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Abstract

Background: The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly
synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate
cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1a is a central component of the
UPR. In pancreatic b-cells, IRE1a also functions in the regulation of insulin biosynthesis.

Principal Findings: Here we report that hyperactivation of IRE1a caused by chronic high glucose treatment or IRE1a
overexpression leads to insulin mRNA degradation in pancreatic b-cells. Inhibition of IRE1a signaling using its dominant
negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1a retain expression of more insulin
mRNA after chronic high glucose treatment than do their wild-type littermates.

Conclusions/Significance: These results reveal a role of IRE1a in insulin mRNA expression under ER stress conditions caused
by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the
translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already
inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of b-cell homeostasis
and may explain why the b-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the
absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing
the amount of misfolded insulin, which could be a source of ‘‘neo-autoantigens.’’
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Introduction

The endoplasmic reticulum (ER) is a cellular compartment for

the biosynthesis and folding of newly synthesized secretory

proteins such as insulin. Perturbations in ER function cause

dysregulation of ER homeostasis, leading to ER stress [1,2]. Cells

cope with ER stress by activating an ER stress signaling cascade

called the unfolded protein response (UPR). This activation results

in the upregulation of gene expression for molecular chaperones,

expands the size of the ER, decreases general protein translation to

reduce the ER workload, and degrades abnormal proteins

accumulated in the ER [3,4].

As long as ER stress signaling via the UPR can keep ER stress

levels under control, cells can perform their normal functions.

However, under some pathological conditions, such as obesity and

progressive neurodegeneration, a high level of chronic ER stress

persists, leading to cell dysfunction and death [5,6,7]. It has been

suggested that chronic and high levels of ER stress have a function

in b-cell dysfunction and glucose toxicity. In glucose toxicity,

insulin secretion by b-cells is impaired in response to stimulation

by glucose; the condition is characterized by a sharp decline in

insulin gene expression [8,9]. Numerous studies have shown that

impaired b-cell dysfunction can be improved by treatment of the

hyperglycemia [8,9], suggesting that identifying the molecular

mechanisms involved in b-cell glucose toxicity may provide new

therapeutic targets for diabetes.

Inositol requiring 1 a (IRE1a) is a transmembrane protein

kinase/endoribonuclease that is localized in the ER and activated

by ER stress. Unfolded proteins in the ER are sensed by the IRE1-

BiP complex, which causes dimerization, autophosphorylation,

and subsequent activation of IRE1. Activated IRE1 splices X-box

binding protein-1 (Xbp-1) mRNA in the cytoplasm, leading to

synthesis of the active transcription factor Xbp-1 and upregulation

of ER stress-response genes [10,11]. In addition, IRE1 can

promote cleavage of the 28S ribosomal RNA [12], as well as

mRNA encoding IRE1 [13].

In metazoans, IRE1 activation initiates two separate signaling

cascades: an XBP-1- dependent pathway that upregulates ER stress

response genes and an XBP-1-independent pathway involving

specific cleavage and subsequent degradation of sets of translating

mRNAs on the ER membrane [14]. This response complements

other components of the UPR, selectively halting protein synthesis

and clearing the translocation machinery when translating mRNAs

are overloading the ER and causing ER stress. It has been suggested
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that this specific mRNA degradation may result from IRE1 focusing

on messages that present the most immediate challenge to the

translocation and folding machinery [14].

In mice and rats, the two insulin gene transcripts are the most

abundantly transcribed mRNAs in b-cells bound for translation

through the ER membrane [15]. Global profiling of genes

modified by ER stress in b-cells has shown that upon induction

of ER stress, Insulin 1 and Insulin 2 mRNA are quickly degraded,

leading to significantly decreased levels of these mRNAs Pirot et al.

(2007). We have shown that hyperactivation of IRE1 is correlated

with reduction in insulin mRNA expression in pancreatic b-cells

(Lipson et al., 2006). Based on these observations, we hypothesized

that when ER folding capacity is overwhelmed, IRE1 initiates

endonucleolytic cleavage of mRNA encoding insulin, the major

secretory protein in pancreatic b-cells. Here we report that IRE1a
hyperactivation has a function in insulin mRNA reduction under

chronic high-glucose conditions and implicate ER stress in the

molecular mechanisms of glucose toxicity.

