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Lipid mediators are crucial for the pathogenesis of rheumatoid arthritis (RA); however, global analyses have not been undertaken to
systematically define the lipidome underlying the dynamics of disease evolution, activation, and resolution. Here, we performed
untargeted lipidomics analysis of synovial fluid and serum from RA patients at different disease activities and clinical phases
(preclinical phase to active phase to sustained remission). We found that the lipidome profile in RA joint fluid was severely
perturbed and that this correlated with the extent of inflammation and severity of synovitis on ultrasonography. The serum
lipidome profile of active RA, albeit less prominent than the synovial lipidome, was also distinguishable from that of RA in the
sustained remission phase and from that of noninflammatory osteoarthritis. Of note, the serum lipidome profile at the preclinical
phase of RA closely mimicked that of active RA. Specifically, alterations in a set of lysophosphatidylcholine, phosphatidylcholine,
ether-linked phosphatidylethanolamine, and sphingomyelin subclasses correlated with RA activity, reflecting treatment responses
to anti-rheumatic drugs when monitored serially. Collectively, these results suggest that analysis of lipidome profiles is useful for
identifying biomarker candidates that predict the evolution of preclinical to definitive RA and could facilitate the assessment of
disease activity and treatment outcomes.
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INTRODUCTION
A better understanding of the pathogenesis of rheumatoid
arthritis (RA) has led to a marked improvement in patient
management over the past three decades; inexorable joint
destruction and disability have become infrequent, and sustained
remission is a realistic target of treatment1–3. Although early
diagnosis and early initiation of disease modifying anti-rheumatic
drug (DMARD) therapy are key components of the treatment
strategy, the definition of ‘early RA’ is not clear. Conventionally, it
refers to the initial phase, when arthritis is detected clinically4.
Rheumatoid factor (RF) and anti-citrullinated protein antibodies
(ACPAs) are autoantibodies representative of RA; these antibodies
precede the clinical manifestations of RA by a median of 4.5
years5. To date, these two autoantibodies are the only available
biomarkers for early RA6,7. However, approximately half of patients
with positive RF and/or ACPA do not develop RA5,8.
When implementing treat-to-target strategies, the assessment

of treatment response is an important component9. Tracking
changes in disease activity using composite disease activity
indices (such as the disease activity score in 28 joints [DAS28])
before and after treatment is valid10. Due to the intricacy of those
indices, the erythrocyte sedimentation rate (ESR) and C-reactive
protein (CRP) levels are used practically to estimate disease
activity in most real-world clinics. However, ESR and CRP show

limited specificity and sensitivity as biomarkers for monitoring RA
disease activity, especially in patients taking cytokine blocking
agents11,12; therefore, there is great interest in identifying
alternative and reliable biomarkers that can improve the assess-
ment of treatment responses.
Lipids are essential metabolites that act as energy sources,

membrane constituents, and signaling molecules13. Importantly,
lipids act as signaling molecules for inflammation; for example,
eicosanoids precede the production of cytokines and chemokines,
and phosphoinositides serve as lipid-derived second messen-
gers14. Although recent studies have investigated lipid mediators
generated by cyclooxygenases or lipoxygenases during the
preclinical stage of RA15,16, no study has taken an unbiased and
systematic approach to determining the lipidome signatures
underlying preclinical RA, dynamic changes in lipidome profiles
according to RA disease activity, and treatment responses.
Lipidomics, the study of the total lipid content of cells or biofluids
using the principles and techniques of analytical chemistry17, may
provide a direct readout of candidate lipid biomarkers of RA
progression and resolution and facilitate the assessment of
treatment responses.
In this study, we attempted a global and systematic integrated

analysis of changes in the lipidome profile at different phases of
RA, from the preclinical phase to the active phase to the sustained
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remission phase. We show that the lipidome profile in the arthritic
joint fluids of RA patients is markedly perturbed and that the level
of perturbation correlates with the extent of inflammation and
severity of synovitis. We also show that the serum lipidome profile
is significantly altered in individuals at the preclinical phase during
which the ESR and CRP levels are normal. Moreover, the lipid
profile sensitively reflects RA activity and the treatment response
to DMARDs. Collectively, analysis of lipidome profiles may be
useful for identifying candidate biomarkers that predict progres-
sion of preclinical to clinically overt RA, as well improving
assessment of disease activity and treatment outcomes.

MATERIALS AND METHODS
Study participants
The study participants were enrolled in the Center for Integrative
Rheumatoid Transcriptomics and Dynamics (CIRAD) cohort, a prospective
cohort of RA patients at Seoul St. Mary’s Hospital initiated in 2015. The
cohort comprises patients with RA, preclinical RA, and osteoarthritis (OA).
All participants with RA fulfilled the 2010 American College of
Rheumatology (ACR)/European League Against Rheumatism (EULAR) RA
classification criteria6. Preclinical RA was defined as a phase at which an
individual with arthralgia shows an increase in RF and/or ACPA of more
than three times the normal limit while not yet fulfilling the 2010 ACR/
EULAR classification criteria4. Those patients were followed-up to observe
whether they developed definite RA by March 2021. Clinical and
demographic data were obtained from the CIRAD cohort, which was
monitored regularly. Serum was collected from each participant at the time
of enrollment and stored at −80 °C for subsequent analysis. For patients
with RA, serum was also collected and stored every 6 months. SF was also
collected when it was aspirated and centrifuged immediately, and the
supernatant was stored at −80 °C. WBC counts (/μL) in the SF and the
synovitis score measured by ultrasound examination18 were determined at
the time of SF aspiration.
Considering the potential impact on the lipidome profile, patients taking

lipid-lowering agents were excluded from analysis. To investigate lipid
changes according to treatment outcome, 42 patients with moderate-to-
high disease activity (DAS28 > 3.2) at baseline were selected. For these
patients, serum samples were obtained at baseline and at 6 months after
treatment with DMARDs. To investigate differences in lipidome profiles
according to disease phase, 19 RA patients in sustained remission, defined
as patients with DAS28 ≤ 2.6 measured at three consecutive times over
12 months, were selected. In addition, 18 preclinical RA patients not
receiving DMARDs or lipid-lowering agents were selected. Age- and sex-
matched OA patients were selected as controls. Furthermore, 71 RA-SF and
31 OA-SF samples from patients who did not use lipid-lowering agents
were analyzed. To validate the association between RA activity and altered
lipidome profiles in sera, 61 samples obtained on different occasions were
selected from patients with active RA or sustained remission, and their
lipidomes were measured independently in a different batch.

