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The mammalian diving response (DR) is a remarkable behavior that was first formally
studied by Laurence Irving and Per Scholander in the late 1930s. The DR is called
such because it is most prominent in marine mammals such as seals, whales, and
dolphins, but nevertheless is found in all mammals studied. It consists generally of
breathing cessation (apnea), a dramatic slowing of heart rate (bradycardia), and an
increase in peripheral vasoconstriction. The DR is thought to conserve vital oxygen
stores and thus maintain life by directing perfusion to the two organs most essential
for life—the heart and the brain. The DR is important, not only for its dramatic power
over autonomic function, but also because it alters normal homeostatic reflexes such
as the baroreceptor reflex and respiratory chemoreceptor reflex. The neurons driving
the reflex circuits for the DR are contained within the medulla and spinal cord since
the response remains after the brainstem transection at the pontomedullary junction.
Neuroanatomical and physiological data suggesting brainstem areas important for the
apnea, bradycardia, and peripheral vasoconstriction induced by underwater submersion
are reviewed. Defining the brainstem circuit for the DR may open broad avenues for
understanding the mechanisms of suprabulbar control of autonomic function in general,
as well as implicate its role in some clinical states. Knowledge of the proposed diving
circuit should facilitate studies on elite human divers performing breath-holding dives
as well as investigations on sudden infant death syndrome (SIDS), stroke, migraine
headache, and arrhythmias. We have speculated that the DR is the most powerful
autonomic reflex known.

Keywords: marine mammals, respiratory chemoreceptors, bradycardia, medulla, SIDS, headache, stroke,
arrhythmias

INTRODUCTION

The complexity of an animal’s behavior is paralleled by the complexity of the neural systems driving
that behavior. Indeed, numerous neurons within the mammalian brain modulate autonomic
activity and these areas are interconnected in complex ways. Despite this complexity, an orderly
functional organization exists because specific autonomic responses result from a specific stimulus,
and these adjustments are appropriate to physiological needs. Moreover, behaviors that serve basic
vegetative functions are usually less complex and more uniform across species. The substrate for
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“simple” reflexive behaviors is thought to be neural circuits
located within the brainstem and spinal cord; it is probable
that some of these same circuits are influenced by the more
rostral parts of the brain and are utilized in more complex
behaviors. It is therefore worthwhile to direct considerable
effort toward studying those circuits that are the simplest, the
most organized, and the most automatic. A behavior validating
such a statement is the mammalian diving response (DR),
a mechanism that operates in a variety of animals across
a wide range of circumstances, thus suggesting it to be of
fundamental physiological significance (Scholander, 1963). The
threat of asphyxiation in numerous species quite distantly
related was the common theme in the pioneering studies of
Irving and Scholander, who showed an organism’s primary
response was bradycardia, i.e., the dive reflex. A history of their
work on various species’ responses to asphyxia has recently
been documented (Hagen, 2018). The somatoautonomic DR is
powerful and modulates intrinsic rhythms such as respiration
and heart rate, as well as basic homeostatic reflexes such as the
chemoreceptor and baroreceptor reflexes. The neural pathways
mediating the DR are being explored; this treatise provides a
summation of current understanding.

The mammalian DR is usually considered to consist of three
independent reflex behaviors: an apnea, a parasympathetically
mediated bradycardia and a sympathetically mediated peripheral
vasoconstriction (Irving, 1938, 1939; Irving et al., 1942); splenic
contraction is sometimes considered a fourth behavior by some
(Cabanac et al., 1997, 1998; Cabanac, 2000). These autonomic
adjustments are marked mostly in marine mammals such as seals,
dolphins, or whales, which spend considerable time submerged
underwater. Thus, when pinnipeds or cetaceans dive underwater,
oxygen from air becomes non-existent, and the animal is forced
to use oxygen bound either to hemoglobin in its blood or
myoglobin in its muscles (Guyton et al., 1995; Noren and
Williams, 2000), or to depend on anaerobic glycolysis (see
Panneton, 2013 for discussion and references). Many of the
physiological consequences of diving have been deciphered,
and adaptations of cetaceans and pinnipeds widely reported
(Kooyman et al., 1981; Butler and Jones, 1982, 1997; Blix and
Folkow, 1983; Elsner and Gooden, 1983; de Burgh Daly, 1984;
Kooyman and Ponganis, 1998; Panneton, 2013; Davis, 2014). The
DR is also found in birds (prominently in ducks and penguins)
(Butler and Jones, 1982, 1997; Kooyman and Ponganis, 1998;
Ponganis and Kooyman, 2000), and even fish show a bradycardia
in hypoxic environments (Scholander, 1963; Elsner and Gooden,
1983; Farrell, 2007).

This review focuses on the neural control of the DR only
in terrestrial mammals, particularly rodents, and differs from
most previous reviews which emphasize the adaptations and
physiological consequences of aquatic mammals to underwater
submersion with little or no discussion on central neural
integration. This differs from a previous review (Panneton, 2013)
by emphasizing a brainstem reflex circuit driving the DR and
a more detailed exploration on its suprabulbar control as well
as how this response may help humans clinically. Our premise
is to decipher a conserved neural circuit driving the DR, which
we suspect is uniform across species. We do this in rodents

simply because these small mammals are abundant and bred
for laboratory use, and much is known of their physiology
and nervous systems (NSs), and rodents are significantly less
challenging ethically than use of large marine mammals. Neural
circuits located within the brainstem and the spinal cord are
described, since they are the simplest, most organized, and most
automatic. If our hypothesis is correct, the circuit outlined for
rodents should be mimicked in the brains of higher marine
mammals, as well as be applicable to humans. It may also provide
a base for future studies on the mechanisms underlying the
stunning physiologic changes induced in the mammalian DR.
This review merely augments the wealth of knowledge obtained
from the numerous studies obtained from marine mammals.

The DR is found in all mammals studied, including those
terrestrial (Butler and Jones, 1982, 1997; Blix and Folkow, 1983;
Elsner and Gooden, 1983; de Burgh Daly, 1984; Ferretti, 2001;
Davis et al., 2004; Foster and Sheel, 2005). An animal model for
many years was the feral muskrat, Ondatra zibethicus (Martin
et al., 1977; Doyle et al., 1988; Panneton, 1990, 1991a,b; Panneton
and Watson, 1991; Panneton and Yavari, 1995; Panneton et al.,
1996, 2000; McCulloch and Panneton, 1997; McCulloch et al.,
1999a) since this semi-aquatic rodent possesses a brisk and
reliable DR even when anesthetized (Koppányi et al., 1929;
Irving, 1939; Drummond and Jones, 1979; McCulloch and Jones,
1990). However, this feral species which must be trapped wild is
somewhat difficult to obtain reliably, and no information about
its brain was known; for these reasons, we sought another animal
model. We found the common laboratory rat is better suited
for deciphering the neural circuits driving the DR. Rats can be
trained easily to dive underwater (McCulloch, 2012; Panneton
et al., 2014; Supplementary Video S1), and the DR can be
documented (Figure 1) with implanted telemetric transmitters
(McCulloch et al., 2010; Panneton et al., 2010a,b, 2012a, 2014).
The DR has also been documented recently in mice (Hult et al.,
2019); the authors also provide a simple training protocol for
these irascible creatures. These studies have shown that responses
in diving rodents mimic those of marine mammals; the use of
laboratory rodents for studying the DR has been reviewed recently
(McCulloch, 2012). Thus, we and others (Lin, 1974; Lin and Baker,
1975; McCulloch et al., 1997, 2010; McCulloch, 2005; Fahlman
et al., 2011) have shown that laboratory rats have an innate DR
marked by a bradycardia reaching 80% in 100% of rats 100%
of the time during submersion (Figure 1), which is typical of
reflex behaviors. This reproducibility implies that reflex circuits
are probably utilized by mammals to manifest the DR. However,
the central neural pathways driving the DR have been relatively
unexplored in any species. A purpose of our laboratory is to define
the neural circuits driving the DR, especially those inducing the
apnea, bradycardia, and peripheral vasoconstriction. We consider
the DR the most powerful autonomic reflex known.

