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Abstract

Background: Recipient donor matching in liver transplantation can require precise estimations 

of liver volume. Currently utilized demographic-based organ volume estimates are imprecise and 

nonspecific. Manual image organ annotation from medical imaging is effective; however, this 

process is cumbersome, often taking an undesirable length of time to complete. Additionally, 

manual organ segmentation and volume measurement incurs additional direct costs to payers 

for either a clinician or trained technician to complete. Deep learning-based image automatic 

segmentation tools are well positioned to address this clinical need.

Objectives: To build a deep learning model that could accurately estimate liver volumes and 

create 3D organ renderings from computed tomography (CT) medical images.

Methods: We trained a nnU-Net deep learning model to identify liver borders in images of the 

abdominal cavity. We used 151 publicly available CT scans. For each CT scan, a board-certified 

radiologist annotated the liver margins (ground truth annotations). We split our image dataset into 

training, validation, and test sets. We trained our nnU-Net model on these data to identify liver 

borders in 3D voxels and integrated these to reconstruct a total organ volume estimate.
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Results: The nnU-Net model accurately identified the border of the liver with a mean overlap 

accuracy of 97.5% compared with ground truth annotations. Our calculated volume estimates 

achieved a mean percent error of 1.92% + 1.54% on the test set.

Conclusions: Precise volume estimation of livers from CT scans is accurate using a nnU-Net 

deep learning architecture. Appropriately deployed, a nnU-Net algorithm is accurate and quick, 

making it suitable for incorporation into the pretransplant clinical decision-making workflow.
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INTRODUCTION

Solid organ transplantations are medically and surgically complex procedures.1 To achieve 

successful surgical outcomes, transplantation teams must appropriately consider numerous 

clinical, biochemical, and anthropometric features for both an organ donor and a patient 

recipient.2 Of these considerations, the size and shape of an offered organ can be relevant. 

Size mismatches exist between donors and recipients and are often of little consequence.3 

However, if a donated organ is relatively large or a recipient has anatomical cavity 

limitations, a donor/recipient size mismatch may prevent a transplantation procedure from 

occurring or may lead to an adverse clinical outcome. In this way, estimation of donor organ 

volume and recipient abdominal cavity is essential to clinical decision-making in solid organ 

transplantation.3

Size mismatch limitations are prominent in the field of liver transplantation surgery3 

where abdominal cavity constraints, especially in pediatric populations,4 exist and must 

be identified prior to organ harvesting. Interoperative realization of an organ size mismatch 

is problematic since it can lead to difficulty closing the abdomen or place excessive tension 

on the allograft leading to graft failure.5 For this reason, size matching is a significant 

endeavor that requires accuracy. Transplantation teams take great care to estimate donor 

organ and recipient cavity volumes before initiating a transplantation procedure when 

necessary. At present, several methods for organ volume estimation and assessment of 

anatomical spatial constraints exist.6-8 Organ size estimates may be made informally by 

viewing recipient and donor full computed tomography (CT) scans side-by-side prior to 

an operation. Total liver volume (TLV) estimates may also be estimated through general 

demographic-based estimation techniques9 or with height and weight-based normalized 

calculators.10 While these estimation techniques have some clinical utility, they are often 

inaccurate.10 Alternatively, liver segmentation and volume estimation is conducted using 

semi-automatic computational methods.11 In semi-automatic segmentation, probabilistic 

models are automatically generated from a manual seed point on the image identified by 

a user. The model then attempts to identify relevant boundaries per slice in the medical 

image, while human-guided pixel assignment is iteratively conducted to refine predictions. 

While accurate, these processes are iterative and require time, clinical expertise, and manual 

human guidance.
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In light of recent advancements made with machine learning12 and deep learning13 based 

image segmentation tools,14-19 it is time to reevaluate and create a top performing, and fully 

automated organ volume estimation model. The “no new U-net” or nnU-Net algorithm20 

is a deep learning convolutional neural network method that has recently been developed 

and validated as an accurate tool for automatically segmenting features from 2D or 3D 

image modalities.20 The nnU-Net method is an extension of the recent, but highly impactful 

U-Net deep learning architecture,21 which demonstrated impressive object identification22 

and image segmentation capabilities.23,24 The problem that nnU-Net solves, which remains 

unaddressed in general U-Net architectures, is the problem of generalizability. Individual 