Ethics
The study was approved by the institutional review board of Seoul St.
Mary’s Hospital, the Catholic University of Korea (KC16SISI0632). All study
participants provided written informed consent.

Sonographic evaluation of joints for synovitis severity
Musculoskeletal ultrasonography was performed for RA patients from
whom SF samples were obtained. The synovitis score was determined
using the grayscale and power-Doppler grades. The grayscale score (range,
0–3) was defined as the degree of synovial hypertrophy in the joints, as
follows: grade 0 = no synovial hypertrophy, grade 1 = minimal synovial
hypertrophy, grade 2 = moderate synovial hypertrophy, and grade 3 =
severe synovial hypertrophy19. The power Doppler score (range, 0–3) was
assessed according to the extent of vascularity within the synovium of
joints as follows: grade 0 = no Doppler activity, grade 1 =minimal Doppler
activity, grade 2 = moderate Doppler activity (≤50% of the background
synovium), and grade 3 = severe Doppler activity (>50% of the
background synovium)18,19. The severity of synovitis was determined
using the EULAR-OMERACT combined score system: mild synovitis
(synovitis score 0 or 1) and moderate-to-severe synovitis (synovitis score
2 or 3)19.

Preparation of serum and SF samples
The tert-methyl butyl ether (MTBE) method was used with modification to
extract lipids from serum and SF samples20. During the extraction step, two
internal standard (IS) mixtures and water were used. LPC (17:0), PC (10:0/
10:0), PE (10:0/10:0), and SM (18:1/17:0) were prepared in methanol (Mix1).
LPE (17:1), TG (17:0/17:1/17:0, d5), DG (12:0/12:0), and Cer (18:1/17:0) were
prepared in MTBE (Mix2). First, a 50 μL aliquot of each serum or SF sample
was placed into a microcentrifuge tube, and 300 μL Mix1 was added and
vortexed. Next, the tubes were incubated in a Thermo shaker (0 °C,
1500 rpm, 1 h) after the addition of 1 mL of Mix2. Next, 250 μL of water was
put into the tubes, which were then vortexed for 1 min and centrifuged
(16,000 rcf for 10min). Finally, the upper hydrophobic layer was separated
and filtered through a hydrophobic syringe filter unit. The filtrate was then
evaporated under nitrogen gas to obtain fully dried lipid extracts. For
instrumental analysis, the extracts were reconstituted in a 100 μL
methanol/toluene mixture (9:1 v/v) shortly before analysis.

UPLC-Q-ToF MS-based untargeted lipidomics analysis
Lipids were separated on an ultra-performance liquid chromatography
(UPLC) system equipped with a C18 column (2.1×100mm, 1.7 μm)
connected to a guard column (2.1×5mm, 1.7 μm). Both mobile phases (A:
40:60 (v/v) water:acetonitrile and B: 10:90 (v/v) acetonitrile:isopropanol)
contained 10mM ammonium formate and 0.1% formic acid. For data
acquisition, an Agilent 6530 quadrupole time-of-flight mass spectrometer
(Q-ToF MS) was operated in ESI-positive mode, and an MS/MS data-
dependent acquisition mode was applied. The gradient conditions and MS
conditions were as described previously21. Serum and SF samples were
analyzed after division into three and two batches, respectively, and each
batch comprised a random sequence of samples.

Data preprocessing and lipid identification
Raw data were imported into MS-DIAL ver 4.38 after format conversion for
a series of data preprocessing from data collection to alignment22. Batch
effects were removed by a locally estimated scatterplot smoothing (LOESS)
algorithm23. After peak annotation, unreliable lipids were excluded when
the relative standard deviation (RSD, %) of the quality control (QC) samples
was >30%. Annotated lipids were identified putatively based on matching
precursor ion m/z values and the product ion pattern of the data to the
LipidBlast database in MS-DIAL. Next, the identified lipid list was confirmed
by an in-house lipid library, including retention times, to improve the
confidence in lipid identification as metabolomics standards initiative (MSI)
level 1.

Lipid ontology enrichment analysis
Ontology analysis based on all identified lipids was performed by LION24,25.
The list of identified lipids was inputted, along with the normalized
intensity of each lipid, into software to facilitate the export of an
enrichment table and a PCA heatmap. Lipids with no matches in the LION
database were excluded prior to analysis.

Correlation analysis
Correlation analysis was performed using the Hmics package in R.
Pearson’s correlation analysis of the correlation between normalized lipid
intensity and clinical indicator analysis was conducted using the rcorr
function. P values from Pearson’s correlation analysis were used to test the
significance of the correlation coefficient. Samples in which clinical
indicators were not measured were excluded.

Biomarker analysis
The biomarker candidates showing |r|≻0.5 in the orthogonal projections to
latent structures-discriminant analysis (OPLS-DA) model, or FDR values
<0.25, were selected. The AUC of the ROC curve was calculated using the
random forest algorithm. Average accuracy was calculated based on 100
cross-validations.

Statistical analysis
All statistical analyses were performed using MetaboAnalyst 5.026. Every
lipid feature was normalized according to the median intensity of each
sample. Lipids with >50% missing values were excluded, and the
remaining missing values were replaced by the median intensity value
for the lipid feature. Finally, log transformation and Pareto scaling were
performed. A t test was performed using the Benjamini–Hochberg
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procedure to acquire the FDR, and a paired t test was used to compare
groups before and after treatment. P values <0.05 and FDR values <0.25
were considered significant. For comparison of more than three groups,
one-way ANOVA with Tukey’s HSD was used to identify significant
differences. Suspected outliers were excluded by a cautious investigation
based on comprehensive interpretation using a heatmap, PCA, and outlier
suggestion by the random forest algorithm. Two different multivariate
statistical analysis models, unsupervised and supervised, were applied to
discriminate the groups (unsupervised, PCA; supervised, PLS-DA). PLS-DA

models were cross-validated using leave-one-out cross validation (LOOCV),
and the Q2 value was used to estimate overfitting of the model. Lipids with
a VIP score value >1 were defined as crucial for discriminating the groups.
Multivariate exploratory ROC analysis was performed by Monte Carlo cross
validation (MCCV) using balanced subsampling (2/3 of samples were used
to estimate feature importance, and 1/3 were used for model validation)
and classified by random forests. Regularized Hotelling’s T2 (RHT) test was
applied to obtain RHT statistics, and p values based on the null distribution
(distribution of the RHT statistic under the null hypothesis, assuming