It is known that the apnea (breath-hold) is maintained
during the DR despite gross alterations of blood gases, which
reach levels that would normally drive respiration. Thus, it has
been suggested that respiratory chemoreceptors, which normally
induce vigorous ventilation when activated, are inhibited
(Elsner et al., 1977; de Burgh Daly, 1984; McCulloch and
West, 1992; McCulloch et al., 1997); this is indeed the case
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FIGURE 1 | The mammalian diving response can be induced in different preparations of laboratory rodents. Cardiovascular responses either to swimming,
underwater submersion, or nasal stimulation are shown. Traces of arterial blood pressure (ABP) of rats swimming (A), voluntarily diving underwater (B), involuntarily
dunked underwater (C), stimulated nasally with ammonia vapors under anesthesia (D), and stimulated nasally with ammonia vapors after decerebration (E) are
presented. Note the marked bradycardia and increase in ABP after submersion (B,C) or nasal stimulation (D,E) but no changes after swimming on the water’s
surface (A). Composite of cardiovascular results of rats voluntarily diving underwater (B1; 30 rats, N = 104), involuntary dunking of rats trained to dive underwater

(Continued)
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FIGURE 1 | Continued
(C1; 17 rats, n = 59), and involuntary dunking of untrained rats naïve to water (C2; 21 rats, n = 39). These charts show that changes in the heart rate (HR) and mean
ABP (MABP) were highly significant after voluntary submersion (B1), and HR after involuntary submersion of trained rats (C1) or untrained naïve rats (C2). Compare
the bradycardic responses to underwater submersion in these charts and note the wider spread in naïve rats than those familiar to water, suggesting more stress in
this group as well as potential suprabulbar modulation. ***P < 0.001; paired samples T-test for C1–C3. A–E are reprinted from J. Appl. Physiol., 108, Panneton
et al., The rat: a laboratory model for studies of the diving response, 811–820 (2010), with permission. See Panneton et al. (2010b) for discussion on these different
preparations.

(Panneton et al., 2010a). Second, there is a dramatic bradycardia
mediated by the vagus nerve of the parasympathetic NS, which
reduces cardiac output. Third, there is vasoconstriction in the
vascular beds to non-essential organs (i.e., muscle, abdominal
organs, skin) while the two most essential organs, the heart and
the brain, remain perfused. The vasoconstriction seen with diving
is mediated via the sympathetic NS (Yavari et al., 1996; McCulloch
et al., 1999b), maintaining internal oxygen stores for the brain
and the heart (Ollenberger and West, 1998b).

EXPERIMENTAL PROCEDURES

Discussions of techniques employed will not be emphasized
in this review. However, interested readers are referred to
manuscripts with numerous references detailing the location
of the anterior ethmoidal nerve (AEN; Panneton, 1991a) and
its recording/stimulation (McCulloch et al., 1999a) stimulating
the nasal mucosa with vapors (Panneton, 1991b; Panneton
and Yavari, 1995; Yavari et al., 1996; Panneton et al., 2010b),
for transganglionic transport techniques from primary afferent
fibers (Panneton, 1991a; Panneton et al., 2006; Panneton and
Gan, 2014), for pharmacological blockade of central pathways
(Panneton and Yavari, 1995; McCulloch et al., 1999b), for
neuroanatomical tract-tracing of central pathways (Panneton
et al., 2000, 2006), for the use of cFos as a neuroanatomical
marker of function (Panneton et al., 2010a, 2012a), for the
training of rats and mice to dive (McCulloch, 2014; Panneton
et al., 2014; Hult et al., 2019), and for deployment of telemetric
transmitters to measure cardiovascular changes in both trained
rats (Panneton et al., 2010a,b, 2012a) and mice (Hult et al.,
2019). The limitations of these techniques are discussed in these
manuscripts. Also, nomenclature of the brainstem, particularly
the reticular formation, and the terms used by us in this
review, have been defined previously (Sun and Panneton, 2005;
Panneton et al., 2006).

THE DIVING RESPONSE AS A REFLEX

A reflex is “an involuntary reaction in response to a stimulus
applied to the periphery and transmitted to the nervous centers in
the brain or spinal cord,” by definition. Most data suggest that the
DR consists of three independent reflexes regulating respiration
(an apneic reflex), heart rate (a bradycardic reflex), and arterial
blood pressure (ABP; a vasoconstrictor reflex), respectively, but
splenic contraction has also been documented in numerous
species. Pharmacologic studies using peripheral application of
antagonists/agonists show that heart rate and blood pressure

responses can be blocked selectively while preserving the other
two reflexes (Yavari et al., 1996; Elliott et al., 2002). However,
peripheral autonomic fibers apparently mediate neither dive time
nor surface intervals in seals after receptor blockade (Elliott et al.,
2002). Moreover, similar blocking studies show that bradycardia
to underwater submersion is cholinergically mediated, while
sympathetic innervation is far less important (Elliott et al., 2002).
The responses after stimulating the nasal mucosa with noxious
vapors are similar to those of underwater submersion (Angell
James and de Burgh Daly, 1969, 1972, 1973; White et al., 1974;
Peterson et al., 1983; Panneton, 1990; Nakamura and Hayashida,
1992; Gieroba et al., 1994; Panneton and Yavari, 1995; Yavari et al.,
1996; Kobayashi et al., 1999; Ho and Kou, 2000; Dutschmann
and Paton, 2002), and both behaviors are considered reflexes
by us. The circuitry for the DR is intrinsic to the medulla and
the spinal cord (Panneton et al., 2012b), since the responses
remain to nasal stimulation despite brainstem transection at the
pontomedullary junction (Figure 2), sparing only the ventral
third of the trigeminal sensory complex (Panneton et al., 2012b)
and promoting its definition as a reflex. Thus, our conclusion
differs from that of others (Dutschmann and Herbert, 1996,
1997, 1998a, 1999; Chamberlin and Saper, 1998; Dutschmann
et al., 1998, 2004; Radulovacki et al., 2003, 2004; Chamberlin,
2004; Topchiy et al., 2009) who suggest that autonomic changes
induced by trigeminal stimulation are dependent on neurons
in the pons, including the parabrachial-Kölliker-Fuse nuclei
and the intertrigeminal region. Maintaining a DR following
pontomedullary transection implies that this life-saving response
may be organized in redundant circuits, and failure or blockade
of the pontine loops are compensated by medullary circuits. This
is likely to happen with failure of critical NMDA receptors in
the pons during progression of uncompensated hypoxia (e.g.,
during drowning). Since the pons receives significant ascending
inputs from the trigeminal sensory relays (Panneton et al.,
1994, 2006), it is reasonable to assume that the pons is an
integral part of the neural circuit that mediates the DR under
intact conditions. However, since all descending/ascending fibers
from/to suprabulbar structures were cut yet the response was
maintained, we find that these suprabulbar areas modulate a basic
medullary reflex circuitry.

THE STIMULUS

The independent reflexes comprising the DR act harmoniously
toward preserving vital oxygen stores and are initiated by
activating peripheral receptors. Early studies (Koppányi et al.,
1929; Irving, 1939; Irving et al., 1942; Tchobroutsky et al.,
1969; Dykes, 1974; Lin, 1974; Whishaw and Schallert, 1977;
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FIGURE 2 | The reflex circuit driving the diving response is contained within the medulla and spinal cord. Transections through the pontomedullary junction (A, yellow
transparency) were made, sparing only neuropil in the ventral part of the spinal trigeminal complex (A, boxed area), including primary afferent fibers of the AEN
descending in the spinal trigeminal tract (sp5). Despite this trauma, cardiorespiratory depression similar to that seen in underwater submersion was maintained after
nasal stimulation (B), promoting the idea that the neural circuits driving the DR are situated in the medulla, and thus are similar to other brainstem reflex circuits.
Figures are reprinted from Respir. Physiol. Neurobiol., 180, Panneton et al., Persistence of the nasotrigeminal reflex after pontomedullary transection, 230–236
(2012), with permission. See Panneton et al. (2012b) for more details.

Gandevia et al., 1978; Drummond and Jones, 1979;
Schagatay and Van Kampen, 1995) noted that submersion
or wetting of nasal areas was important to induce the DR,
and this has been confirmed by others numerous times. Thus,
underwater submergence is the usual stimulus to induce the DR
in awake animals. This spurred many investigators to perform
“forced” submersions, where the animals were tethered on
boards or placed in cages and dunked underwater (Koppányi
et al., 1929; Scholander, 1963; Dykes, 1974; Lin, 1974; Lin and
Baker, 1975; Martner et al., 1977; Drummond and Jones, 1979;
Jones et al., 1982; Schagatay and Van Kampen, 1995; Panneton
et al., 2010a,b). However, forcing the animals underwater usually
hinders the formidable interventions necessary to monitor
respiration, arterial pressure, and heart rate, as well as access to
structures in the brain.

Water flowing over the nasal mucosa has been used as a
stimulus (Angell James and de Burgh Daly, 1972; Gandevia
et al., 1978; Drummond and Jones, 1979; Doyle et al., 1988), but
high flow rates often strip mucosa from nasal bones and create
blood clots. Irritating vapors (smoke, ammonia, formaldehyde)
wafted over the nasal mucosa prevents gross mucosal disruption
and offers better control (time and intensity) of the stimulus to
induce autonomic responses similar to diving (McRitchie and
White, 1974; White et al., 1974, 1975; Drummond and Jones,
1979; Doyle et al., 1988; Lee et al., 1990; Panneton, 1990, 1991b;
Nakamura and Hayashida, 1992; Gieroba et al., 1994; Panneton
and Yavari, 1995; Yavari et al., 1996; McCulloch and Panneton,
1997; McCulloch et al., 1999b; Ho and Kou, 2000; Ho and Kou,
2002). Finally, the electrical stimulation of the AEN also induces
an apnea, bradycardia, and sympathoactivation typical of the
DR (Dutschmann and Herbert, 1996, 1997, 1998a,b; McCulloch
et al., 1999a; Dutschmann and Paton, 2002), but with the caveat
that electrical stimulation potentially activates a wide variety

of fibers, including those nociceptive and others important for
sneezing, and as such may muddle interpretations of those
investigating the DR.