Results

Chronic high glucose causes ER stress and reduces
insulin gene expression in pancreatic b-cells

To investigate the effect of chronic high-glucose treatment on

expression levels of insulin and ER stress response genes, we treated

INS-1 832/13 cells and primary mouse islets with increasing

concentrations of glucose for 24 and 72 hr, then measured

expression levels of Insulin 1 and Insulin 2 gene expression, as well

as expression of several well-known markers of ER stress.

After 24 hr, both Insulin 1 and Insulin 2 gene expression

increased with increasing glucose. Expression levels of spliced

Xbp-1 and Ero1a, ER stress markers, also increased with glucose

concentration. The expression of Chop, an ER stress marker of

apoptosis remained the same, suggesting that chronic glucose

treatment causes mild ER stress but not cell death (Fig. 1A).

Seventy-two hr treatment with high glucose caused a dramatic

reduction in both Insulin 1 and Insulin 2 gene expression, an

indication of glucose toxicity (Fig. 1B). We also observed a

decrease in Xbp-1 splicing and other ER stress markers in the islets

after 72 hr treatment with 16.7 mM glucose (Fig. 1A), and with

both 11 mM and 16.7 mM in INS-1 832/13 cells (Fig. 1C). This

decrease in Xbp-1 splicing directly correlated with the decrease in

Insulin 1 and Insulin 2 gene expression. However, we observed

that phosphorylation of Ire1a increased as glucose concentration

increased, and was much stronger after 72 hr of treatment despite

the reduction in XBP-1 splicing (Fig. 1D).

IRE1a overexpression correlates with reduced insulin
mRNA

Our results suggested that chronic high glucose activates an

Xbp-1 independent Ire1a signaling cascade. The strong activation

of Ire1a, combined with the loss of Xbp-1 splicing during chronic

high-glucose treatment, led us to hypothesize that IRE1a itself

may have a direct function in the degradation of insulin mRNA.

To test this hypothesis, we transfected COS-7 cells with mouse

Insulin 2 expression plasmid, then transfected wild-type human

IRE1a expression plasmid or kinase/endoribonuclease inactive

dominant-negative mutant K599A IRE1a expression plasmid in

these cells, then measured insulin gene expression (Fig. 2A).

We observed a reduction in Insulin 2 mRNA in cells

overexpressing wild-type IRE1a, but not in cells overexpressing

mutant K599A IRE1a or the pcDNA3 control.

We also transfected either wild-type human IRE1a or K599A

IRE1a expression plasmid in INS-1 832/13 cells and measured

endogenous Insulin 1 and Insulin 2 mRNA expression (Fig. 2B).

We found downregulation of both Insulin 1 and Insulin 2 gene

expression only in cells expressing wild-type IRE1a.

To study the correlation between IRE1a expression levels and

insulin gene expression, we expressed increasing amounts of wild-

type IRE1a in INS-1 832/13 cells and measured expression levels

of insulin. The results indicated a dose-dependent response to the

amount of IRE1a expressed and the fold reduction in endogenous

insulin mRNA (Fig. 2C). Taken together, these data show a firm

correlation between strong activation of IRE1a and the degrada-

tion of insulin mRNA independent of glucose concentration.

Inhibition of IRE1a activation by a dominant negative
mutant blocks both high glucose induced and
thapsigargin induced insulin mRNA degradation

To test the hypothesis that IRE1a is directly involved in the

reduction of insulin mRNA on exposure to chronic high glucose, we

generated INS-1 832/13 cell lines expressing the dominant-negative

mutant K599A IRE1a, using a lentivirus-based doxycycline-

mediated induction system. We induced expression of K599A

IRE1a or empty vector control in INS-1 832/13 cells, then

challenged them with increasing concentrations of glucose for

72 hr (Fig. 3A). As compared to the INS-1 832/13 control cells, cells

stably expressing the dominant-negative mutant K599A IRE1a
resisted the high glucose-induced reduction in insulin mRNA and

had higher gene expression for both Insulin 1 and Insulin 2.