Fig. 1 The lipidome profile and its associated pathways in synovial fluid from RA patients. a Representative LC-MS/MS chromatogram of
lipid extracts belonging to three different synovial fluid (SF) groups (osteoarthritis [OA]-SF, leukocyte-poor RA-SF, and leukocyte-rich RA-SF).
b Heatmap of normalized intensity demonstrating significant differences among lipids in the three groups. The lipid subclasses in the
heatmap are as follows: lysophosphatidylcholine (LPC), triacylglycerol (TG), phosphatidylcholine (PC), and ether-linked phosphatidylcholine
(EtherPC). c PCA 2D score plots and d PLS-DA 2D score plots based on lipidome profiles. e Heatmap of lipid-related pathways that were
significantly different among the three groups. The normalized scale of the six pathways in each sample is indicated from red (high) to yellow
(low). f Heatmap of lipids that differ significantly according to the synovitis score measured by ultrasound. A synovitis score of 0 or 1 denotes
mild synovitis, and a synovitis score of 2 or 3 denotes moderate-to-severe synovitis. g PLS-DA 2D score plot and h OPLS-DA 2D score plot
derived from the models established by assignment of mild synovitis and moderate-to-severe synovitis based on the synovial lipidome.
Abbreviations: EtherLPC ether-linked lysophosphatidylcholine, EtherPE ether-linked phosphatidylethanolamine, LPE lysophosphatidyletha-
nolamine, OPLS-DA orthogonal partial least squares discriminant analysis, PCA principal component analysis, PLS-DA partial least-squares
discriminant analysis.
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insignificant differences between two groups) were approximated by
resampling.

RESULTS
Lipidome profiles in the synovial fluid of RA patients are
altered significantly
To investigate the effect of inflammation on the lipidome
profile, SF samples from patients with RA (RA-SF) were analyzed
as two separate groups: samples with a white blood cell (WBC)
count <3000/μL (leukocyte-poor RA-SF) and samples with a
WBC count ≥3000/μL (leukocyte-rich RA-SF). There was no
difference in the demographic data between the OA-SF,
leukocyte-rich RA-SF, and leukocyte-poor RA-SF groups (Sup-
plementary Table 1). In the RA patients, the leukocyte-rich RA-
SF group showed higher acute phase reactant levels than the
leukocyte-poor RA-SF group.
Representative chromatograms from the leukocyte-rich RA-SF,

leukocyte-poor RA-SF, and OA-SF groups are shown in Fig. 1a.
Following sequential data preprocessing, we identified 205 syno-
vial lipidomes belonging to 13 lipid subclasses; we then
conducted one-way analysis of variance (ANOVA) followed by
Tukey’s honestly significant difference (HSD) test to identify
significant differences in lipidome expression among these groups
(Table 1). We found significant intergroup differences (based on
Tukey’s HSD) in 144 synovial lipids: 14 between leukocyte-poor
RA-SF and OA-SF, 124 between leukocyte-rich and leukocyte-poor
RA-SF, and 143 between leukocyte-rich RA-SF and OA-SF (Table 1;
a detailed list of lipids is available at Online Supplemental file 1).
Overall, lipidome expression patterns in the leukocyte-rich RA-SF
groups were markedly different from those in the other two
groups, whereas there was no difference between the OA-SF and
leukocyte-poor RA-SF groups (Fig. 1b). In particular, among the
main lipid subclasses, lysophosphatidylcholine (LPC) was markedly
reduced, whereas phosphatidylcholine (PC), ether-linked PC
(EtherPC), triacylglycerol (TG), and sphingomyelin (SM) were
markedly increased in the leukocyte-rich RA-SF group (Fig. 1b).

Two-dimensional (2D) score plots of principal component
analysis (PCA) and partial least squares-discriminant analysis
(PLS-DA) demonstrated that lipidome profiles also discriminated
leukocyte-rich RA-SF from OA-SF opand leukocyte-poor RA-SF;
however, the lipidome profiles of OA-SF and leukocyte-poor RA-SF
almost overlapped (Fig. 1c, d). The optimal Q2 for the PLS-DA
model was 0.576. In addition, the variable importance in the
projection (VIP) score value for 88 synovial lipids was >1; these
lipids were defined as important for discriminating the groups in
the PLS-DA model (a detailed list of lipids is available at Online
Supplemental file 1).
The normalized intensity of the identified synovial lipids was

used to perform lipid ontology enrichment analysis to estimate
lipid metabolism in the inflammatory microenvironment of RA
joints. Six lipid-related pathways were differentially expressed
(Fig. 1e; the list of individual lipids matched to each lipid
pathway is shown in Supplementary Table 2). ‘Lysoglyceropho-
spholipids’ and ‘monoacylglycerophosphocholines’ were down-
regulated in leukocyte-rich RA-SF compared with OA-SF and
leukocyte-poor RA-SF. In contrast, ether-lipid metabolism
(‘1-alkyl,2-acylglycerophosphocholines’ and ‘contains ether
bonds’) and glycerophospholipid metabolism (‘glycerophospho-
cholines’ and ‘glycerophospholipids’) were overexpressed in
leukocyte-rich RA-SF compared with the other two groups. The p
values, false discovery rate (FDR), and a matched lipid list of six
significant lipid-related pathways are shown in Fig. 1e.

Correlation of synovial lipidome profiles with inflammatory
activity and synovitis severity
To investigate changes in synovial lipidome profiles triggered by
the local inflammatory microenvironment in RA, we merged the
three different SF groups to form a two-comparison set. First, we
used a t test and PLS-DA data to identify/extract lipids
differentially expressed between OA-SF and RA-SF (leukocyte-rich
RA-SF plus leukocyte-poor RA-SF) to estimate the effect of RA itself
on the lipidome profile. At the same time, leukocyte-rich SF
(leukocyte-rich RA-SF) and leukocyte-poor SF (leukocyte-poor

Table 1. Number of significant synovial lipids belonging to each lipid subclass (based on multiple comparisons).