NASAL AND PARANASAL RECEPTIVE
FIELDS

Since the mammalian DR can be induced with only snout
immersion, this suggests that primary afferent fibers innervating
nasal and paranasal areas may be important. Indeed, covering
paranasal areas with petroleum jelly or numbing these areas
with anesthetic eliminates the autonomic responses induced
by submersion (Dykes, 1974; Drummond and Jones, 1979).
Paranasal areas are innervated by branches of the maxillary
branch of the trigeminal including its large infraorbital nerve,
which innervates the ala of the nose and the upper lip, as well
as the AEN of the ophthalmic division of the trigeminal, which
innervates mucosa of the lateral and septal nasal walls in humans,
the skin of the ala, and the vestibule and apex of the nose
(Williams and Warwick, 1980; Wallois et al., 1991). The nasal
mucosa has both respiratory and olfactory segments (Ross et al.,
1995), but the olfactory epithelium is not considered important
for the DR, since the DR remains after olfactory bulb ablation
(Angell James and de Burgh Daly, 1972; McRitchie and White,
1974; Drummond and Jones, 1979; Panneton, 1990; Gieroba
et al., 1994; Kratschmer, 2001). Indeed, cetaceans with their
blowholes have neither olfactory bulbs nor an olfactory system,
while baleen whales retain only small rudimentary olfactory
organs, despite their diving prowess.

Innervation of the nasal mucosa is via free nerve endings
from small diameter fibers (Cauna et al., 1969), most of which
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are C-fibers and contain peptides, notably calcitonin gene-
related peptide (CGRP) and substance P (Petersson et al., 1989;
Silverman and Kruger, 1989; Stjärne et al., 1989; Finger et al.,
1990; Silver et al., 1991; Spit et al., 1993; Matsuda et al., 1994,
1998), derived from trigeminal ganglion neurons (Silverman
and Kruger, 1989; Ichikawa et al., 1993; Matsuda et al., 1994;
Schaefer et al., 2002). Most of these fibers are sensory in
function, and many respond as chemoreceptors, creating the
“common chemical sense,” or chemethesis (Cain and Murphy,
1980; Green and Lawless, 1991; Viana, 2011; Green, 2012) since
sensations, including pain, can be elicited from stimulating the
human nasal mucosa (Handwerker and Kobal, 1993; Thürauf
et al., 1993; Cometto-Muñiz and Cain, 1997; Cometto-Muniz
et al., 1998, 2001; Hummel et al., 2003). While inhaled irritants
may stimulate these small free nerve endings directly, “solitary
chemoreceptive cells” (SCCs) (Finger et al., 2003; Tizzano and
Finger, 2013) within the mucosa of the upper respiratory tract
of amniotes, including the nasal mucosa of humans (Barham
et al., 2013), may also serve as intermediaries in a nociceptive
or chemosensor pathway. SCCs in the nasal mucosa are found
mostly anteriorly and innervated by small polymodal nociceptors
of the trigeminal nerve (Finger et al., 2003; Tizzano et al.,
2010). When these SCCs are activated they induce respiratory
reflexes including apnea (Tizzano et al., 2010; Tizzano and
Finger, 2013); their peripheral distribution greatly overlaps that
of AEN innervation.

THE SENSORY NERVE

We consider the AEN as the “gatekeeper” nerve since it is
the first to sense noxious gases or water entering the nasal
passages. Stimulating the peripheral receptors of the AEN would
prevent such toxins from entering the upper respiratory passages
by inducing an apnea. While there are several reports in the
literature documenting nerves innervating the blowholes of
cetaceans, only motor fibers from the facial nerve are described;
the sensory nerves from the trigeminal were rarely, if ever,
considered. We suspect, however, that a nerve analogous to the
AEN exists in marine mammals, and this nerve also functions as
a gatekeeper of their respiratory system. More research may prove
this to be the case.

The AEN of terrestrial animals contains both
mechanoreceptors and chemoreceptors (Silver et al., 1986;
Lucier and Egizii, 1989; Wallois et al., 1991; Sekizawa and
Tsubone, 1994, 1996; Sekizawa et al., 1996, 1998; McKeegan
et al., 2002) responsive to a variety of stimuli. Most of its fibers
are small diameter in the Aγ or C range (Beidenbach et al.,
1975; McCulloch et al., 1999a) and reach between the mucosal
epithelial cells toward tight junctions (Cauna et al., 1969;
Finger et al., 1990; Spit et al., 1993). The central fibers of the
AEN descend in the ventral third of the spinal trigeminal tract
(Panneton, 1991a; Panneton et al., 2006) and send fibers into
the trigeminal sensory complex and lateral reticular formation.
Moreover, CGRP in the lateral reticular formation, a peptide
contained in numerous fibers of the AEN, is lost after unilateral
trigeminal rhizotomy (Panneton and Gan, 2014), suggesting a

direct route for primary afferent fibers to modulate cardiac and
vascular activity during underwater submersion. The infraorbital
nerve is very large in rodents and has numerous fibers responsive
to multiple stimuli. It also sends central fibers in the spinal
trigeminal tract and all trigeminal sensory nuclei (Panneton
et al., 2010c, 2017), but its trigeminal distribution is much wider
than that of the AEN.

Nevertheless, acute transection of the AEN attenuates the
apnea and ABP changes, and greatly attenuates the bradycardia
to nasal stimulation (Rybka and McCulloch, 2006), but such
transection does not impair the induction of the DR in
voluntary diving rats or nasally stimulated rats when allowed to
survive for several days after transection (Chotiyanonta et al.,
2013; McCulloch et al., 2016; McCulloch and DiNovo, 2018).
Interestingly, the transection of the AEN never attenuated the rise
in arterial pressure induced by the nasopharyngeal stimulation,
possibly since posterior parts of the nasal mucosa are innervated
by other nerves.

The AEN innervates only the nares partially, as well
as anterior parts of the nasal mucosa, thus it is the first
sensor to assess incoming air and earns its moniker as
gatekeeper. However, the posterior aspects of the nasal
mucosa receive several nerves branching from the maxillary
division of the trigeminal, and these still were intact in these
preparations. These small nerves to the posterior mucosa
indeed effect cardiorespiratory reflexes induced by stimulation
of the nasal mucosa (Kanamaru et al., 1999, 2001; Mutoh
et al., 2000, 2001). The central termination of fibers of some
posterior nasal nerves has been demonstrated (McCulloch
et al., 2018), and they maintain the somatotopy dictated for
the medullary dorsal horn (MDH; Panneton et al., 2017).
Other paranasal nerves/areas also align to somatotopy in
the MDH (McCulloch et al., 2018); all converge on central
terminal fields related to the nose. It is of interest that tracers
transported transganglionically after large injections into the
infraorbital nerve (Panneton et al., 2010c) labeled the misplaced
substantia gelatinosa just dorsal to that labeled from the AEN
(Panneton, 2013; Panneton et al., 2017), again conforming to
appropriate somatotopy.

These discussions on the innervation of the nasal mucosa must
be considered moot, however, since water does not flow through
the nose of voluntarily diving rats or mice, and certainly not in
marine species without nasal cavities, but may be more important
to consider in rats nasally stimulated with obnoxious vapors or
water. Chotiyanonta et al. (2013); McCulloch et al. (2016), and
McCulloch and DiNovo (2018) provide lengthy discussions on
the retention of the DRs after the AEN section, speculating that
sprouting of retained central fibers reinnervate denervated areas
of the MDH. Another possibility is that growth of nearby non-
lesioned peripheral fibers from nerves innervating areas of the
nares may compensate for the loss of AEN fibers. Nevertheless,
McCulloch et al. (2018) show overlap of central projections
from areas surrounding the nares. If a diving rat does not flow
water over its nasal mucosa during underwater submersion to
induce the physiological manifestations we call the mammalian
DR, perhaps the innervation of the initial portal to the upper
respiratory tract, the nares, is most important. This is supported
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by those (Dykes, 1974; Drummond and Jones, 1979) who initially
injected local anesthetic in paranasal areas and inhibited the DR.

