of the neonicotinoid thiacloprid (69 ng/bee) just before olfac-

tory conditioning [40] and IMI (12 ng/bee) [36], demonstrating that the insecticide dose being

tested is a critical parameter. Another hypothesis is that the delay between intoxication and

conditioning trials is crucial for observing the SFX effect on learning ability. Indeed, we also

noticed a decrease in the restitution rate at 24 h when SFX was administrated 12 h before the

conditioning, demonstrating that early exposure to an SFX sublethal dose could also impair

memory retrieval. We observed a spontaneous recovery in the memory retrieval of treated

bees at 48 h, demonstrating that memory formation was not impaired but was not accessible

after SFX exposure. Similar results have been demonstrated previously after a sublethal expo-

sure of CLT [32] and IMI [55].

Moreover, we propose that SFX exposure during memory consolidation did not influence

memory retrieval performances. On the contrary, SFX intoxication just before the restitution

test led to memory retrieval impairment at 48h. These results suggest that i) some stages of

learning and memory processes are more sensitive to SFX than others, and ii) in terms of

learning ability, the effect of SFX on memory retrieval probably involves molecular mecha-

nisms, which justifies the delay between SFX exposure and retrieval defect. These results are

consistent with previous studies, demonstrating a memory impairment due to neonicotinoid

Fig 6. Effect of sulfoxaflor sublethal dose on memory processes after exposure 23h30 after conditioning. A. Experimental

procedure used in protocol 4: 23h30 after the last olfactory conditioning trial (T5), treated and control bees received 2 μL of

SFX solution (15 ng/bee) or 50% (w/v) sucrose solution respectively. B. The response (PER or no PER) of each bee was

registered during each conditioning trial. Only surviving bees showing a proboscis extension response at the end of the

olfactory conditioning were considered for the restitution test. C. The restitution tests were carried out 24 h and 48 h after the

last olfactory conditioning trial. Asterisks indicate statistically significant differences in the test group response compared to the

control group (P< 0.05). The number of individuals in each group is given into brackets.

https://doi.org/10.1371/journal.pone.0272514.g006

PLOS ONE Effect of a sublethal dose of sulfoxaflor in the honeybee

PLOS ONE | https://doi.org/10.1371/journal.pone.0272514 August 3, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0272514.g006
https://doi.org/10.1371/journal.pone.0272514


exposure [32, 36, 40, 56]. Indeed, CLT at 0.3 ng/bee and 0.8 ng/bee induced a decrease in

memory retention and interfered with memory retrieval [32]. A recent study demonstrated

that IMI at a sublethal dose (0.12 ng/bee) induced a negative effect on medium-term retention,

but not on the short and long-term retention. The authors proposed that IMI could act on

memory formation or memory restitution [36]. In the same way, Tison et al. (2017) showed a

significant reduction in retention during the memory tests at 24 h after THC intake at high

doses (20, 69 and 200 ng/ bee) [40]. Altogether, these results demonstrate the impact of a sub-

lethal dose of SFX on bee behavior. Similar effects were reported after intoxication with neoni-

cotinoids, such as TMX, which induced either a significant decrease in olfactory learning

ability or memory retrieval performance depending on exposure protocol [57].

Fig 7. Expression levels of nAChR mRNA subunits in honeybee brains. A. relative expression level of nAChR

subunits in bees with learning ability impairment after sulfoxaflor exposure. Experiments were based on honeybees

exposed to sulfoxaflor 12h before conditioning that were unable to learn at the end of olfactory conditioning. B.

relative expression level of nAChR subunits in bees with memory retrieval impairment after sulfoxaflor exposure.

Experiments were based on honeybee exposed to sulfoxaflor 23 h 30 after conditioning (i.e. 30 min before the 24 h

retrieval test) that did not show PER during the retention test. For all experiments, results are expressed as a percentage

of the control. For each gene, the expression levels in the control group corresponds to 100% and is represented by a

dotted line. Each qPCR experiment was performed in triplicate and results are the mean of four independent

experiments. Relative expression ratios were normalized using two reference genes, gapdh and rp49. Error bars

represent the SEM. Statistical analysis (t-test, α = 0.05) was carried out using Graphpad Prism 5 software and results

statistically different from control are marked with an asterisk.

https://doi.org/10.1371/journal.pone.0272514.g007
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Involvement of honeybee nAChRs in the SFX effect

nAChRs are involved in the various phases of classical olfactory conditioning [18, 58, 59],

and previous studies highlighted the link between modulation of nAChR activity and

impairment of learning and memory [60, 61]. We proposed that the differential effect of SFX

observed depending on the exposure procedure could be due to its action on specific

nAChRs that are differently implicated in memory formation and retrieval processes. In fact,

previous studies demonstrated that α-bungarotoxin-sensitive nAChRs are involved in mem-

ory consolidation, whereas memory retrieval is affected by mecamylamine-sensitive nico-

tinic receptors [60–63]. To further assess the mechanism underlying the effect of SFX on

learning and memory processes, we determined the variation in nAChR subunit expression

for honeybee brains presenting a degradation in either their learning or retrieval ability after