Lipid
subclass

Total
identifiedlipids
(n)

Significantlipids (n)a Sig./
total
(%)b

Leukocyte-
poor RA-
SF-OA-SF
(n)

/sig.
lipid (%)

Leukocyte-
rich RA-
SFLeukocyte-
poor RA-SF
(n)

/sig.
lipid (%)

Leukocyte-
rich RA-SF-
OA-SF (n)

/sig.
lipid (%)

CAR 14 4 28.6 - - 4 100.0 4 100.0

Cer 4 4 100.0 - - 3 75.0 4 100.0

SM 15 12 80.0 - - 12 100.0 12 100.0

LPC 19 17 89.5 4 23.5 16 94.1 17 100.0

EtherLPC 8 6 75.0 1 16.7 6 100.0 6 100.0

LPE 1 1 100.0 - - 1 100.0 1 100.0

EtherLPE 1 1 100.0 - - 1 100.0 1 100.0

PC 41 25 61.0 - - 20 80.0 25 100.0

EtherPC 22 21 95.5 2 9.5 20 95.2 21 100.0

PE 4 3 75.0 2 66.7 1 33.3 3 100.0

EtherPE 8 5 62.5 - - 3 60.0 5 100.0

DG 1 1 100.0 1 100.0 - - 1 -

TG 67 44 65.7 4 9.1 37 84.1 43 97.7

Total 205 144 14 124 143

The number and percentage of significant lipids/total identified lipids belonging to each subclass are shown.
CAR acyl carnitine, Cer ceramide, DG diacylglycerol, EtherLPC ether-linked LPC, EtherLPE ether-linked LPE, EtherPC ether-linked PC, EtherPE ether-linked PE, LPC
lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC phosphatidylcholine, SM sphingomyelin, TG triacylglycerol.
aDifferentially expressed lipids were identified by one-way ANOVA and Tukey’s HSD test.
bThe percentage of significant lipids (sig.) divided by the total number of identified lipids.
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RA-SF plus OA-SF) were also assessed using a t test and PLS-DA to
identify lipid alterations due to leukocytosis (Supplementary Fig.
1). The results showed that 135 synovial lipids were associated
both with RA and with the extent of leukocytosis; in addition, five
lipids were associated with RA alone, and 15 were associated with
leukocytosis alone (Supplementary Fig. 1; the list of significantly
different lipids is available at Online Supplemental file 2).

Next, we investigated which types of specific lipids best
represent synovitis severity, as determined by ultrasonography
(which reflects histological synovitis)27,28. The severity of synovitis
was assessed by ultrasonography at the time of SF aspiration. The
levels of 65 lipids were significantly different between subgroups
showing mild synovitis (synovitis score 0 or 1) and moderate-to-
severe synovitis (synovitis score 2 or 3) (Fig. 1f; a detailed list of

Fig. 2 Pearson’s correlation analysis of lipids and laboratory and clinical parameters. Exact values for the correlation coefficients are
depicted in a heatmap when the absolute values of the correlation coefficients are ≥0.3 (i.e., the p values for the correlation coefficients were
<0.05). Red indicates a positive correlation, and blue indicates a negative correlation with acute phase reactants (erythrocyte sedimentation
rate (ESR) and C-reactive protein (CRP)) and synovial inflammatory parameters (the synovitis score measured by ultrasonography and white
blood cell counts in synovial fluid). Abbreviations: CAR acylcarnitine, LPC lysophosphatidylcholine, LPC O- ether-linked LPC, LPE
lysophosphatidylethanolamine, PC phosphatidylcholine, PC O- ether-linked phosphatidylcholine, PE P- ether-linked phosphatidylethanola-
mine, SM sphingomyelin, TG triacylglycerol.
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these lipids is available at Online Supplemental file 3). To assess
whether the identified lipids were differentially expressed in
patients with mild synovitis or moderate-to-severe synovitis, we
used PLS-DA and OPLS-DA. We observed two distinct clusters
representing each of these subgroups (Fig. 1g, h). Similar to the
lipidome signature noted in leukocyte-poor versus leukocyte-rich
SF, the levels of synovial LPC, ether-linked LPC (EtherLPC), LPE
16:1, and acylcarnitine (CAR) were lower in those with moderate-
to-severe synovitis than in those with mild synovitis. In contrast,
there was a marked increase in synovial PC, EtherPC, and TG in
those with moderate-to-severe synovitis (Fig. 1f).
To further characterize the association between the synovial

lipidome and systemic inflammatory activity in RA, we compared
the laboratory and sonographic parameters with the lipidome
profiles. Correlation analysis demonstrated that among the
135 synovial lipids that were considered sensitive to both RA
itself and leukocytosis, 67 correlated well with the blood ESR, CRP
levels, and synovitis score (correlation coefficient (|r|) >0.3) (Fig. 2).
Specifically, synovial LPC and lyshophosphatidylethanolamine
(LPE) 16:0 showed a negative correlation with the ESR, CRP levels,
WBC counts in the SF, and synovitis score. In contrast, ether-linked
phospholipids, including EtherPC and ether-linked phosphatidy-
lethanolamine (EtherPE), and TG correlated positively with the
synovitis score and the ESR. Synovial sphingomyelin (SM)
correlated positively with the synovitis score but not with the
ESR or CRP (Fig. 2). These results indicate that synovial LPC and
LPE 16:0 were negatively associated with both systemic and local
inflammatory activity in RA, whereas synovial EtherPC, EtherPE,
and TG were positively associated with these parameters.
Additionally, synovial SM seems to be associated only with
synovitis severity.
To identify synovial lipid biomarker candidates that distinguish

synovitis severity, we performed multivariate exploratory receiver
operating characteristic (ROC) curve analysis using MCCV and
balanced subsampling (Supplementary Fig. 2a). The area under
the ROC curve (AUC) and the predictive accuracy of 50 important
synovial lipids provided the greatest discrimination between
moderate-to-severe synovitis and mild synovitis (Supplementary
Fig. 2b). However, 15 synovial lipids were chosen for practical and

clinical applicability given that every lipid except PC O-40:8 was
differentially expressed in moderate-to-severe synovitis (Supple-
mentary Fig. 2a) and that the 15 lipids showed AUCs and
predictive accuracy similar to those of all 50 synovial lipids
(Supplementary Fig. 2b, c).
Taken together, these results indicate that the synovial lipidome

signature is significantly altered in RA joints and that it is
representative of local and systemic inflammatory activity as well
as the pathologic severity of synovitis; this suggests that some
lipids could be a diagnostic marker for RA and, presumably, the
level of RA activity.