THE FIRST SYNAPSE

The sensory stimulus is linked to motor output via a reflex arc,
“a route followed by nerve impulses in the production of a reflex
act, from the peripheral receptor organ through the afferent nerve
to the central NS synapse and then through the efferent nerve to
the effector organ.” Peripheral physiologists know the stimulus
(underwater submersion) as well as the output (e.g., an apnea via
central inhibition of respiration, bradycardia via the vagus nerve,
peripheral vasoconstriction via the sympathetic NS), but most
elect not to explore central integration.

The trigeminal sensory complex is the principal relay for
somatosensory afferent fibers innervating structures in the head
(Beckstead and Norgren, 1979; Marfurt, 1981; Panneton and
Burton, 1981; Matesz, 1983; Shigenaga et al., 1986; Marfurt and
Rajchert, 1991; Panneton et al., 2017). The central projections
of the AEN have been studied with transganglionic transport
techniques in the cat (Lucier and Egizii, 1986), muskrat
(Panneton, 1991a), guinea pig (Segade, 2003), and rat (Panneton
et al., 2006; Hollandsworth et al., 2009), or after mucosal
injections in the rat (Anton and Peppel, 1991; McCulloch
et al., 2018). Most of these studies (Lucier and Egizii, 1986;
Anton and Peppel, 1991; Panneton, 1991a; Panneton et al.,
2006; McCulloch et al., 2018) show dense reaction product in
superficial laminae of the subnucleus caudalis of the spinal
trigeminal nucleus (currently called the MDH) (Figures 3A,B),
while projections to more rostral parts of the trigeminal
sensory complex also were shown in some reports (Panneton,
1991a; Panneton et al., 2006). Panneton et al. (2000) further
showed transganglionic transport of herpes simplex virus (HSV-
1, strain 29) from the AEN to similar areas of the trigeminal
sensory complex (Figures 3A1,B1) as well as transneuronal
projections to brainstem autonomic nuclei in the muskrat
(Figures 5A4,B4,C4). The central projections of the infraorbital
nerve partially overlap those of the AEN in the rostral MDH
(Panneton et al., 2010c) and must be important since the DR
in awake behaving rats is maintained despite cutting the AEN
bilaterally (Chotiyanonta et al., 2013; McCulloch et al., 2016;
McCulloch and DiNovo, 2018).

The MDH is an important relay in autonomic reflexes
such as the DR (Panneton, 1991b; Panneton and Yavari, 1995;
Yavari et al., 1996), trigeminal depressor response (Kumada
et al., 1975, 1977; Terui et al., 1981; Yu and Blessing, 1998),
oculocardiac reflex (Gandevia et al., 1978), and adrenal cortical
function (Bereiter and Gann, 1988a,b, 1989; Bereiter et al., 1990;
Bereiter and Benetti, 1991; Lu and Bereiter, 1991; Bereiter, 1993).
Indeed, underwater submersion activates numerous neurons
immunolabeled with cFos in the MDH (McCulloch, 2005;
Panneton et al., 2010a, 2012a; McCulloch et al., 2016) in locations
similar to the termination of primary afferent fibers contained
within the AEN (Figure 3C2). Moreover, Panneton (1991b) and
Panneton and Yavari (1995) showed that small injections into
similar areas (Figures 3A2,B2) of either lidocaine or kynurenate,

both of which block synaptic transmission, selectively inhibited
the cardiorespiratory sequelae to nasal stimulation. It should be
noted, however, that the AEN also has extratrigeminal reticular
projections (Figures 3C,C1) which are probably important for
the cardiovascular responses in diving.

RESPIRATION

All mammals submerged underwater, either voluntarily or
involuntarily, became apneic and remain apneic, despite
submersions exceeding their aerobic dive limit (Panneton
et al., 2010a). However, such prolonged apneas (or breath-
holds) are not maintained with long nasal stimulations in
anesthetized muskrats. Nevertheless, most marine mammals
work within their aerobic dive limit (Kooyman, 1985; Burns
and Castellini, 1996; Ponganis et al., 1997), a metabolic
threshold where diving duration goes beyond intrinsic
oxygen stores and is marked by blood lactate concentration
increasing above resting levels (Kooyman et al., 1980).
An important question is how the prolonged apneas are
maintained despite gross alterations in blood chemistry
(Figures 4B–G) that normally increase ventilation. The
neuronal circuitry driving respiration is complexly organized
and its efficiency in fulfilling physiological needs is not fully
understood (Feldman et al., 2013). Nevertheless, a reflex
apnea is induced with either underwater submersion or nasal
stimulation despite truncating the brain at the pontomedullary
junction (Figure 2B). While it seems reasonable to believe
influences over reflex behavior are manifested by many
suprabulbar neurons, including those important in apneic
reflexes and breath-holds (Dutschmann and Herbert, 1996,
1997, 1998b, 1999; Chamberlin and Saper, 1998; Radulovacki
et al., 2003, 2004; Topchiy et al., 2009), it is likely that they
are modulatory rather an intrinsic part of the diving reflex
circuit. This is especially important to consider when studying
the DR in species high in neural hierarchies, e.g., marine
mammals and humans, who have considerable volitional control
over respiration.

Indeed, rhythmic depolarizations similar to respiration
persists in many slice or brainstem-spinal preparations of
only the medulla (Bianchi et al., 1995; Rekling and Feldman,
1998; Feldman et al., 2013), and much information has been
garnered from such preparations. The ventral respiratory column
(Feldman, 1986; Benarroch, 2007) holds many respiratory
neurons and one part of it, the pre-Bötzinger complex, is
where many neurons generating respiratory rhythm lie (Bianchi
et al., 1995; Rekling and Feldman, 1998; Feldman et al.,
2013). Dutschmann and Paton (2002) showed that inspiratory
neurons ceased firing and were hyperpolarized while post-
inspiratory neurons depolarized and discharged persistently after
electrical stimulation of the AEN in a working heart-brainstem
preparation. This novel preparation may be advantageous for
future investigations of the apnea related to diving, since the
“preparation” is unanesthetized but has intact and functioning
cardiac and respiratory systems. Reflecting on the caveats
associated with unnatural electrical stimulation of nerves,
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FIGURE 3 | Support for the role of the anterior ethmoidal nerve (AEN) and the medullary dorsal horn of the trigeminal sensory complex as relays for the diving circuit.
Figures showing some medullary projections of the AEN, locales where injections into the MDH disrupted the cardiorespiratory responses after nasal stimulation, and
distribution of cFos-labeled neurons in the MDH after involuntary submersion. Dense projections are shown in darkfield photomicrographs at two levels of the rostral
MDH in its substantia gelatinosa (laminae I and II) after transganglionic transport of an HRP cocktail after its application to the AEN in a rat (A,B; arrows; labeled
axons/terminals appear bright white), or HSV-1 virus in the muskrat (A1,B1; arrows; immunoprecipitate appears dark). Note the similarity of data in the two species
using different techniques. The cardiorespiratory responses to stimulating the nasal mucosa (see Figure 1) were blocked by small bilateral injections of either
lidocaine (blue squares) or kyurenate (red circles) made into similar areas of the muskrat (A2,B2). The role of the MDH as a relay for the diving response was also
supported by cFos in similar areas of the rat after underwater submersion (C2, arrows). Extratrigeminal projections of the AEN also were noted in the lateral reticular
formation at levels of the CVLM (C, arrows) and RVLM (C1, arrows). Both areas are important for modulating cardiovascular activity and these projections suggest
direct somato-autonomic connectivity. Location of the bilateral injections of blocking solutions is coupled in (A,B). Abbreviations: Amb, ambiguus nucleus; CVLM,
depressor area of caudal medulla; LRt, lateral reticular nucleus; MDH, medullary dorsal horn; Sp5I, nucleus of the spinal tract of the trigeminal nerve, interpolar part;
RVLM, pressor area of rostral medulla; icp, inferior cerebellar peduncle; sp5, spinal tract of the trigeminal nerve. Figure is compiled from others in Neuroscience, 141,
Panneton et al., Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn, 889–906 (2006); Physiology 28, Panneton,
The mammalian diving response: an enigmatic reflex to preserve life?, 284–297 (2013), and Br. Res. 874, Panneton et al., Trigemino-autonomic connections in the
muskrat: the neural substrate for the diving response, 48–65 (2000), with permission. See text for details.

however, perhaps it would be worthwhile to determine if these
preparations could also induce a DR with an immersion of
the snout in water.