U-Net deep learning models are highly specific and require manual selection of model 

design elements. They are designed for optimized use on certain segmentation tasks, such 

as appreciating 2D or 3D image information, respectively. nnUNet optimizes these processes 

as an end-to-end solution. The nnU-Net method combines multiple U-Net approaches and 

automatically adapts its use of several U-Net architectures to appropriately model images of 

any given input geometry or information type.20

For this reason, the nnU-Net deep learning modality has the capability to optimally 

segment organs from CT scans, which relies on density or hypodensities revealed from 

x-ray images to differentiate between relevant biological features within a patient.25 While 

the applications of nnU-Net are diverse, they have previously been successfully applied 

to estimate organ shapes, volumes, or other relevant biological features from multiple 

imaging modalities, including CT scans.26-28 A gap in capability currently exists, however, 

determining the efficacy of utilizing nnU-Net to segment and specifically estimate intra-

abdominal organ volumes prior to transplantation.

We sought to fill this gap in knowledge by creating and validating a nnU-Net model to 

segment and calculate accurate organ volume estimates acceptable for aiding in solid organ 

transplantation clinical decision-making. In this work, we will discuss the success of this 

initiative and present our results for the accurate 3D renderings and volume estimations 

of livers, which can be generated with nnU-Net from CT scans. These results can inform 

transplantation surgical decision-making and may have broader applications in the field of 

surgery and procedural-based specialties.

METHODS

Data Acquisition

To implement nnU-Net, we obtained pre-annotated CT scan images from 2 databases. The 

full methods for data collection, annotation, and publication of these databases have been 

published previously, and we summarize them here.29,30 The Liver Tumor Segmentation 

Challenge (LiTS)29 is a publicly accessible competition consortium published in 2017 of 

131 abdominal CT scans. The 3D Image Reconstruction for Comparison of Algorithm 

Database (IRCAD)22 is also a publicly accessible dataset published in 2015 containing 

20 abdominal CT scans. We accessed both databases on May 31, 2021, downloading the 

LiTS (https://www.kaggle.com/andrewmvd/liver-tumor-segmentation/version/1) and IRCAD 

images (https://www.ircad.fr/research/3dircadb/) completely. The CT scans housed in LiTS 

were segmented, annotated, and harmonized to single reference standard contour by 3 board-
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certified radiologists,29 demarcating the borders of the liver from other abdominal contents. 

All the CT scans in the training, validation, and test sets are uniformly 512 × 512 pixels per 

slice on their “X” and “Y” axes. The Z axes, or slice thickness, varied between CT samples. 

The average number of z axis slices across our CT samples is 142 slices with a standard 

deviation of 43 slices, and corresponding slice thicknesses ranged from 0.5 millimeters to 

2.0 millimeters.

Preprocessing

Additional annotations exist within these datasets, including radiologist segmentations of 

bones, vasculature, intraparenchymal tumors, and other organs. To harmonize these data, we 

grouped and utilized only the radiologist annotations demarcating the contours of the liver, 

ignoring additional sub annotations for tumors, including intrahepatic tumors, vasculature, 

or other abdominal organs. Specifically, we did not retain any annotations denoting contours 

of the gallbladder, the intraparenchymal vasculature, the external biliary system, the hepatic 

portal vein, the proper hepatic artery, or the hepatic veins. These images are stored in these 

databases as Digital Imaging and Communications in Medicine (DICOM31). To facilitate 

our analysis with the nnU-Net deep learning method, and specifically for ease in converting 

these 3D images into a 3D array, we converted these DICOM files to Neuroimaging 

Informatics Technology Initiative (NIfTI31) image files using the python coding package 

dicom2nifti32.

nnU-Net Architecture

We utilized the python package nnunet33 (version 1.6.6) to train the deep learning 

algorithm. The nnunet python package is self-contained and optimizes a set 3D U-Net 

model architecture. As can be observed in Figure 1, the model takes the characteristic 

“U” shape. Three-dimensional arrays representing each input CT image are input into the 

model and undergo a series of convolutions, maximum pooling operations, up-convolutions, 

and finally, concatenation steps. Intrinsic to the U-Net design, information early on in 

the network architecture is leaked into the final stages of the network through horizontal 

concatenation steps (represented as green lines in Fig. 1). We represent the standard 

convolution steps as yellow forward arrows in the figure, which include batch normalization 

and a rectified linear unit activation function34 implementation as these steps. Batch 

normalization was implemented for each layer of the nnU-Net through recentering/rescaling. 