Serum lipidome profiles according to RA phase and activity
Our next goal was to identify serum lipid biomarkers that
sensitively reflect RA activity and treatment outcomes in RA
patients. To monitor alterations in the expression of the serum
lipidome, we performed mass spectrometry-based lipidomics
using serum samples from 18 patients with preclinical RA, 42
patients with active RA (DAS28 > 3.2 at baseline) and with a
6-month follow-up monitoring period, and 19 patients in
sustained remission (DAS28 ≤ 2.6 measured consecutively over
12 months); 49 patients with OA were included as a non-RA
control. The baseline demographics of the four groups were
similar; the exceptions were disease activity-related parameters
such as the ESR, CRP, and DAS28 (Table 2).
After data preprocessing and lipid identification, we obtained

238 individual lipids, which were assigned to 12 lipid
subclasses. Of note, before statistical analysis, the normalized
intensity of all identified lipids in serum samples from
preclinical RA and active RA patients showed a similar pattern,
whereas that in samples obtained from RA patients in sustained
remission showed a pattern similar to that in the OA controls
(Fig. 3a). Moreover, the expression of lipids in serum samples
from active RA patients (prior to treatment) and paired samples
obtained after treatment with DMARDs showed marked
differences (Fig. 3a). Although we could not identify serum
lipids that discriminated between preclinical RA, active RA, and
OA (presumably due to overfitting of the PLS-DA model (Q2 of
LOOCV was −0.016) caused by the high variation in clinical

Table 2. Baseline characteristics of the serum donors.

Preclinical RA (n= 18) Active RA (n= 42) RA in SR (n= 19) OA (n= 49) P value

Female, n (%) 15 (83.3%) 37 (88.1%) 16 (84.2%) 43 (87.8%) 0.941

Age (years) 52.1 ± 9.8 56.6 ± 12.7 55.5 ± 9.2 54.7 ± 11.2 0.836

BMI, kg/m2 23.2 ± 2.4 22.7 ± 2.8 22.1 ± 2.4 23.1 ± 3.3 0.945

RA duration, yr - 8.9 ± 8.7 9.0 ± 9.9 - 0.955

RF-positive, n (%) 15/18 (83.3) 37/42 (88.1) 13/19 (68.4) - 0.164

ACPA-positive, n (%) 14/18 (77.8) 31/35 (88.6) 11/16 (68.8) - 0.118

Laboratory Findings

ESR, mm/h 12.2 ± 13.1 28.4 ± 19.2 8.0 ± 6.9 7.6 ± 5.6 <0.001

CRP, mg/dl 0.2 ± 0.3 1.1 ± 1.1 0.2 ± 0.2 0.2 ± 0.5 0.004

Albumin, g/L 4.4 ± 0.2 4.1 ± 0.4 4.2 ± 0.2 4.4 ± 0.2 0.633

Hemoglobin, g/L 14.4 ± 6.2 12.5 ± 1.1 12.9 ± 1.2 13.5 ± 1.2 0.846

DAS28 - 4.7 ± 1.0 1.7 ± 0.7 - <0.001

MTX, n (%) - 26 (61.9%) 15 (78.9%) - 0.309

HCQ, n (%) - 14 (33.3%) 10 (52.6%) - 0.104

SSZ, n (%) - 5 (11.9%) 3 (15.8%) - 0.705

LEF, n (%) - 14 (33.3%) 10 (52.6%) - 0.208

Biologics, n (%) - 7 (16.7%) 6 (31.6%) - 0.318

ACPA anti-citrullinated peptide antibody, BMI body mass index, CRP C-reactive protein, ESR erythrocyte sedimentation rate, DAS28 disease activity score in 28
joints, HCQ hydroxychloroquine, MTX methotrexate, LEF leflunomide, RF rheumatoid factor, SR sustained remission, SSZ sulfasalazine.
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samples), the PLS-DA 2D score plots revealed that samples from
preclinical RA patients showed a ‘transitional profile’ between
OA and active RA (Fig. 3b). Among patients with RA, the
lipidome profile did not differ according to ACPA- and/or RF-
positivity.

To further explain the detailed differences between groups, we
tried to conduct a pairwise comparison among groups using
OPLS-DA. The results showed that the serum lipidome can
discriminate between OA and active RA (Q2 of cross validation
= 0.007) (Fig. 3c). In contrast, serum lipids did not distinguish OA
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from preclinical RA (Q2 of cross validation=−0.090) or preclinical
RA from active RA (Q2 of cross validation=−0.363) (Fig. 3d, e).
Twelve and six serum lipid candidates that discriminate active RA
from OA were identified by OPLS-DA (|r| >0.5 was used as a cutoff
value for selecting biomarker candidates) and a t test (p value
<0.05 and FDR < 0.25), respectively (Fig. 3c and Table 3).
To perform lipid ontology enrichment analysis, the intensity of

the identified lipids was input into the analysis after normal-
ization, and alterations in lipid metabolism according to RA
phase were analyzed. This process identified four lipid pathways
whose metabolism was altered significantly according to the
phase of RA: monoalkylglycerophosphocholines, monoacylgly-
cerophosphocholines, lysoglycerophospholipids, and C12:0. All
were downregulated in patients with active RA compared with
those with OA or preclinical RA (Fig. 3f; the list of individual
lipids matched to each lipid pathway is shown in Supplementary
Table 3).

Diagnostic performance of selected serum lipid biomarker
candidates
Based on data from the OPLS-DA and t test, we postulated that
the serum lipid signature can discriminate active RA from OA. In
particular, lipids showing significant differential expression in the
serum of active RA patients might be potential biomarker
candidates for discriminating active RA from OA (Table 3). To
validate the performance of these potential lipid biomarker
candidates, we carried out biomarker analysis (Supplementary

Fig. 3a). The results showed that CAR 18:0, DG 36:2, LPC (16:1, 18:1,
20:1), and EtherLPC 16:1, differential expression of which was
shown to be significant by the t test alone, exhibited the best ROC
curve for biomarker analysis (AUC= 0.718; average accuracy
based on 100 cross validations = 0.659) (Fig. 3g). Fifteen serum
lipid biomarker candidates identified as significant by the t test
and the OPLS-DA model also discriminated active RA from OA
(AUC= 0.656; 95% confidence interval (CI), 0.503–0.782) (Supple-
mentary Fig. 3b). Twelve lipid biomarker candidates identified by
the OPLS-DA model alone showed relatively weak performance
for discriminating active RA from OA (AUC= 0.583; Q2= 0.086)
(Supplementary Fig. 3c); however, they still showed a Q2 value
(0.086) higher than that for all 238 identified lipids (0.005)
(Supplementary Fig. 3a). Importantly, 12 lipids (CAR 18:0, LPC 16:1,
LPC 18:1, LPC 18:2, LPC 18:3, LPC 20:2, LPC 20:3, LPC 20:4, LPC 20:5,
LPC 22:6, LPC O-18:0, and LPC O-18:1) were also identified in
18 subjects at the preclinical phase of RA and differentiated seven
patients who eventually progressed to definitive RA and fulfilled
the RA classification criteria6 from the other 11 subjects who did
not progress (AUC= 0.708; 95% CI, 0.206–1.000, Fig. 3h). These
data suggest that lipids may be serum biomarkers that predict
whether preclinical RA will progress to established RA.
Finally, we asked whether the serum lipidome reflects RA

disease activity and whether it can predict treatment outcome. To
this end, we pooled serum samples from patients with active RA
and from those in sustained remission. The two groups were well
discriminated by OPLS-DA (Fig. 4a). Thirteen serum lipid biomarker