Neuroanatomical projections from the MDH (Panneton
et al., 2000, 2006) are relatively dense to caudal parts of the

ventral respiratory column where expiratory neurons dominate
(Figure 5A1). Projections from the MDH also are seen
near the pre-Bötzinger complex (Figures 5B1–B4). However,
there are very few neurons labeled with cFos in the ventral
respiratory column (Figures 5B5,C5, 6), considered the area just
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FIGURE 4 | Figures illustrating the cardiovascular responses and the resultant blood chemistry to forced submersions of rats. A bradycardia and increase in ABP
was seen approximately for the first minute of submersion (A); numerous ectopic beats are evident with increased pulse pressure (see expanded view in Figure 11).
Blood chemistry changed radically during the period of submersion (B–G), but the rats remained apneic despite such changes. Thin arrows oriented upward in A
show (in boxes) the PaO2, PaCO2, and pH of blood withdrawn over time from the submerged rat, while blue arrows at the bottom indicate time underwater. Note the
extreme hypercapnia, hypoxia, and acidosis during the apnea. All the chemical indicators in the blood however suggested the rats should breathe vigorously, but the
rats did not, nor did they drown. We speculate the apnea is refractory to gross changes in blood gases and is prolonged during diving, perhaps due to the activation
of putative chemoreceptors on the ventral medullary surface (see Figures 6, 7C). These studies prove the homeostatic respiratory chemoreceptor reflex is inhibited
during underwater submersion. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. Figures are reprinted from J. Appl. Physiol., 109, Panneton et al., Cardiorespiratory and neural
consequences of rats brought past their aerobic dive limit, 1256–1269 (2010), with permission. See Panneton et al. (2010a), for more details.
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FIGURE 5 | Neuroanatomical data implicating brainstem loci important for the diving response. Figures from rats (1–3 in A–C) and muskrats (4 in A–C) illustrating
potential brainstem circuits driving the diving response. Injections of BDA were placed in the MDH (A1) where primary afferent fibers in the AEN project, where
transganglionic transport of HSV-1 virus was found, where the DR could be reversibly inhibited, and where cFos labeled neurons were found (see Figure 3). Labeled
fibers packed into the ventrolateral subnucleus of the nucleus tractus solitarius (Sol; A2, arrow) and extended toward the lateral part of the dorsal motor nucleus of
the vagus. This projection was confirmed after injection of fluorogold into the Sol (A3, insert); note numerous retrogradely labeled neurons (dots) in the substantia
gelatinosa of the MDH rostrally (-14.1; arrows) and more caudally (-14.3; arrow) mimicking the location of data seen in Figure 3. Terminal-like label was also seen in
sections through the preBötzinger (PreBötz) area and CVLM (B1,B2) after MDH injections of BDA (A1) and confirmed by retrograde cases (B3). Sections through
the more rostral Bötzinger (Bötz) complex and RVLM had very few large fibers labeled with BDA but numerous small fibers (C2). The origin of the projections was
confirmed with retrograde analysis (C3, arrows) showing numerous neurons in the part of the MDH known to be important for diving behavior. cFos studies,
considered functional neuroanatomy, suggest the reticular areas also are activated during underwater submergence (A5–C5; darkened nuclei represent activated
neurons). Other neuroanatomical data from transneuronal transport of HSV-1 virus (A4–C4) injected into the AEN, suggest these areas are linked to the AEN as well
as underwater submersion (see Panneton et al., 2000 for details). However, mismatches of label between functional and tract-tracing approaches in the

(Continued)
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FIGURE 5 | Continued
subnuclei of Sol suggest the fibers seen with tract-tracing techniques have functions other than diving behavior. Also, there were few neurons labeled with Fos in the
ventral respiratory column, perhaps since respiration is inhibited (the apnea) and Fos only labels activated cells (see text for discussion). Abbreviations: AP, area
postrema; Cu, cuneate nucleus; Gr, gracile nucleus; IO, inferior olive nucleus; MVe, medial vestibular nucleus; Sol, nucleus tractus solitarii; SpVe, spinal vestibular
nucleus; py, pyramidal tract; sol, solitary tract; 10, dorsal nucleus of the vagus nerve; 12, hypoglossal nucleus; 12n, hypoglossal nerve. See Figure 3 for other
abbreviations. Figure is compiled from others in Neuroscience, 141, Panneton et al., Brainstem projections from recipient zones of the anterior ethmoidal nerve in the
medullary dorsal horn, 889–906 (2006); and Br. Res. 874, Panneton et al., Trigemino-autonomic connections in the muskrat: the neural substrate for the diving
response, 48–65 (2000), with permission.

ventral to the nucleus ambiguus, after underwater submersion
(Panneton et al., 2010a, 2012a). This is perhaps due to
the apnea induced with underwater submergence—inhibited
neurons rarely, if ever, show Fos label because their inhibition
precludes activation.

The pre-Bötzinger complex contains several types of neurons,
including those marked by somatostatin (Stornetta et al., 2003;
Tan et al., 2008; Cui et al., 2016), a peptide, which acts as an
inhibitory respiratory modulator (Ramirez-Jarquin et al., 2012).
Acute silencing of such somatostatin neurons results in persistent
apnea (Tan et al., 2008) in awake mice. Moreover, somatostatin
infusion in humans greatly reduced the acute hypoxia ventilatory
response, as well as the acute hypercapnic ventilatory response
(Pandit et al., 2014), thus blunting the respiratory chemoreceptor
response. Indeed, somatostatin’s inhibitory effect on respiration
was potentiated in vitro when the pH of brainstem’s bath
was lowered from 7.4 to 7.3 (Llona et al., 2004). The pH
of blood dropped from ∼7.5 to ∼7.2 during involuntary
submergence of rats (see Figure 4E) and continued to drop
after they emerged from the water. Thus, somatostatin neurons
in the pre-Bötzinger complex may be important for the apnea
induced in the DR.

Somatostatin neurons in the pre-Bötzinger complex
(Figure 7A) have numerous processes which extend ventrally
into the epi-pia on the ventral surface of the medulla. Our
data provide two potential routes where such neurons in the
preBötzinger complex may be modulated during the DR.
The first is via direct projections from neurons in the ventral
MDH that receives nasal afferent fibers (Figure 3) to the
area of medium-sized neurons where somatostatin neurons
lie (Figures 5B2,B4, 7B). [It is of interest that a cluster of
neuron in a similar place were activated and immunolabeled
for cFos after a prolonged submersion (Figure 6C2), but
we unfortunately did not double label these neurons for
somatostatin.] A second potential route is via projections
from similar injections to the ventral surface of the caudal
medulla (Figure 7D), where numerous Fos labeled cells are
documented (Figure 7C) after involuntary submersion. These
putative respiratory chemoreceptors are linked by gap junctions
(Solomon et al., 2001; Dean et al., 2002) and may provide a
fast link to somatostatin neurons of the brainstem respiratory
network and modulate the apnea induced by underwater
submergence. However, the function of neither of these
projections is known, highlighting the technical limitations
of neuroanatomical techniques. Fos immunohistochemistry
fails to label inhibited neurons, while tract-tracing studies offer
no insight into functional status. More precise experiments
are needed, perhaps with genetically altered mice or working

heart-brainstem preparations, to determine the genesis of the
apnea in the mammalian DR.

HEART RATE

The dramatic bradycardia seen with underwater submersion, or
after stimulation of the AEN or nasal mucosa, is mediated via the
vagus nerve (see prodigious review by Ponganis et al., 2017 for
their hypothesis). Most preganglionic parasympathetic cardiac
motoneurons are found in the external formation of the nucleus
ambiguus (Panneton et al., 1996, 2014; Taylor et al., 2001),
an area of reticular formation separating sensory and somatic
motor nuclei where many preganglionic autonomic neurons
occur (Figures 8A1,A2; arrows). More cardiac motoneurons
were found more rostrally in the CVLM (Figure 8A3) but
most double labeled neurons were found in the RVLM. Double-
labeling cardiac motoneurons (Panneton et al., 2014) with
cFos after voluntary diving and cholera toxin after retrograde
transport from cardiac injections (Figure 8B, arrow) showed
that double-labeled neurons were mostly in the rostral medulla
(Figure 8A4; red arrows), especially surrounding the compact
formation of nucleus ambiguus. Neurons, possibly preganglionic
parasympathetic cardiac motoneurons, in similar areas (see
Figures 3, 5) are labeled transneuronally after HSV-1 virus
injections into the AEN (Panneton et al., 2000), after injections
of BDA into the MDH (Panneton et al., 2000, 2006), as well as
after transganglionic transport of label in primary afferent fibers
of the AEN (Panneton, 1991a; Panneton et al., 2006) (Figure 8C).