This step standardized each batch of images trained per layer to speed up model training, 

likely through minimizing internal covariate shift.35 The first half (left) of the U-shaped 

architecture in Figure 1 can be interpreted as conducting image analysis, while the second 

half synthesizes the segmentation image. Convolution steps were conducted with a 3 × 3 

× 3 sliding voxel window. Maximum pooling steps condense a 2 × 2 × 2 voxel window. 

Up-convolution layers (also known as “deconvolution” or “transposed” convolution layers36) 

involve a 2 × 2 × 2 sliding voxel window, with a constrained step length of 2. The final 

convolution in the analysis layer is a 1 × 1 × 1 voxel convolution.

Model Training and Validation

After database harmonization and file conversion, 151 abdominal CT scans with annotated 

liver margins were available for analysis. We randomly split the 131 LiTS images into an 
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80% training set of 104 scans and a 20% validation set of 27 images. We reserved the 

remaining 20 independent images from the IRCAD database as a test set, including 10 male 

and 10 female CT scans. The sex or other demographic features of the LiTS database were 

not provided. With training, validation, and test sets sectioned, we initiated training of these 

segmented CT scans with nnU-Net. The nnunet python package has preprocessing, which 

occurs internally that automatically performs parameter tuning to optimize segmentation 

accuracy in the validation set during training and ultimately on the test set. Internal to 

the nnU-Net software is a unique loss function that combines the Dice coefficient37 with 

cross-entropy and is utilized to measure model loss and update parameters during training 

of the segmentation tool. The Dice metric is a measure of overlap, quantifying the similarity 

between 2 segmented regions. We trained the nnU-Net model for 4000 epochs, where 

an epoch is defined as the case where the model has iteratively trained on each of our 

151 images an additional time. Model performance was determined through a global Dice 

score, which averages the degree of overlap between the nnU-Net segmentation predictions 

of liver parenchyma compared to the known, ground truth, radiologist annotations. This 

evaluation metric was obtained at each step of model training from the test set; however, no 

feedback information from the test set was used in training the model. In this way, the test 

set remained an independent set to compare model performance on never-before-seen data 

objectively.

Volume Estimation and 3D Renderings

Our final trained and validated nnU-Net model segmented the CT scans by iteratively 

scanning 3D voxels across the entire image volume. A voxel is a standardized volume 

used as a base element during the convolutional processing of an image. In our model 

training, the pixel spacing and slice thickness for each CT scan was obtained through the 

NIfTI file header, standardizing voxel sizing across the unique scans. After identifying 

the borders of the liver with nnU-Net, we were able to create a separated, reconstructed 

3D image representation of the liver by selecting only for the voxels that contained liver 

parenchyma or liver borders. Additionally, a colored region annotation was conducted for 

multiaxis 2D viewing of liver parenchyma predictions superimposed in space onto the 

original NIfTI CT image. Finally, by obtaining voxel dimensions per unique CT scan from 

the image meta-data, a volumetric estimate of liver volume was obtained by summing 

the nonoverlapping voxels that were predicted to comprise liver tissue. We compared our 

voxel-based predicted volume estimates of the IRCAD test CT scans against the ground 

truth volumes for these images with percent error metrics. These methods were conducted 

using 64 central processing units, 488 gigabyte random-access memory, and 8 Nvidia (Santa 

Clara, CA) V100 graphics processing units hosted on Amazon Web Services (Seattle, WA).

RESULTS

Training and Validation Outcomes

We successfully created a nnU-Net convolutional neural network to segment livers from 

the combined LiTS-IRCAD database of abdominal CT scans. The nnunet python package 

is self-contained and optimized the established 3D U-Net model architecture. In total, 

19,069,955 independent parameters combined between the convolution, pooling, and up-
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convolution steps were optimized to train the nnU-Net model. After 4000 epochs of training, 

an optimized nnU-Net model was established. A visualization of the training set, validation 

set, and final evaluation (test set) metrics can be visualized in Supplementary Figure 1 

(http://links.lww.com/AOSO/A111) as blue, red, and green lines, respectively. A stochastic 

but steady decrease in the loss function for the training and validation sets was observed 

through the 4000 epochs. At 1000 epochs, a global Dice similarity score of 0.956 was 

obtained, with a Dice of 0.959 at 2000 epochs. We stopped model training at 4000 upon 

meeting a check-in thresh-old of <1% increase in global Dice similarity score within 2000 

epochs. Ultimately, a training set loss of −0.7805, and validation set loss of −0.6785, and an 

evaluation metric of 0.966 were obtained at the conclusion of our model training.