Fig. 3 Comprehensive interpretation of the serum lipidome profile in RA patients according to disease phase and activity. a Normalized
intensity of the identified lipids in representative samples belonging to five different groups (OA, preclinical RA, active RA (before treatment),
paired samples after treatment, and sustained remission). b PLS-DA 2D score plots for the OA, preclinical RA, and active RA groups (Q2=
−0.016). OPLS-DA 2D score plots based on models of c OA and active RA, d OA and preclinical RA, and e preclinical RA and active RA (Q2=
0.005, −0.090, and −0.363, respectively). f Expression of four significant lipid-related pathways shown as a heatmap; data were obtained from
lipid ontology enrichment analysis of all lipids identified in the OA, preclinical RA, and active RA groups. g Six candidate lipid biomarkers (CAR
18:0, DG 36:2, LPC 16:1, LPC 18:1, LPC 20:1, and LPC O-16:1), identified by the t test (p value <0.05, FDR ≤ 0.25), which discriminate active RA
from OA. h Twelve candidate lipid biomarkers (CAR 18:0, LPC 16:1, LPC 18:1, LPC 18:2, LPC 18:3, LPC 20:2, LPC 20:3, LPC 20:4, LPC 20:5, LPC
22:6, LPC O-18:0, and LPC O-18:1), identified by the OPLS-DA 2D score plot (|r| >0.5), which discriminate patients who go on to develop RA
from patients with preclinical RA.

Table 3. Serum lipid biomarker candidates that discriminate active RA from OA.

Lipid biomarker candidate p value FDR Correlation coefficient (r) Log2 (active RA/OA)

1 CAR 18:0 5.39 × 10−3 0.25 −0.51 −0.27

2 DG 36:2 9.90 × 10−4 0.24 −0.27

3 LPC 16:1 2.28 × 10−3 0.25 −0.59 −0.20

4 LPC 18:1 5.21 × 10−3 0.25 −0.59 −0.33

5 LPC 18:2 −0.54 −0.32

6 LPC 18:3 −0.62 −0.34

7 LPC 20:1 2.28 × 10−3 0.25 −0.27

8 LPC 20:2 −0.55 −0.29

9 LPC 20:3 −0.54 −0.22

10 LPC 20:4 −0.51 −0.26

11 LPC 20:5 −0.58 −0.25

12 LPC 22:6 −0.54 −0.18

13 LPC O-16:1 6.23 × 10−3 0.25 −0.21

14 LPC O-18:0 −0.61 −0.24

15 LPC O-18:1 −0.60 −0.24

The correlation coefficient (r) cutoff for candidate biomarkers was |r| >0.5. Additionally, lipids altered significantly in active RA compared with OA (p value
<0.05; FDR < 0.25) were considered biomarker candidates. Lipid biomarker candidates identified by the t test are highlighted in red.
CAR acyl carnitine, DG diacylglycerol, LPC lysophosphatidylcholine, LPC O- ether-linked LPC.
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candidates (seven from the t test and 11 from the OPLS-DA
model) were acquired (Table 4); all of these candidates were
applied in a validation set to investigate whether they can
differentiate moderate-to-high disease activity (DAS28 ≥ 3.2) from
low disease activity or remission (DAS28 < 3.2). The AUC value of

the ROC curve derived from seven biomarker candidates (LPC
18:2, LPC 18:3, LPC 20:3, LPC 22:6, LPC 24:0, PC 42:6, and SM 30:1)
was 0.650, with an average accuracy of 0616 (calculated by 100
cross-validations) (Fig. 4b). Again, the AUC value for 11 lipids
showing |r| >0.5 (i.e., LPC 18:0, LPC 18:2, LPC 18:3, LPC 20:0, LPC
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20:2, LPC 20:3, LPC 20:4, LPC 20:5, LPC 22:6, LPC 24:0, and EtherPE
38:6 [2]) was 0.669, with an average accuracy of 0.615 (Fig. 4b). The
AUCs for the seven or 11 lipid candidates were comparable with
that for serum CRP (AUC= 0.591; p value = 0.765 vs. 11 lipids, and
0.850 vs. seven lipids; Fig. 4b), suggesting that these lipid
candidates reflect RA disease activity comparable to CRP. Analysis
of the correlation between RA activity parameters and individual
serum lipids was also performed. The results showed that serum
LPC subclasses, PC subclasses, EtherLPC (18:0 and 18:1), EtherPC
(38:6 and 42:3 [1]), SM 30:1, and EtherPE (38:5, 38:6 [1], and 40:6)
showed a negative correlation with markers of RA activity, such as
the ESR, CRP, and DAS28 (Fig. 4c); such correlations were validated
using follow-up serum samples from RA patients (detailed results
are available at Online Supplemental file 4).
All patients with active RA (DAS28 ≥ 3.2 before treatment) were

monitored for 6 months after treatment with DMARDs. After
6 months, the patients could be divided into two groups
according to treatment response: good responders (DAS28 < 3.2
after treatment) and nonresponders (DAS28 ≥ 3.2 after treatment).
To compare changes in the serum lipidome profiles of the two
groups, we conducted a paired t test and OPLS-DA using paired
samples (pretreatment and posttreatment). In total, we noted a
significant change in 41 serum lipids (37 lipids identified by the t
test and 23 by the OPLS-DA; a detailed list of lipids is presented in
Supplementary Table 4) in good responders after treatment,
whereas no changes were observed in nonresponders (regularized
Hotelling’s T2 [RHT] test29: good responders = 33.724, p value =
0.035; nonresponders = 6.294, p value = 1.000) (Supplementary
Fig. 4a, b). Specifically, the serum LPC, EtherLPC, PC, PE, EtherPE,
ceramide (Cer-NS) 42:1, SM, and TG subclasses increased, while
the CAR subclass decreased, in good responders but not in
nonresponders (Fig. 4d).