Thapsigargin, a chemical ER stress inducer, causes a significant

decrease in the transcript levels of Insulin 1 and Insulin 2 [16]. To

determine whether IRE1a is responsible for this chemically

induced ER stress decrease in insulin mRNA expression, we used

actinomycin D to attenuate mRNA transcription, then challenged

the cells with thapsigargin to induce Insulin 1 and Insulin 2

mRNA degradation. Cells expressing the dominant-negative

mutant K599A IRE1a resisted the thapsigargin-induced decrease

in both Insulin 1 and Insulin 2 gene transcripts observed in control

cells (Fig. 3B).

Islets from mice heterozygous for IRE1a are resistant to
high-glucose-mediated reduction in insulin mRNA
expression

We observed that cells in which strong activation of IRE1a was

partially blocked by use of a mutant form of IRE1a were more

resistant than control cells to the glucotoxic effects of chronic high

glucose on insulin gene expression. We then tested whether islets

from mice heterozygous for IRE1a are also more resistant to chronic

high glucose. We treated islets from mice that were heterozygous for

IRE1a or islets from their wild-type littermates with 16.7 mM

glucose for 72 hr, then measured Insulin 1 and Insulin 2 gene

expression and Xbp-1 splicing (Fig. 4). Heterozygous mouse islets

were more resistant to the glucotoxic effects of chronic high glucose

exposure in that they had higher Insulin 1 and Insulin 2 gene

expression than did their wild-type littermate controls. However,

splicing of Xbp-1 was lower in the IRE1a heterozygotes, suggesting

that these mice were also more resistant to ER stress induced by

chronic high glucose. These results suggest that IRE1a acts directly

in the reduction of insulin mRNA under chronic ER stress

conditions and that blocking the activation of IRE1a under these

conditions can protect cells from negative effects.

Discussion

Our results demonstrate a genetic and biochemical linkage

between ER stress signaling and reduction in insulin mRNA

ER Stress and Insulin
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expression in pancreatic b-cells under chronic high glucose

conditions. We propose that IRE1a hyperactivation by chronic

high glucose results in selective degradation of insulin mRNA,

leading to glucose toxicity. It has been shown that insulin mRNA

degrades rapidly under ER stress conditions in pancreatic b-cells

[16]. However, the precise mechanism whereby IRE1-mediated

insulin mRNA degradation occurs is unclear. The reduction of

insulin mRNA under ER stress conditions may be initiated by direct

endonucleolytic cleavage by the nuclease domain of IRE1, ultimately

leading to degradation of the insulin message. Alternatively, IRE1

Figure 1. Chronic high-glucose treatment causes ER stress in islets and insulinoma cells, resulting in a reduction in insulin gene
expression. (A) Islets pooled from 6 mice were treated with 5 mM, 11 mM, or 16.7 mM glucose for 24 or 72 hr. Expression levels of Ero1a, Chop,
spliced Xbp-1, and total Xbp-1 were measured by real- time PCR (n = 2). (B) Islets pooled from 6 mice were treated with 5 mM, 11 mM, or 16.7 mM
glucose for 24 or 72 hr. Expression levels of Insulin 1 and Insulin 2 were measured by real time PCR (n = 2). (C) INS-1 832/13 cells were pretreated for
12 hr with 5 mM glucose, then treated with 5 mM, 11 mM, or 16.7 mM glucose for 72 hr. Expression levels of Insulin 1, Insulin 2, and spliced Xbp-1
were measured by real time PCR (n = 3; values are mean6SEM). (D) INS-1 832/13 cells were pretreated for 12 hr with 5 mM glucose, then treated with
5 mM, 11 mM, or 16.7 mM glucose for 72 hr. Total IRE1a, phosphorylated IRE1a, and actin were measured by immunoblot.
doi:10.1371/journal.pone.0001648.g001
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may function in the activation or recruitment of additional

ribonucleases that can degrade insulin messages. It is also possible

that IRE1 signaling may somehow initiate insulin gene-specific

transcriptional stalling. Regardless of the precise mechanism, our

data show that IRE1a, a central component of ER stress signaling,

has an essential function in the reduction of insulin mRNA.