Work in in vitro brainstem slices show preganglionic
parasympathetic cardiac motoneurons are modulated by both
glutamatergic (Willis et al., 1996; Mendelowitz, 1998; Neff et al.,
1998; Corbett et al., 2003) and GABAergic/glycinergic (Wang
et al., 2001, 2003) inputs from the NTS. These cardiac neurons
are also modulated by nicotinic cholinoceptors (Wang et al.,
2001), which facilitate glutamatergic input to them (Huang et al.,
2004), numerous peptides (Agarwal and Calaresu, 1991; Ruggeri
et al., 2000; Irnaten et al., 2003; Blinder et al., 2005, 2007), and
monoamines (Izzo et al., 1993; Wang and Ramage, 2001; Skinner
et al., 2002; Gorini et al., 2009). Indeed, cardiac motoneurons
activated by the stimulation of the trigeminal tract are modulated
by serotonin (Gorini et al., 2009) and acetylcholine (Gorini et al.,
2010) receptors. The bradycardia to nasal stimulation is enhanced
when electrical stimulation of the AEN is paired with chemical
stimulation of peripheral chemoreceptors (Rozloznik et al.,
2009), and was even more potentiated by injections of a 5HT
receptor agonist injected into the NTS, implying an integrative
function of the NTS in the multimodal mediation of the DR.
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FIGURE 6 | Line drawings comparing the distribution of cFos immunolabeling
in the brainstem of rats after a single trial of voluntary submersion (A–E; see
Panneton et al., 2012a) to that of a single prolonged submergence of a rat
brought beyond its aerobic dive limit (A2–E2; see Panneton et al., 2010a). The
density of immunolabeled cells in the MDH, CVLM, RVLM, and NTS after a
single brief immersion (left column) is greatly increased after the more
prolonged submersion (right column). Note, however, the emergence of
myriad immunolabeled cells along the ventral surface of the medulla (arrows),
most in the epi-pia, only after the prolonged submergence. These putative
chemoreceptors could potentiate and prolong the apnea of diving via
interaction with somatostatin neurons (Figure 7). See previous figures for
abbreviations. Figures are reprinted from J. Appl. Physiol., 109, Panneton
et al., Cardiorespiratory and neural consequences of rats brought past their
aerobic dive limit, 1256–1269 (2010), with permission.

Such mechanisms may be important in the more prominent
bradycardias seen in aquatic animals during deep dives.

Moreover, electrophysiological investigations on
postganglionic cardiac motoneurons driven by diving have

commenced (McAllen et al., 2011). Cardiac nerves from both
the parasympathetic vagus nerve and the sympathetic system
are activated during nasal stimulation with formaldehyde vapors
in the rabbit (Nalivaiko et al., 2003), and the sympathetic
contribution may maintain or enhance cardiac output during
the bradycardia (Paton et al., 2005). We speculate that the
bradycardia induced by underwater submersion activates
cardiac motoneurons directly either by primary afferent
fibers from the AEN projecting into the nearby reticular
formation (Figures 3C,C1) and/or indirectly via projection
neurons from the MDH.

ARTERIAL BLOOD PRESSURE

Numerous studies have shown that neurons in the rostral
ventrolateral medulla (RVLM) regulate ABP by maintaining
sympathetic tone. Moreover, numerous studies have also
implicated the RVLM as the brainstem relay to the spinal cord for
the baroreceptor reflex (Guyenet, 1990; Schreihofer and Guyenet,
1997; McCulloch et al., 1999b) as well as somatosympathetic
reflexes (Stornetta et al., 1989; Burke et al., 2011). The reflex
circuitry driving the baroreceptor reflex has been described
extensively and involves neurons in the nucleus tractus solitarii
(NTS), the caudal ventrolateral medulla (CVLM), and the
RVLM (Aicher et al., 2000). The increase in ABP from the
induced vasoconstriction after underwater submersion activates
the baroreflex, but the baroreceptive circuitry does not overlap
that of the diving circuit until the RVLM (McCulloch et al.,
1999b). Thus, the neuroanatomical projections from the MDH
to the NTS (Figures 5A1–A3), as well as those from the
transneuronal transfer of virus from the AEN (Figure 5A4), do
not overlap with neurons labeled with cFos after underwater
submersion (Figure 5A5). These neuroanatomical tract-tracing
techniques label fibers/neurons indiscriminate of function; we
believe MDH projections to the NTS are labeling fibers/neurons
more associated with pain pathways versus those in the diving
circuit. Moreover, bilateral injections of the excitatory amino
acid receptor antagonist kynurenate made into the dorsolateral
subnucleus of the NTS or the CVLM, where the baroreceptive
neurons lie, greatly attenuated the baroreflex but failed to modify
responses from nasal stimulation (McCulloch et al., 1999b)
(Figure 9A). This view is contrary to that of others (Huang et al.,
1991; Dutschmann and Herbert, 1998b) who concluded the NTS
modulates diving behavior. However, injections into the RVLM
greatly reduced effects of nasal stimulation on sympathetic nerve
discharge but not that from baroreflex activation (Figures 9A,B).
The lack of change in baroreceptor modulation of sympathetic
activity after the RVLM injections of kainate is explained by
the predominate GABAergic input from the CVLM to the
RVLM, while blocking of RVLM activation after nasal stimulation
suggests excitatory amino acids synaptically drive this projection.

The RVLM contains the rostral C1 adrenergic cell group
(Ruggiero et al., 1985) that provides bulbospinal projections
to the intermediolateral cell column in the spinal cord;
many such neurons are activated by underwater submersion
(Figures 5C5, 10D) (McCulloch and Panneton, 2003). However,
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FIGURE 7 | Neuroanatomical data implicating somatostatin neurons in the preBötzinger complex as well as neurons/cells near the ventral medullary surface as
important for the diving circuit. Somatostatin neurons in the preBötzinger area have been shown important for apnea (see text for details). In A, several somatostatin
immunostained neurons of medium size are encircled. Note that putative dendrites from these somatostatin neurons stream to the ventral medullary surface and
appear to intertwine among the epi-glial cells found here (arrows). Anterograde transport of BDA after an injection in the ventral MDH is seen over similar
medium-sized neurons in B (see also Figure 4B2). Neurons/cells near the ventral medullary surface always were immunolabeled with cFos after long submersions
(see Figure 6, right column). Those found caudally near the pyramidal decussation (C, arrow), often surrounded the exit of the hypoglossal nerve (12n). The far
majority of injections of BDA into the ventral MDH also showed small labeled fibers, with boutons, over similar areas (D, arrow). The epi-pia on the ventral medulla are
linked by gap junctions; we hypothesize a depolarization of similar caudal epi-pia during diving would then rapidly flow rostrally, impinging on the distal dendrites of
the apnea-inducing somatostatin neurons in the preBötzinger complex. See text for discussion.

both adrenergic and non-adrenergic spinally projecting neurons
in the RVLM are responsive to nasal stimulation (McCulloch
et al., 1999b). Moreover, 62% of the same baroreceptive
RVLM neurons normally silenced by increases in ABP
are excited by nasal stimulation despite increases in ABP
(Figures 9C,D; McCulloch et al., 1999b), suggesting that the
homeostatic baroreceptor reflex is overridden. Several lines
of neuroanatomical evidence also suggest that these RVLM
neurons are important in the DR, including their activation
of cFos (Figure 10A) after diving, the overlap of CGRP fibers
(from primary afferent fibers) (Figure 10B), and the overlap of
projections from the MDH (Figures 10C,E). These bulbospinal
neurons could get input from somatosensory neurons either
directly from primary afferent fibers of the AEN into the
ventrolateral reticular formation (Figures 3C,C1) or relay from
non-baroreceptive neurons in the CVLM or from the MDH.

SUPRABULBAR CONTROL OF THE
DIVING RESPONSE

We were initially impressed by reading many years ago that
a seal showed an abrupt and dramatic bradycardia prior to
underwater submergence and a tachycardia prior to emersion
(Casson and Ronald, 1975). Also, differences in heart rate of

marine mammals diving voluntarily show that the DR is more
variable and less intense than during involuntary dives (Kooyman
and Campbell, 1972; Hill et al., 1987; Jobsis et al., 2001). Similarly,
the hemodynamic responses to “forced” submersions when
mammals are involuntarily “dunked” underwater (Koppányi
et al., 1929; Scholander, 1963; Tchobroutsky et al., 1969; Dykes,
1974; Lin, 1974; Lin and Baker, 1975; Martner et al., 1977;
Drummond and Jones, 1979; Jones et al., 1982; Hill et al., 1987;
McCulloch and Jones, 1990; Jobsis et al., 2001; Panneton et al.,
2010b) are subtly dissimilar to the hemodynamics of voluntary
diving (Drummond and Jones, 1979; Kooyman, 1989; McCulloch
and Jones, 1990; Rybka and McCulloch, 2006; Panneton et al.,
2010b). This suggests that marine mammals may have “control”
over their “autonomic” NSs, which is considered taboo by many
teachers of physiology but certainly has adherents (Blix et al.,
2010). The compendium by Houser (2018), as well as that of
Elmegaard et al. (2016) cite copious examples documenting
volitional control of heart rate by marine mammals, supporting
this case. However, there are numerous factors controlling the
HR in diving mammals including temperature, apnea, and
submergence duration and depth, as well as exercise intensity
(Davis and Williams, 2012; Noren et al., 2012; McDonald
and Ponganis, 2014; Williams et al., 2015; Kaczmarek et al.,
2018; McDonald et al., 2018). For example, the HR increases
with exercise (a sympathetic response) working against an
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FIGURE 8 | Illustrations showing functional neuroanatomical data from rats that voluntarily dove underwater after pericardial injections of cholera toxin into their
pericardial cavities (Panneton et al., 2014) and its retrograde transport to the medulla. All rats showed marked bradycardia and an increase in arterial blood pressure
typical of underwater submersion (see Figure 1B). Preganglionic cardiac motoneurons were found caudally mostly in the medullary reticular formation sandwiched
between sensory and motor areas (A1,A2; arrows), but a few also were noted in the dorsal motor nucleus of the vagus nerve. Single black dots represent such
preganglionic cardiac motoneurons labeled solely by cholera toxin. Double-labeled neurons represent preganglionic cardiac motoneurons activated by diving.
Double-labeled neurons, marked by black dots labeled by Fos immunohistochemistry encircled by brown cytoplasmic labeling of cholera toxin (B, red arrow), were
found throughout the ventrolateral medulla, but mostly rostrally (A1–4, encircled dots highlighted by red arrows). It is of interest that primary afferent fibers contained
within the AEN project directly into similar reticular areas (C; compare to A4). See legends in Figures 3, 4 for abbreviations and Panneton et al. (2014) for details.
Figures are reprinted from Front. Physiol., 5, Panneton et al., Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving, 8, (2014), with
permission.