Segmentation Accuracy

The ground truth whole liver volume segmentation mask for each CT scan is manually 

constructed by board-certified radiologists. To compare the complete liver volumes 

autosegmented via our trained 3D U-Net, we calculate the Dice coefficient, quantifying 

the overlap between the ground truth whole liver volume segmentation mask and the whole 

liver segmentation mask predicted by the trained nnU-Net model for each sample in the 

test set. For the male samples, we obtained a median global Dice similarity coefficient of 

0.975. The standard deviation in global Dice coefficients among the male samples 0.006 

with a maximum of 0.985 and a minimum of 0.965. For the female samples, we obtained 

a median global Dice similarity coefficient of 0.975. The standard deviation in global Dice 

coefficients among the female samples was 0.004 with a maximum of 0.980 and a minimum 

of 0.968. Combined, we achieved an average global Dice similarity coefficient of 0.974 

across all samples in the test set with a standard deviation of 0.005. We also report the 95th 

percentile of the (symmetric) Hausdorff distance (HD) between predicted versus ground 

truth liver contours. Overall, we obtained an average 95th percentile HD of 2.458 ± 0.933. 

These model performance results on individual test samples and overall compiled summary 

statistics may be appreciated in Tables 1 and 2, respectively.

Volume Estimation Accuracy

The ground truth volumes for each of the CT scans obtained in our combined LiTS-IRCAD 

database are presented in Figure 2. It is visually appreciable through box plots the median 

and interquartile ranges of the TLVs (cm3) captured between the training, validation, and 

testing image sets (Fig. 3). For the male samples, we obtained a median percent error of 

2.055% in TLV (cm3) estimation comparing our nnU-Net predictions to the ground truth 

for each CT. The standard deviation of percent error for male livers was 1.746%, with a 

maximum of 5.560% and a minimum of 0.223%. We obtained a median percent error of 

0.911% in TLV (cm3) estimation comparing our nnU-Net predictions to the ground truth 

for each CT for the female samples. The standard deviation of percent error for female 

livers was 1.149%, with a maximum of 3.127% and a minimum of 0.135%. Combined, we 

achieved an average percent error of 1.922% across all samples with a standard deviation 

of 1.537%. Our exact estimates of liver volume through summation of predicted liver 

parenchyma voxels via nnU-Net annotation on the test set are appreciable in Table 1. 

Predicting the segmentation mask with our trained nnU-Net model took on average 143.4 

seconds for each test set CT scan with a standard deviation of 76 seconds.
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3D Rendering

From the segmentation predictions obtained via our nnU-Net implementation, we 

successfully created both 2D and 3D renderings of the liver parenchyma for interactive 

viewing. Specifically, we compared 2 interactive image viewing platforms to appreciate the 

segmentation predictions for nnU-Net. The first is appreciable in Figure 4 and is a multiaxis 

2D nnU-Net liver prediction overlay, which is superimposed onto the original CT image 

using the software platform ITK-SNAP.38 This overlay tracks in standard DICOM or NIfTI 

image viewers, and it is possible to scroll, take in image point measurements, or utilize all 

the other image viewer features with this colored overlay intact. We were also successful 

in the second step using ITK-SNAP,38 which afforded us the capability to separate out the 

predicted liver parenchyma and present a 3D interactive rendering of the liver in isolation. 

This 3D projection is freely rotatable and of high resolution, which can be appreciated in 

Figure 5.

DISCUSSION

Size matching is an essential step in the pretransplantation clinical workflow. When 

size discrepancies between a donated organ and recipient do occur, they can prevent a 

transplantation procedure from occurring. If a size mismatched transplant does go forward, 

it can lead to dangerous interoperative circumstances.5 It is clear that population-based and 

demographic-based organ volume estimators are of some clinical utility.6,7 However, the 

precision with which they estimate can be unsatisfactory for confident organ allocations. 

We set out to train and validate a deep learning model capable of segmenting out the 

liver parenchyma from CT medical images in this work. Implementing a nnU-Net deep 

learning architecture,20 we created a computational solution that could accurately estimate 

liver volumes from CT scans with an average percent error of 1.922% ± 1.537%. Further, 

this successful implementation of nnU-Net affords for the expedient generation of flexible 

2D or 3D interactive models representing the liver parenchyma. This advancement meets a 

clinical need to accurately size match donor and recipient before transplantation.