Numerous studies have implicated PDX-1 and MafA, two

transcription factors that are important for insulin gene transcrip-

tion, in the defective insulin gene expression in b-cells caused by

chronic exposure to supraphysiologic concentrations of glucose

[17,18,19,20,21,22,23]. Chronic exposure of b-cells to excess

glucose decreases PDX-1 gene expression and MafA protein

expression, leading to the suppression of insulin gene expression.

Our current results suggest that mRNA degradation is an

additional contributor to the reduction in insulin gene expression

observed upon chronic exposure to high glucose. All of these

effects may act synergistically to decrease insulin mRNA.

Chronically high levels of glucose also cause oxidative stress,

leading to activation of c-Jun N-terminal protein kinase (JNK).

This JNK activation suppresses PDX-1 binding to the insulin

Figure 2. Overexpression of IRE1a correlates with reduced Insulin mRNA in cultured cells. (A) COS-7 cells were transfected with mouse
Insulin 2 and cultured for 24 hr. Cells were then split onto 3 plates and transfected again with wild-type human Ire1a; IRE1a WT, a kinase/
endoribonuclease inactive mutant human Ire1a; IRE1a KA; or pcDNA3 control. They were then cultured for 24 hr. Protein and RNA were collected
from the same plates. Total IRE1a, phosphorylated IRE1a, and actin were measured by immunoblot. Expression levels of human IRE1a and mouse
Insulin 2 were measured by real time PCR (n = 3; values are mean6SEM). (B) INS-1 832/13 cells were transfected with human IRE1a WT or pcDNA3
control and cultured for 24 hr. Expression levels of human IRE1a, endogenous rat insulin 1, insulin 2, and glucose transporter 2 (glut 2) were
measured by real time PCR (n = 3; values are mean6SEM). (C) INS-1 832/13 cells were transfected with either pcDNA3 control or increasing
concentrations of human IRE1a WT and cultured for 24 hr. Expression levels of human IRE1a, endogenous rat insulin 1, insulin 2, and glucose
transporter 2 (glut 2) were measured by real-time PCR (n = 3; values are mean6SEM).
doi:10.1371/journal.pone.0001648.g002
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promoter and reduces insulin gene expression [24]. We have

shown previously that in mammalian cells ER stress signaling

activates JNK through IRE1 [25]. Thus, hyperactivation of IRE1a
by chronic high glucose may suppress insulin gene expression

partially through JNK-mediated PDX-1 inactivation.

Our work demonstrates that two distinct activities are elicited by

high-glucose-induced activation of IRE1a in pancreatic b-cells.

IRE1a can be activated in b-cells by overexpressing insulin; and

moreover, the level of activation positively correlates with the

amount of insulin (Lipson and Urano, unpublished observations).

We therefore believe that exposure of b-cells to high glucose levels

causes ER stress due to an increased load of insulin translation into

the ER. In earlier studies, we found that IRE1a signaling activated

by acute exposure to high glucose enhances proinsulin biosynthesis

[26]. In contrast, chronic exposure of b-cells to high glucose causes

hyperactivation of IRE1a, leading to the degradation of insulin

mRNA. Thus, we propose that the duration of exposure to high

glucose, and therefore the relative load of translocating insulin, is

the critical determinants of the activity of IRE1a.

High glucose exposure causes ER stress and upregulation of ER

folding machinery. Insulin mRNA expression increases, but only

to a point. This point may represent the time when the burden

that the translocating insulin is placing on the ER exceeds the ER

processing capacity. In this scenario, the ‘‘classical’’ solution would

be to activate Xbp-1 splicing and synthesize more ER folding

machinery. However, this upregulation of ER stress-response

proteins may add to the burden of the already overloaded ER.

The rapid degradation of insulin mRNA could provide immediate

relief to the ER and free the translocation machinery. Thus, this

mechanism may be an essential element in the adaptation of b-

cells to chronic hyperglycemia.

Chronic ER stress has recently been defined as any persistent (on

the order of days to years) stress that requires long term adjustments

in cellular function [4]. For cells to survive under a chronic ER stress

condition like prolonged hyperglycemia, they must have a

mechanism by which ER stress can be continuously tolerated. A

small number of cells may die, but the majority of cells must survive

and adapt to the stressful stimulus, which, in this case, is chronic

exposure to high glucose levels. This adaptation may be crucial for

the maintenance of b-cell homeostasis and may, in part, explain why

the b-cells of Type 2 diabetic patients with chronic hyperglycemia

stop producing insulin without simply undergoing apoptosis.