increasing bradycardia (a parasympathetic response) with depth.
Moreover, recent data on seals using non-invasive infrared
spectroscopy show these animals routinely exhibit preparatory
peripheral vasoconstriction accompanied by increased cerebral
blood volume approximately 15 s before submersion (McKnight
et al., 2019). These anticipatory adjustments confirm that blood
redistribution in seals also is under some degree of cognitive
control that precedes the mammalian dive response. Thus, while
respiration is under volitional control in higher mammals, these

data also suggest that higher marine mammals can also control
their cardiovascular systems volitionally.

Thus, it is possible that preventing an organism from
deciding its own fate by involuntary submersion may induce
both fear and stress, and these emotions may alter normal
reflex responses. Studies on terrestrial animals have shown both
significant bradycardia and increases in ABP during extreme fear
(Gabrielsen et al., 1977; Smith and Woodruff, 1980; Smith et al.,
1981; Smith and Tobey, 1983; Carrive, 2000; Zhang et al., 2004),
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FIGURE 9 | Illustrations mapping physiological data implicating several medullary areas important for the diving response. Bilateral injections of kyurenate made at
levels of the rostral C1 area (RVLM), caudal C1 area (CVLM), nucleus tractus solitarii (NTS), and raphe obscuris are plotted in A. The effect of nasal stimulation on
sympathetic nerve discharge (SND) was unchanged after injections into the CVLM, NTS (open circles) or raphe and ventral to CVLM (open diamonds), but was
reduced by 80% after injections into the RVLM, suggesting the RVLM mediates the sympathetic response. Normalized sympathetic responses to nasal stimulation
from multiple trials are shown (B); again, only injections into the rostral C1 induced a significant decrease in SND. The electrophysiological responses of a typical
single baroreceptive neuron in the RVLM is seen in C; note that this unit is silenced by increases in blood pressure after phenylephrine administration and SND
ceases, but phrenic nerve discharge (PND) is maintained. The same neuron is excited, however, after nasal stimulation (D), even with the increase in ABP; the PND is
also silenced with nasal stimulation and the SND is increased. 24/39 of similar baroreceptive neurons, normally silent with increases of ABP, actually increased their
firing rate by nearly 66% and increased SND by 102%, despite an increase of ABP of 28 ± 2 mmHg. These data suggest the homeostatic baroreceptor reflex is
inhibited during diving. Figures are reprinted from J. Physiol., 516, McCulloch et al., The rostral ventrolateral medulla mediates the sympathoactivation produced by
chemical stimulation of the nasal mucosa, 471–484 (1999), with permission. See McCulloch et al. (1999a) for more details.

similar to that seen during diving. However, the bradycardia in
all of our studies on rats has been locked tightly to the time
submerged, and immediately returned to normal after exiting the
water (Figures 1B,C). It is noteworthy, however, that changes
in the HR and the ABP were more varied in dunked naïve rats

(Figure 1C2) and there were more arrhythmias (Figures 4A1, 11;
de Burgh Daly, 1984). We and others noted similar changes
previously (Byku et al., 2004; McCulloch et al., 2010) and
McCulloch et al. (2010) concluded that forced submergence is
stressful to both naïve and trained rats but voluntary diving in
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FIGURE 10 | Photomicrographs of neuroanatomical data implicating the
RVLM as an important link in the circuit driving the diving response. Ovals
drawn ventral to the Bötzinger complex (Bötz) demarcate our definition of the
RVLM in A–E. Numerous neurons always were immunolabeled with cFos
in the RVLM after underwater submersion (A), and many of these neurons were

(Continued)

FIGURE 10 | Continued
also double labeled for tyrosine hydroxylase (D), suggesting that both
noradrenergic as well as non-noradrenergic neurons are activated. We have
shown (see Figure 8C) that the anterior ethmoidal nerve projects directly to
the RVLM; B shows that many of these fibers are also immunoreactive to
CGRP (see Panneton and Gan, 2014 for discussion). The RVLM also receives
indirect projections from nasal areas of the MDH. Two tracing techniques, the
anterograde transport of BDA after an injection in the ventral MDH of the rat
(C; see Panneton et al., 2006 for details) and the transneuronal transport of
HSV-1 virus in a muskrat (E; see Panneton et al., 2000 for details) suggest this
is the case.

trained rats is no more stressful than being handled by humans.
While it is generally accepted that the bradycardia of voluntary
diving is vagally mediated and dominant, forced underwater
submersion stresses the animal and may also activate suprabulbar
neurons influencing the sympathetic NS. Many have noted that
coactivation of both parasympathetic and sympathetic cardiac
nerves induces cardiac arrhythmias (Paton et al., 2005; Shattock
and Tipton, 2012). The arrhythmias during forced diving possibly
induced “fear” or stress, activating the sympathetic NS and
countering the bradycardia of underwater submersion.

Seals often show either little bradycardia when diving
voluntarily (Kooyman and Campbell, 1972), may reduce heart
rate in anticipation of underwater submersion (Casson and
Ronald, 1975), induce a bradycardia to non-somatic stimulation
(Irving et al., 1942), or an anticipatory tachycardia prior
to emerging (Casson and Ronald, 1975; Blix and Folkow,
1983). Sea lions conditioned to adjust their autonomic NSs
to auditory or visual commands suggest they may “will” the
bradycardia (Ridgeway et al., 1975; Ponganis et al., 1997) from
suprabulbar sites. Such premature autonomic behavior in the
diving laboratory rat has not been published, however, suggesting
that cortical/suprabulbar influences on the DR in the rat is
minimal. It is of interest that cetaceans and pinnipeds, considered
intelligent species by most, have brains that approach humans’
brains in complexity with highly convoluted cortices (Marino,
1998; Marino et al., 2000, 2001, 2004; Hof et al., 2005; Eriksen
and Pakkenberg, 2007; Hof and Van der Gucht, 2007); such
complexity overwhelms that of lissencephalic rodent brains. We
suggest that the DR has but minimal suprabulbar modulation
in rodents, but suprabulbar neurons in higher species, perhaps
those in the neocortex, may indeed direct autonomic behaviors
seen in the DR. Perhaps the DR is analogous to the blink
reflex, a reflex endemic in all mammals. The blink reflex has no
suprabulbar control in lower species similar to that in neonatal
humans. But as humans’ age and their neocortices mature, they
can control their blink reflex volitionally and produce “winking”
behavior. Intelligent marine mammals may have harnessed
diving behavior similarly.

THE DIVING RESPONSE IN THE HUMAN

Diving behavior is well documented in humans (Ferrigno et al.,
1997; Ferretti, 2001; Foster and Sheel, 2005; Lindholm and
Lundgren, 2009). However, metrics such as the HR are more

Frontiers in Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 524

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00524 June 3, 2020 Time: 22:5 # 17

Panneton and Gan Neural Control of the Diving Response

variable in adults (Olsen et al., 1962; Hiebert and Burch, 2003;
Caspers et al., 2011) than in infants (Goksör et al., 2002).
The DR, with its elevated activation of vagal cardiac nerves,
long has been acknowledged as a treatment for paroxysmal
atrial tachycardia (Wildenthal et al., 1975; Gooden, 1982) by
normalizing sinus rhythm. Moreover, cases of “cold water
drowning” in humans, where children lie submerged underwater
for prolonged periods, but recover basically unharmed, have been
documented numerous times (Hayward et al., 1984; Golden et al.,
1997; Xu et al., 1999; Giesbrecht, 2000). Thus, perhaps in these
cases, a DR induces a persistent apnea, saving these victims from
inhaling water and drowning.