We view the similarity with which we segment liver volume compared to an average ground 

truth radiologist segmentation to be notable, with a global Dice similarity of 0.974 ± 0.005 

and 95% HD of 2.46 ± 0.93 mm. This marks an improvement from other currently used 

organ volume estimators. For comparison, In 2020, Boers et al39 were able to modify a 

3D U-Net model to achieve a Dice similarity coefficient of 0.78 for automatic pancreas 

segmentation from CT scans. To automatically segment the humerus, a U-Net model has 

achieved a 0.946 Dice coefficient.40 To segment out the liver, and training with our same 

LiTS database and testing on the IRCAD test set, Li et al23 were able to achieve a 

global Dice score of 0.965 with their H-DenseUNet model, while Jin et al41 developed a 

RA-UNet method that performed at 0.961 global Dice score. These can be compared to the 

segmentation accuracy of our nnUNet method that achieved an average global Dice score 

of 0.974. An improvement is demonstrated by our nnU-Net application when compared to 

previously constructed neural network-based segmentation techniques for the liver and other 

organs.
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In addition to providing an increase in technical segmentation capabilities over other deep 

learning or approximation methods, developing this nnU-Net solution has practical benefits. 

The previously mentioned automatic methods are specific and require a certain level of 

data science expertise to meaningfully implement. This includes manual data preprocessing 

tasks and neural network architecture engineering per developed solution. As the nnU-Net 

method can automatically optimize key model tuning parameters based on unique input 

data constraints,20 it is much easier to implement. We suggest its use to the reader as it 

requires less computational technical capabilities to build for this and other relevant image 

segmentation tasks.

Methods for TLV appraisal other than neural network models exist and can be highly 

accurate.10 However, these methods often include additional imaging or data preprocessing 

steps that can be financially burdensome or clinically unjustifiable. For example, TLV 

estimators can be accurate with supplementary CT annotation steps,7,42 or when combined 

with additional imaging modalities of such as ultrasound,43 or magnetic resonance imaging 

(MRI).44 The nnU-Net we present works with standard CT imaging and does not require 

any manual preprocessing steps. Linear regression TLV models also exist.45-47 TLV may 

be estimated as a regression of total body surface area (TLV = 794.41 + 1267.28 × body 

surface area, r2 = 0.49) or from body weight in kilograms (TLV = 191.80 + 18.51 × 

weight, r2 = 0.49).48 These methods are only validated to predict TLV within 10% of the 

observed TLV 33% of the time.33 The method we present, a trained nnU-Net model, is 

more accurate, yielding an average 2% error for our liver volume estimations. It also has a 

pronounced advantage over linear regression models as exact CT segmentations, unique liver 

representations, and ultimately total volume estimation are performed for each individual.

Our study has some limitations. Our nnU-Net is not currently deployable with other 

imaging modalities, including MRI. Our sample size is also limited, containing only 151 

CT scan images. It is known, however, that rich information is stored in each image that 

is sufficient to produce a robust nnU-Net deep learning solution using few input patients.20 

For reference, in 2019, Ma et al49 trained a modified U-Net algorithm to accurately perform 

bladder segmentation from CT scans. These authors were able to obtain an average percent 

error of 2.3% ± 21% for their model, training and testing with a total of 172 imaging 

studies. Our nnU-Net deep learning architecture currently only recognizes the general organ 

parenchyma of the liver. We aim to incorporate other relevant hepatic features such as 

vasculature or lobar anatomy in future model versions. We are additionally collecting and 

annotating prospective images to ensure model generalizability in varied clinical situations, 

disease states, and among varied demographic populations. Such developments, while 

helpful, are outside the scope of our initial aim, to precisely assess liver volume and shape 

before a transplantation procedure.

Advantages of this nnU-Net for liver organ segmentation and volume estimation remain 

despite these limitations. CT scan images are the most readily utilized image modality prior 

to transplantation procedures50 and are often available to a physician for consideration. 