Figure 3. Cells expressing mutant IRE1a resist both chemical- and glucose-induced Insulin mRNA degradation. (A) pTetRINS-1 832/13
cells (control) and pTetRINS-1832/13IRE1aKA cells (stably expressing tetracycline-responsive K599A mutant IRE1a) were treated with doxycycline for
24 hr with 5 mM glucose to induce mutant IRE1a. Cells were then treated with 5 mM, 11 mM, or 16.7 mM glucose with doxycycline for 72 hr.
Degradation of mRNA was assessed by measuring the expression of Insulin 1 and Insulin 2 by real-time PCR (n = 3; values are mean6SEM). (B)
pTetRINS-1 832/13 cells (control) and pTetRINS-1832/13IRE1aKA cells (stably expressing tetracycline-responsive K599A mutant IRE1a) were treated
with doxycycline for 24 hr to induce mutant IRE1a. mRNA transcription was attenuated by treating cells with 100 mg/mL actinomycin D for 1 hr. To
induce degradation of insulin mRNA, 1 mM thapsigargin was added to the medium for 0, 1, 3 and 5 hr. mRNA degradation was assessed by
measuring expression of Insulin 1 and Insulin 2 by real-time PCR (n = 3; values are mean6SEM).
doi:10.1371/journal.pone.0001648.g003
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The IRE-mediated mRNA decay pathway may not, however,

be limited to a stress- response function. In other types of secretory

cells, this mechanism of selective degradation of mRNAs by IRE1

may be effective way to quickly control levels of secretory proteins.

In addition to transducing the ER stress response, secretory cells

may also activate IRE1 in response to various cellular stimuli,

allowing adaptation to rapidly changing physiological conditions.

In b-cells, it remains to be seen whether these reductive effects of

IRE1a on insulin mRNA are actually important for insulin protein

biogenesis, which is regulated at many levels. Modulation of levels

of its message is certainly one place for regulation. If the load of

insulin folding and processing is exceeding the capacity of the ER,

then rapid reduction of insulin mRNA would preserve ER

homeostasis and help ensure that the insulin already inside the

ER can be properly folded and secreted. This mechanism may also

be involved in suppression of the autoimmune response by

reducing the amounts of misfolded insulin, which could be a

source of ‘‘neo-autoantigens.’’

Based on recent studies and the results reported here, we suggest

that in b-cells IRE1a selectively degrades insulin, the most

prevalent ER-targeted mRNA, under adverse conditions. This

may be part of a protective adaptation that b-cells have uniquely

acquired to protect themselves from death caused by the chronic

and high workload placed on the ER under prolonged

hyperglycemic conditions. This, combined with subsequent

upregulation of ER stress response genes, may function in support

of b-cell survival under extreme stress conditions such as chronic

hyperglycemia.

Methods

Cell culture and transfection
Rat insulinoma cells, INS-1 832/13, and mouse islets were

cultured in RPMI 1640 supplemented with 10% FBS. The Cell

Line NucleofectorTM Kit T with the Nucleofector Device (Amaxa

Biosystems, Gaithersburg, MD) was used to transiently transfect

cells. COS7 cells were cultured in DMEM supplemented with

10% FBS and transfected using the FuGene Transfection Reagent

(Roche, Basel, Switzerland)

Immunoblotting
Cells were lysed in ice-cold M-PER buffer (PIERCE, Rockford,

IL) containing protease inhibitors for 15 min on ice. The lysates were

then cleared by centrifuging the cells at 13,000 g for 15 min at 4uC.

Lysates were normalized for total protein (10 mg per lane), separated

using 4%–20% linear gradient SDS-PAGE (Bio Rad, Hercules, CA),

and electroblotted. Anti-phospho IRE1a antibody was generated

from bulk antiserum by affinity purification, followed by adsorption

against the nonphospho analog column peptide (Open biosystems,

Huntsville, AL). The peptide sequence for generating the antibody

was CVGRH (pS) FSRRSG. This phosphopeptide was synthesized,

multi-link-conjugated to KLH, and used to immunize 2SPF rabbits.