SFX exposure. In these two groups of intoxicated bees, we observed significant modulations

to nAChR subunit expression levels. This is in line with previous studies demonstrating neu-

ronal plasticity, and nAChR expression modifications associated with chronic oral exposure

to neonicotinoids in adult honeybees [19]. In our study, three α subunits (Amelα1, Amelα3,

Amelα7) seem to be regulated in the same way after SFX exposure procedures. These α sub-

units are up-regulated in SFX-treated bees with learning defects, and down-regulated in

SFX-treated bees with retrieval impairment. The modulation to Amelα1 subunit expression

is consistent with a recent publication showing that Amelα1 was upregulated after exposure

to CLT, IMI, or TMX after chronic oral exposure to neonicotinoids at low doses [50]. In

their study, Christen et al. (2016) identified an increase in Amelα1 and Amelα2 subunit

expression after 48 h, and no modification at 72 h [50]. We also observed an overexpression

of the Amelα9 and Amelβ2 subunits in intoxicated bees with retrieval defects. This is consis-

tent with a previous study which highlighted a similar increase in these subunits after 10

days of exposure to TMX [64]. Changes in nAChR subunit expression after exposure to neo-

nicotinoids have also been described in other insects such as the pea aphid Acyrthosiphon
pisum [23], the planthopper Nilaparvata lugens [65], the house fly Musca domestica [66], and

the cockroach Periplaneta americana [67]. This regulation of nAChR subunit expression is

considered as a compensatory mechanism for the decrease in ACh-sensitivity of the recep-

tors [19].

Gene expression patterns seem to present specific modifications depending on the insecti-

cide tested. For example, exposure to IMI and TMX also induced the expression of Amelα2

[50], which is not the case in our experiments with SFX. We also observed overexpression of

Amelβ1 and Amelβ2 after SFX intoxication, whereas IMI exposure is associated with a

decreased expression of these subunits in honeybees [68]. This is in accordance with recent

studies on cockroach DUM neurons, suggesting that SFX acts on nAChR subtypes distinct

from those implicated in the interaction of neonicotinoids such as IMI or TMX [69–71]. At

the molecular level, a recent study on drosophila suggested that SFX could bind to nAChR sub-

types including the Dmelβ1 subunit [20]. We propose that Amelβ1 expression could also make

honeybees have an increased sensitivity to SFX. Moreover, Amelα7 was respectively up-regu-

lated or down-regulated in SFX-intoxicated bees presenting olfactory learning or memory

retrieval defects. These data suggest that receptors containing Amelα7 have a different role in

learning and memory processes. Besides, Amelα1 and Amelα3 are co-regulated, suggesting

that these two subunits belong to the same receptor subtypes. Their low expression levels are

correlated with retrieval defects induced by SFX, and these subunits were previously co-local-

ized with Amelβ1 in kenyon cells and antennal lobes [72–74]. Thus, we propose that hetero-

meric nAChRs consisting of Amelα1 Amelα3 and Amelβ1 or homomeric Amelα7 nAChRs

could be implicated in the memory retrieval process in honeybees. In fact, α7 subunits are able
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to form functional homomeric receptors, as demonstrated in D. melanogaster [75]) and P.

americana [76]. A previous study also demonstrated that Amelα8 subunits from the mush-

room bodies are implicated in memory retrieval [77]. Therefore, various nAChR subtypes are

probably involved in both learning and memory processes, and SFX’s mode of action. The

molecular composition of nAChRs must still be elucidated, and further investigations are

needed in order to understand the molecular mechanisms underlying the effect of an SFX sub-

lethal dose on learning and memory in bees.

Conclusion

In this study, by using the PER paradigm, we demonstrated previously undiscovered learning

and memory impairment after exposure to a sublethal dose of sulfoxaflor. In particular, we

demonstrated that the SFX effect is displayed with a delay between exposure and behavioral

impairment. To explore SFX’s mode of action, we identified the modulations to the expression

pattern of the nAChR subunits following SFX exposure. We found that sulfoxaflor exposure

led to over- or under-expression of several nAChR subunits, which are specific depending on

the exposure protocol. As nAChRs play an important role in learning and memory, their mod-

ulation could be (at least in part) responsible for the defects in learning ability and memory

formation that were observed. In all cases, we demonstrated that SFX is able to impair honey-

bee learning and memory performance. Further characterization of nAChR subtypes involved

in the response to SFX exposure are needed in order to better understand sulfoxaflor’s impact

on honeybee behavior. As sulfoxaflor is a candidate for replacing neonicotinoid insecticides in

crop protection strategies, our results highlight the need to better understand sulfoxaflor’s

mode of action in order to correctly assess the environmental risk to pollinators.
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