Ubiquitous pretransplantation access to CT scan images of the donor is on the immediate 

horizon, as United Network of Organ Sharing nears completion of their UNet Image Sharing 

pilot program to provide high resolution donor medical images directly in DonorNet.51 This 
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nnU-Net application with a CT scan modality is robust providing exact volume estimates 

and precise multidimensional shape reconstructions. Various precisions of CT scans existed 

in these 151 standardized images, including differences in image granularity and width 

between image slices. Our model performed well despite this variance and was accurate 

across all CT scan qualities. Currently, it takes less than 20 seconds for our fully trained 

model to import a CT scan image, annotate the margins of the liver, provide a volume 

estimation, and return a modified CT scan image. Specifically, our model produces a masked 

image with color highlighting of the liver in a freely manipulable CT scan image, viewable 

on standard CT scan viewing platforms (Fig. 4). From this segmentation capture, a clinician 

can definitively extract specific dimensions, such as anterior-posterior distances, in addition 

to TLV.

Further, the 3D rendering capabilities of our model may be easily dually applied to both the 

donor and the recipient, allowing for a side-by-side, synchronized, direct organ comparison 

utilizing the same measurement scales. This capability may demonstrate utility when 

anatomical variation or complex partial allograft procedures are being considered. Broader 

applications of this technology within the field of surgery are abundant. Three-dimensional 

organ segmentation renderings from CT scans can be captured in series to track organ 

volume and other metrics over time and in parallel to disease state progression. Clear utility 

also exists for these technologies to aid in preoperative and preprocedural assessments, 

highlighting surgical access constraints that may guide clinical decision-making. The nnU-

Net method is technically ready to provide even greater insight into these problems. Once 

sizable and accurate ground truth training datasets have been generated, the method will 

be well suited to automatically segment out vascular52 and subsegmental organ anatomical 

features from CT imaging. More broadly, the nnU-Net method will also be useful for 

automatically segmenting tumors53 and other anomalies54 that exist across many organ 

systems. This method will have near-term application and impact in assisting in the clinical 

workflows for multiple specialties.20

In conclusion, our nnU-Net liver segmentation estimation model is accurate and robust 

across CT scan image qualities. This model’s deployment will allow for immediate 

incorporation into clinical practice workflows, without manual preprocessing steps, to 

provide accurate volumetrics and 3D reconstructions on donor organs for size matching. 

We envision particular utility for our model to be an aid in pre-liver transplantation clinical 

decisions. Future work is justified to produce similar nnU-Net models for other solid organs, 

to accurately measure the volume of kidneys, hearts, and lungs. Finally, we anticipate 

expanding our model to function appropriately across other imaging modalities, including 

MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
nnU-Net convolutional neural network architecture for the segmentation of liver tissue from 

abdominal CT scans. BN indicates batch normalization; CT, computed tomography; ReLU, 

rectified linear unit activation function.
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FIGURE 2. 
Box plots representing median and interquartile range of liver volumes captured in training, 

validation, and test sets. Volume estimations (cm3) were annotated slice by slice in CT scans 

by board-certified radiologists. One-hundred four training and 27 validation CT images 

were obtained from LiTS database, and 20 test images were obtained from IRCAD. CT 

indicates computed tomography; IRCAD, The 3D Image Reconstruction for Comparison of 

Algorithm Database; LiTS, The Liver Tumor Segmentation Challenge.
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FIGURE 3. 
Box plots visualizing the median and interquartile ranges for percent error when comparing 

nnU-Net predicted volumes to ground truth radiologist annotations. Percent error on the test 

set is stratified by patient sex. F indicates female; M, male.

Pettit et al. Page 15

Ann Surg Open. Author manuscript; available in PMC 2022 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
nnU-Net segmentation and color annotation of liver parenchyma superimposed onto original 

computed tomography image. Areas identified by nnU-Net as part of the liver are noted in 

red in sagittal cross-section (A), coronal cross-section (B), and transverse cross-section (C).
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FIGURE 5. 
A 3D rendering of liver parenchyma with nnU-Net. This rendering may be rotated freely in 

space and is used for final organ volume estimation.
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Table 1.

Side by side liver volume estimations predicted by nnU-Net compared to the ground truth volumetric 

annotations by board certified radiologists in the test dataset.