DISCUSSION
The current study demonstrates disease- and phase-dependent
differences in the lipidome profiles in the SF and serum of RA
patients compared with OA patients. In the SF, a variety of lipids
were severely perturbed; these perturbations correlated well
with the extent of joint inflammation, the severity of synovitis
on ultrasonography, and systemic inflammatory markers (ESR
and CRP). In the sera, the lipidome profile of active RA (albeit
less prominent than the synovial lipidome) was also signifi-
cantly distinct from that of RA in sustained remission; the profile
in the latter was rather similar to that of patients with
noninflammatory OA. Notably, the serum lipidome of patients
with preclinical RA mimicked that of those with active RA.
Moreover, alterations in LPC, PC, EtherPE, and/or SM subclasses
correlated with RA activity as assessed by the DAS28 compar-
able to serum CRP and reflected treatment responses to
DMARDs when monitored over time. Collectively, the data
show that the lipidome profile in the SF and serum of RA
patients is markedly perturbed. Such perturbations are notice-
able at the preclinical phase before the disease progresses to
definitive RA; these changes also reflect RA activity and
treatment outcome.

The pathology of RA is characterized by synovial hyperplasia
and massive infiltration by leukocytes. Here, global analysis of the
lipidome clearly identified 135 synovial lipids associated with both
RA itself and leukocytosis. Among these, the expression of 65
correlated well with the degree of inflammation and severity of
synovitis on ultrasonography, suggesting that they may be a
surrogate marker of synovial pathology, particularly the extent of
synovial inflammation; thus, profiling these lipids may ameliorate
the need for sonographic or pathologic examination of the
synovia. With this specific notion in mind, we next investigated
whether the synovial lipid fingerprint is also present in the
systemic circulation. However, whereas 135 lipids were differen-
tially expressed in the SF of RA patients, only 15 lipids in the serum
of active RA patients showed significant alterations in expression.
Moreover, whereas the expression patterns of LPC subclasses in
serum and SF from active RA patients were similar, those of ether-
linked lipids and ceramide were not. Therefore, arthritic joints and
the systemic circulation appear to provide different microenviron-
ments for lipid biogenesis and metabolism, although metabolic
communication between the joint and the periphery cannot be
excluded.
We believe that the most striking finding of our lipidome study

is that changes in the lipidome are already established at the
preclinical phase before the disease progresses. In general, lipids
are utilized as substrates for the production of inflammatory
mediators immediately after stimulation by cytokines, growth
factors, and trauma30. Changes in lipid mediators can therefore be
observed before disease manifestation15,16. For example,
5-hydroxyeicosatetraenoic acid (5-HETE) is elevated in the
preclinical phase16. In addition, ω−3 fatty acid levels are
decreased in pre-RA subjects with ACPA31, and short-chain
carnitine levels are decreased in serum samples obtained prior
to RA onset32. Our lipidome analysis demonstrates that lipid
profiles in those with highly active RA with elevated ESR/CRP were
similar to those in patients with preclinical RA and normal ESR/
CRP, suggesting that alterations in lipid metabolism precede
laboratory and clinical manifestations of RA. Of note, 12 serum
lipids (CAR 18:0, LPC (16:1, 18:1, 18:2, 18:3, 20:2, 20:3, 20:4, 20:5,
22:6), and EtherLPC (18:0, 18:1)) differentiated patients who
progressed to definite RA from those who did not. Given that
ESR and CRP were normal in this preclinical RA subgroup, the lipid
profile at the preclinical stage might be a more sensitive predictor
of disease progression.
There is an unmet need with respect to assessing RA activity

and treatment outcomes. For example, ESR and CRP are
nonspecifically elevated by infection, and they can be normal in
more than half of RA patients, regardless of disease activity33,34.
Moreover, although DAS28 is widely used to assess RA, it must be
calculated from the ESR or CRP value and assessed by experts35.
Another noticeable finding of this study is that although
deregulated serum lipids reflect disease activity, they can be
restored after effective treatment; this trajectory is also evident in
synovial lipids. For example, leukocyte-poor RA-SF showed a lipid
pattern similar to OA-SF. Reduced expression of the serum LPC,
PC, and SM subclasses correlated with RA activity assessed by the
ESR, CRP, and DAS28. Moreover, serial monitoring of 41 serum

Fig. 4 Diagnostic performance of candidate serum lipid biomarkers for assessing RA activity and treatment outcome. a OPLS-DA 2D score
plots derived from models of moderate-to-high disease activity (DAS28 ≥ 3.2) and low disease activity or remission (DAS28 < 3.2) groups. b
Validation of biomarker candidates from the discovery set identified by the t test (red) and OPLS-DA (blue). These biomarkers were used for
biomarker analysis in the validation set. Area under the receiver operating characteristic (ROC) curve (AUC) analysis of the lipid biomarker
candidates identified by the OPLS-DA and t test versus that for the C-reactive protein (as a comparator); parameters were evaluated for the
ability to distinguish low disease activity from moderate/high disease activity, as determined by the DAS28 (green). The three compared areas
are not significantly different. c Correlation between serum lipids and disease activity parameters. The exact value of the correlation
coefficients is presented in a heatmap when absolute correlation coefficients are ≥0.3 (the p values for the correlation coefficient are <0.05). d
Heatmap showing the expression of 37 significant lipids identified after comparison of paired samples obtained before and after treatment
with DMARDs (samples compared using the t test).
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lipids revealed significant alterations in good responders to
treatment with DMARDs. Specifically, increases in the LPC,
EtherLPC, PC, PE, EtherPE, Cer-NS 42:1, SM, and TG subclasses
and a decrease in the CAR subclass were noted in good
responders but not in nonresponders, which suggests that such
changes represent treatment responses to DMARDs and thus
might be an indicator for assessing treatment outcomes that may
complement the ESR and CRP.
Endogenous lipids are the most important mediators of all

phases of inflammation, as well as regulators of the inflammatory
process (from initiation to cessation)36. They have been termed
“bioactive lipids” and are divided into four main families according
to their biochemical functions: classical eicosanoids, specialized
pro-resolving mediators, lysoglycerophospholipids/sphingolipids,
and endocannabinoids37. Lysoglycerophospholipids and sphingo-
lipids comprise many compounds asymmetrically distributed in
plasma membranes, with glycerol or sphingosine as backbones;
these act as signaling molecules and play roles in cellular and
tissue adaptation to inflammatory events (e.g., plasma membrane
shaping, cell growth and death, and inflammatory cascades)38.
It is unclear how ‘lysoglycerophospholipids’ and ‘monoacylgly-

cerophosphocholine’ pathways are downregulated in inflamma-
tory RA-SF and in the serum of patients with active RA. LPC is
synthesized by phospholipase A2 (PLA2) via hydrolysis of PC