Rabbit anti-total-IRE1a antibody (B9134) was generated using a

peptide, EGWIAPEMLSEDCK. Anti-actin antibody was purchased

from Sigma (St. Louis, MO).

Isolating islets from mouse pancreata
Mice were anesthetized by intraperitoneal injection of sodium

pentobarbital. Pancreatic islets were then isolated by pancreatic

duct injection of 500 U/ml of collagenase solution followed by

digestion at 37uC for 40 min with mild shaking. Islets were washed

several times with HBSS, separated from acinar cells on a

discontinuous Ficoll 400 gradient, viewed under a dissecting

microscope, and hand-selected.

Real-time polymerase chain reaction
Total RNA was isolated from the cells by using RNeasy Mini

Kit (Qiagen), then reverse- transcribed using 1 mg of total RNA

from cells with Oligo-dT primer. For the thermal cycle reaction,

the iQ5 system (BioRad) was used at 95uC for 10 min, 40 cycles at

95uC for 10 sec, and at 55uC for 30 sec. The relative amount of

each transcript was calculated by a standard curve of cycle

thresholds for serial dilutions of cDNA sample and normalized to

the amount of actin. PCR was done in triplicate for each sample.

The following sets of primers and Power SYBR Green PCR

Master Mix (Applied Biosystems) were used for real-time PCR: for

mouse actin, GCAAGTGCTTCTAGGCGGAC and AAGAAA-

GGGTGTAAAACGCAGC; for mouse insulin1, GAAGTG-

Figure 4. IRE1a heterozygous islets resist the negative effects of chronic high glucose. IRE1a WT or IRE1a heterozygous mouse islets were
treated with 16.7 mM glucose for 72 hr. Expression of Insulin 1, Insulin 2, and spliced XBP-1 were measured by quantitative real-time PCR.
doi:10.1371/journal.pone.0001648.g004
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GAGGACCCACAAGTG and CTGAAGGTCCCCGGGGCT;

for mouse insulin2, TGCTGATGCCCTGGCCTGCTCT and

CTGGTCCCACATATG CACATGCA; for mouse CHOP,

CCACCACACCTGAAAGCAGAA and AGGTGAAAGGCA-

GGGACTCA; for mouse total XBP-1, TGGCCGGGTCTGC-

TGAGTCCG and GTCCATGGGAAGATGTTCTGG; for

mouse spliced XBP-1, CTGAGTCCGAATCAGGTGCAG (orig-

inal CAG sequence was mutated to AAT to reduce the back-

ground signal from unspliced XBP-1) and GTCCATGGGAA-

GATGTTCTGG; for rat actin, GCAAATGCTTCTAGGCG-

GAC and AAGAAAGGGTGTAAAACGCAGC; for rat Glut2,

GTGTGAGGATGAGCTGCCTAAA and TTCGAGTTAA-

GAGGGAGCGC; for rat insulin 1, GTCCTCTGGGAGCC-

CAAG and ACAGAGCCTCCACCAGG; for rat insulin 2,

ATCCTCTGGGAGCCCCGC and AGAGAGCTTCCAC-

CAAG; for rat spliced XBP-1, CTGAGTCCGAATCAGGTG-

CAG (original CAG sequence was mutated to AAT to reduce the

background signal from unspliced XBP-1) and ATCCATGG-

GAAGATGTTCTGG.

mRNA Degradation
Cellular mRNA transcription was attenuated by treating cells

with 100 mg/mL actinomycin D (Sigma A-4262) for 1 hr followed

by treatment with 1 mM thapsigargin for different times. Total

RNA was isolated from the cells using the RNeasy Mini Kit

(Qiagen). Reverse-transcribed RNA was subjected to real-time

PCR quantitation to measure levels of insulin gene transcripts.

The relative amount of each transcript was calculated by a

standard curve of cycle thresholds for serial dilutions of cDNA

sample and normalized to the amount of actin. Time point zero

for each condition was standardized to 1 and the subsequent rate

of degradation of mRNA was measured.

Generation of IRE1a heterozygous mice
Mice heterozygous for the Ire1a (Ire1a+/2) gene [25] were

backcrossed into 129SvEv mice more than ten generations to

obtain an essentially congenic 129SvEv genetic background.
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