Index Sex

Total Liver
Volume

from
Radiologist
Annotations

(cm3)

Total
Liver

Volume
from Our
3D UNet

Predictions
(cm3)

Percent
Error in

Liver
Volume

Prediction
(%)

Dice
Similarity
Coefficient

Hausdorff
Distance

(mm)

95th
Percentile

of
Hausdorff
Distance

(mm)

1 F 1,489.410 1,480.438 0.602 0.980 18.176 1.802

2 F 1,612.490 1,604.298 0.508 0.974 16.210 2.346

3 F 1,618.970 1,611.261 0.476 0.976 17.324 2.253

4 F 1,622.318 1,586.608 2.201 0.979 8.429 1.646

5 F 1,543.661 1,541.581 0.135 0.976 18.868 1.819

6 F 1,355.007 1,371.519 1.219 0.971 13.642 2.688

7 F 1,359.611 1,323.460 2.659 0.969 18.204 2.945

8 F 1,680.848 1,675.151 0.339 0.972 23.576 2.500

9 F 1,153.317 1,122.455 2.676 0.968 24.828 4.000

10 F 1,778.006 1,833.598 3.127 0.976 27.989 2.572

11 M 1,159.707 1,153.143 0.566 0.985 12.702 1.398

12 M 1,247.579 1,316.949 5.560 0.965 29.297 5.507

13 M 2,078.697 2,023.016 2.679 0.979 8.051 1.749

14 M 1,789.068 1,721.530 3.775 0.971 12.013 2.212

15 M 1,430.422 1,484.953 3.812 0.969 24.883 1.945

16 M 1,929.034 1,954.936 1.343 0.976 17.827 2.619

17 M 1,404.006 1,350.078 3.841 0.974 32.235 1.755

18 M 1,486.234 1,482.924 0.223 0.979 20.326 1.860

19 M 2,118.118 2,145.089 1.273 0.978 21.027 2.792

20 M 1,860.623 1,833.989 1.431 0.972 32.794 2.744

Dice Similarity Coefficient: Computes the Dice coefficient (also known as Sorensen index) between the binary objects in two images. It is defined 
as the harmonic mean of the precision and recall or a global F1 score.

Hausdorff Distance (mm): Computes the (symmetric) Hausdorff Distance (HD) between the binary objects in two images. It is defined as the 
maximum surface distance between the objects.

95th Percentile of Hausdorff Distance (mm): Computes the 95th percentile of the (symmetric) Hausdorff Distance (HD) between the binary 
objects in two images. Compared to the Hausdorff Distance, this metric is slightly more stable to small outliers and is commonly used in 
biomedical segmentation.

Ann Surg Open. Author manuscript; available in PMC 2022 October 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pettit et al. Page 19

Table 2.

nnU-Net Performance Statistics on Test Set

F
(N=10)

M
(N=10)

Overall
(N=20)

Total Liver Volume from Radiologist Annotations (cm3)

 Mean ± Standard Deviation 1521.36 ± 185.634 1650.35 ± 346.787 1585.86 ± 278.688

 Median 1578.076 1637.651 1578.076

 Min, Max 1153.317, 1778.006 1159.71, 2118.118 1153.317, 2118.118

Total Liver Volume from Our 3D nnU-Predictions (cm3)

 Mean ± Standard Deviation 1515.037 ± 200.773 1646.661 ± 336.484 1580.849 ± 278.001

 Median 1122.455, 1833.598 1153.143, 2145.089 1122.455, 2145.089

 Min, Max 1122.455, 1833.598 1153.143, 2145.089 1122.455, 2145.089

Percent Error in Liver Volume Prediction (%)

 Mean ± Standard Deviation 1.394 ± 1.149 2.450 ± 1.746 1.922 ± 1.537

 Median 0.911 2.055 1.387

 Min, Max 0.135, 3.127 0.223, 5.560 0.135, 5.560

Dice Similarity Coefficient

 Mean ± Standard Deviation 0.974 ± 0.004 0.975 ± 0.006 0.974 ± 0.005

 Median 0.975 0.975 0.975

 Min, Max 0.968, 0.980 0.965, 0.985 0.965, 0.985

Hausdorff Distance (mm)

 Mean ± Standard Deviation 18.725 ± 5.650 21.116 ± 8.673 19.920 ± 7.229

 Median 18.190 20.677 18.536

 Min, Max 8.429, 27.989 8.051, 32.794 8.051, 32.794

95th Percentile of Hausdorff Distance (mm)

 Mean ± Standard Deviation 2.457 ± 0.686 2.458 ± 1.170 2.458 ± 0.933

 Median 2.423 2.079 2.300

 Min, Max 1.646, 4.000 1.398, 5.507 1.398, 5.507
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