39 and
is secreted mainly from the liver after stimulation by albumin40.
The low concentration of LPC in active RA patients, therefore,
might be due to a decrease in albumin and/or lipoprotein-
associated PLA2 activity, which is common in such patients41.
‘Monoacylglycerophosphocholine’, an intermediate of the ‘glycer-
ophosphocholine’ pathway, is also produced by hydrolysis of PC
by PLA2

42; thus, it can be compromised by reduced PLA2 activity.
The immunomodulatory effect of LPC is dependent on its

biochemical structure; the proinflammatory effect is attributed to
saturated and monounsaturated LPCs (LPC 16:0, LPC 18:0, LPC
18:1)43, whereas the anti-inflammatory effect is attributed to
polyunsaturated LPC species (LPC 22:4, LPC 22:6)44. In this study,
all serum LPCs, whether saturated, monounsaturated, or poly-
unsaturated, were decreased in active RA but increased during
sustained remission; profiles in the SF showed a similar pattern.
Interestingly, of all the lipidomes identified, LPC subclasses
showed the most powerful negative correlation with RA activity,
as well as the best response to DMARDs. Although the mechanism
underlying the response to DMARDs remains elusive, we presume

that it could be related to the ‘lipid paradox’, by which low-density
lipoprotein (LDL) is sequestered in the liver under the high
inflammatory conditions associated with RA45. Since LPC is a major
component of oxidized LDL39, it can be increased after effective
treatment with DMARDs. It is intriguing that LPC shows an inverse
correlation with cardiovascular disease46,47, which is highly
prevalent in RA patients48.
In contrast to LPC, PC subclasses, as well as components of the

glycerophospholipid pathway, were overexpressed in RA-SF and
showed a positive correlation with disease activity and synovitis
severity; however, this was not seen in serum from patients with
active RA. Similar contradictory expression of lipids between the
SF and serum was also noted for ether-linked lipids and SM.
Choline kinase, an enzyme essential for PC biosynthesis, is
activated in RA synovial fibroblasts, thereby promoting cell
migration and resistance to apoptosis49. Ether-linked lipids are
synthesized by inflammatory stimuli and incorporated into the
cellular membrane, where they act as cellular signaling molecules
and antioxidants50,51. SM is involved in various pathophysiological
functions, including apoptosis, autophagy, proliferation, differen-
tiation, and invasiveness37. Ceramide, a catalytic product of SM,
mediates TNFα-induced activation of NF-κB and regulates
osteoclastogenesis via RANKL. Overall, dysregulated overexpres-
sion of PC, ether-linked lipids, and SM could be involved directly in
the synovial pathology of RA; however, this does not seem to be
mirrored in the systemic circulation.
This study has some limitations. First, the validation cohort was

small. Although our major findings regarding the serum lipidome
were reproduced consistently in RA patients who were monitored
serially, further studies in a larger population of RA patients are
needed to confirm the diagnostic performance of lipid biomarker
candidates. Second, due to ethical and practical limitations of
stopping DMARDs in patients with active RA, we cannot exclude
the possible effects of medications on the lipidome profile.
Notwithstanding this, we found no differences in the serum
lipidome profile between active RA patients taking glucocorticoids
and DMARDs and preclinical RA subjects who had never received
them. Moreover, serum lipidome profiles were considerably
different between patients with active RA and those in sustained
remission, even though both groups received similar DMARDs.
Therefore, we believe that anti-arthritis drugs, including nonster-
oidal anti-inflammatory drugs, glucocorticoids, and DMARDs, do
not greatly affect the lipidome profile in RA.

Table 4. Serum lipid biomarker candidates that discriminate moderate-to high disease activity (DAS28 ≥ 3.2) from low disease activity (DAS28 < 3.2).

Lipid p value FDR Correlation coefficient (r) Log2 (DAS28 ≥ 3.2/DAS28 < 3.2)

1 LPC 18:0 −0.59 −0.27

2 LPC 18:2 1.12 × 10−4 2.65 × 10−2 −0.72 −0.64

3 LPC 18:3 3.24 × 10−3 1.80 × 10−2 −0.65 −0.50

4 LPC 20:0 −0.56 −0.27

5 LPC 20:2 −0.67 −0.45

6 LPC 20:3 3.79 × 10−3 1.80 × 10−2 −0.62 −0.42

7 LPC 20:4 −0.54 −0.35

8 LPC 20:5 −0.55 −0.28

9 LPC 22:6 1.10 × 10−3 8.68 × 10−2 −0.72 −0.54

10 LPC 24:0 3.87 × 10−4 4.58 × 10−2 −0.76 −0.56

11 PC 42:6 6.41 × 10−3 2.32 × 10−1 −0.36

12 PE P-38:6 (2) −0.51 −0.53

13 SM 30:1 6.85 × 10−3 2.32 × 10-1 −0.39

The correlation coefficient (r) cutoff for biomarker candidates was |r| >0.5. Additionally, lipids altered significantly according to disease activity (p value <0.05;
FDR < 0.25) were considered biomarker candidates.
LPC lysophosphatidylcholine, PE P ether-linked phosphatidylethanolamine, SM sphingomyelin.
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This study has several strengths. First, the phase of RA was
rigorously ascertained; all biofluid samples were obtained in
parallel with clinical and laboratory data, which were collected
regularly from the cohort; these data included acute phase
reactant levels and DAS28 scores. Thus, we provide evidence that
not only RA itself but also the phase and status of disease at the
time of sampling have a marked effect on the lipidome profile.
Second, lipid biomarker candidates that discriminate different
phases of disease activity were validated in serially monitored
samples from the same patients; these samples were obtained
and analyzed at different times during the disease course. Finally,
we conducted ultrasonography simultaneously with arthrocent-
esis; the former allows examination of synovial pathology in real
time and can determine synovitis severity and its correlation with
the synovial lipidome. These data may strengthen the pathologic
significance of the synovial lipidome identified in this study.
To the best of our knowledge, this is the first study to compare

the lipidome profile at different phases of RA (preclinical, active,
and sustained remission). The data suggest that the lipidome
signature of active RA is lucid in the preclinical phase and that it
changes with synovitis severity and inflammatory activity. We
believe that knowledge of the lipid profile of patients in the
preclinical, active, and sustained remission phases sheds light on
the lipid metabolic pathways involved in RA initiation, perpetua-
tion, and resolution. Moreover, the lipid biomarker candidates
suggested in this study may be clinically useful for the early
identification of individuals at risk of evolution to definitive RA and
for establishing a therapeutic strategy based on disease activity.
We envisage that the determination of lipidome signatures could
form part of a precision medicine approach to treating RA and
propose that these potential biomarker candidates should be
validated in further large-scale clinical studies.
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