The powerful DR has also been suggested to be deleterious
to the human condition. For example, the DR has been
implicated in the etiology of sudden infant death syndrome
(SIDS) (Lobban, 1991, 1995; Matturri et al., 2005), where
neonates apparently become apneic and die without pathology.
Epidemiological data suggest that rebreathing asphyxial gases
(mostly carbon dioxide), smoking, and reduced heat loss are
important risk factors in SIDS (Kemp, 1996; Leiter and Böhm,
2007; Mitchell, 2009). It is of interest that others have noted
the increased prevalence of infections of the upper respiratory
tract in SIDS victims (Blackwell and Weir, 1999; Blackwell
et al., 1999; Harrison et al., 1999; Molony et al., 1999; Morris,
1999; Rambaud et al., 1999; Goldwater, 2017). Such infections
produce inflammatory mediators (Guntheroth, 1989; Lindgren
and Grogaard, 1996), which sensitize C-fibers (Reeh et al.,
1986; Handwerker et al., 1991; Lee and Widdicombe, 2001)
and lower activation thresholds. Indeed, we have shown that
small diameter fibers densely innervate the nasal mucosa
via the AEN (McCulloch et al., 1999a), while others show
inflammatory mediators in the upper respiratory tract promote
apnea (Lindgren and Grogaard, 1996). It is of interest that the
solitary chemosensory cells found in the anterior nasal mucosa
and innervated by small diameter fibers of the trigeminal nerve
(Tizzano et al., 2010), probably the AEN, are activated by
acyl-homoserine lactones produced by Gram-negative bacteria.
Activation of these chemosensory cells also promotes an apnea.
Moreover, nasal applications of both smoke (White et al., 1974;
Kobayashi et al., 1999; Ho and Kou, 2000) and carbon dioxide
(Yavari et al., 1996), both risk factors for SIDS, induce the DR
while involuntary submersion induces apneas beyond the aerobic
dive threshold (Panneton et al., 2010a), suggesting perhaps the
persisting apnea could induce death. Perhaps the DR is induced
in infected SIDS victims who nasally rebreathe high levels of
CO2 (Sakai et al., 2009) so that they hold their breath until they
die. A plethora of citations providing background implicating
the mammalian DR in sudden cardiac death, arrhythmias, and
SIDS in the human clinical literature are found in the theoretical
dissertations of Vincenzi (2019) and Vega (2018).

The bradycardia induced in diving humans often is combined
with arrhythmias (Scholander et al., 1962; Lindholm and
Lundgren, 2009; Shattock and Tipton, 2012), possibly mimicking
the yin and yang of cardiac autonomic control seen in rodents
(Figure 11). The dual activation of both systems is hypothesized
to induce the numerous arrhythmias seen in deep dives in marine
mammals. Forced submersion of rodents may provide a model

FIGURE 11 | An expanded trace of ABP in a rat involuntarily submerged
underwater. The involuntary submersion induces stress in the naïve animal,
inducing sympathetic discharge. The marked slowing of the pulse on the left
of the trace shows the remarkable bradycardia, the result of parasympathetic
discharge, resulting as soon as the rat’s nose is submerged. Arrows above
the trace illustrate the confound of ectopic beats, creating arrhythmias, when
untrained rats are involuntarily submerged. Such arrhythmias are commonly
seen in deep-diving marine mammals and elite human divers and are thought
to result from the competitive sympathetic and parasympathetic influences
over heart rate. Such “diving” rodents may prove valuable as a tool to study
cardiac arrhythmias. Figure is reprinted from J. Appl. Physiol., 109, Panneton
et al., Cardiorespiratory and neural consequences of rats brought past their
aerobic dive limit, 1256–1269 (2010), with permission.

to study these arrhythmias further. The theory of “autonomic
conflict” that develops during underwater submersion in
cold water, e.g., the activation of both parasympathetic and
sympathetic cardiac nerves, may account for the genesis of
cardiac arrhythmias and dysrhythmias seen during diving
(Shattock and Tipton, 2012; Bierens et al., 2016). The fact that
ectopic beats can be generated during diving experiments in
rats (Figure 11) might be utilized to test therapies designed to
quench these arrhythmias. While autonomic conflict often results
in arrhythmias, fatal arrhythmias are much less common and
usually coupled with predisposing factors including ischemic
heart disease, long QT, channelopathies, and atherosclerosis.

The power of the DR might also be harnessed to combat other
human maladies. Cerebral blood flow is significantly increased in
humans by inducing a DR (Brown et al., 2003; Kjeld et al., 2009),
similar to that of rodents (Irving, 1938; Ollenberger and West,
1998a,b; Ollenberger et al., 1998) and seals (Zapol et al., 1979;
Blix and Folkow, 1983; Odden et al., 1999; Tift and Ponganis,
2019), probably in an effort to oxygenate this necessary organ.
It is of interest that a cerebral hypotension precedes migraine
headaches (Olesen, 1991; Thomsen et al., 1995); perhaps inducing
a DR in patients experiencing a prefatory aura could alter such
cerebrovascular dysregulation and prevent migraines. Using the
DR to mitigate certain migraine headaches could be a natural,
inexpensive remedy. The DR might also provide therapy in
stroke and hemorrhagic shock by increasing cerebral blood flow
(Golonov et al., 2016; Chiluwal et al., 2017). Perhaps this feature
of the DR could be utilized to reduce the ischemic penumbra and
infarct volume due to stroke (Pan et al., 2007; Golonov et al., 2016;
Chiluwal et al., 2017). The penumbra describes compromised
brain tissue with a decreased oxygen supply which may eventually
become necrotic. Increasing blood flow to the penumbra after
stroke during a DR may nourish the deprived cells enough to
prevent further death. Moreover, the DR has been implicated in
sudden unexpected death in epilepsy (Stewart, 2018; Vega, 2018),
and experimental studies utilizing nasopharyngeal irrigation
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concluded that seizure-associated central apnea and the DR
share a common neural basis and may reflect an attempt by
brainstem networks to protect core physiology during seizure
activity (Villiere et al., 2017; Stewart, 2018; Mooney et al., 2019).

Little is known of the neural circuitry driving the DR in
humans but behaviors that serve basic vegetative functions are
usually less complex and more uniform across species, so we
suspect that much known from the reflex circuit of a rodent, or
the unexplored circuits of marine mammals, would also apply
to humans. Moreover, the fact that the more neurally developed
marine mammals can “control” their HR’s at will could perhaps
be exploited with techniques designed to show which higher
levels of the brain are activated during this autonomic control.
Seals and dolphins are increasingly being trained for the study
of diving behaviors, including HR regulation. Perhaps they could
be trained to perform such feats under a functional MRI or PET
scan, an expensive experiment but probably would detail cortical
areas directing this control over the autonomic NS. Similar efforts
(e.g., fMRI) could be performed on humans, assuming some
adult humans can be trained to induce a reliable DR, perhaps
with biofeedback techniques, to gain volitional control over their
autonomic NS. Indeed, reports on these lines are developing
(Abukonna et al., 2013; Jones et al., 2015). Such mind–body
interactions could be utilized to control affective symptoms of
anxiety in humans (Jones et al., 2015), as well as a method to
induce general relaxation for mitigating stress, a malady afflicting
an overwhelming number of humans.

As current technology refines and new technologies are
born, new discoveries are forthcoming concerning the enigmatic
mammalian DR. Indeed, genetic studies are now underway
illustrating how diving mammals, including humans, have
adapted to their anoxic underwater environments (Fabrizius
et al., 2016; Baranova et al., 2017; Hoff et al., 2017; Ilardo et al.,
2018; Zhou et al., 2018; Xu et al., 2019). Introduction of the DR in
the mouse (Hult et al., 2019) provides opportunity for an entirely
novel set of techniques for genetic manipulation of neurons.
Utilization of these data on the DR in rodents thus provides
practical animal models for study of the mechanisms driving the
response, data from which could be applied to humans.

SUMMARY AND PERSPECTIVES

The DR is indeed a dramatic perturbation of normal function,
altering basic homeostatic mechanisms to fit physiological needs.
This review emphasizes both the reflex nature of the DR and its
neuronal circuitry maintained in the medulla and spinal cord, like
numerous other reflexes. Many stimuli affecting paranasal areas
initiate the DR, and nerves innervating these areas serve as its
afferent limb. We suggest sensory fibers of the AEN projecting
to the MDH (Figure 12; green lines) mediate much of the
DR and noted relays from the MDH to neuronal ensembles
driving respiration, heart rate, and vasoconstriction (Figure 12;
purple lines). Although only sparse projections were noted to
the ventral respiratory column from the MDH, we also suggest a
projection to the ventral medullary surface transmitted along gap
junctions to somatostatin neurons in the preBötzinger complex
may reinforce the apnea (Figure 12; blue line) by disrupting

normal rhythm generation. Our data suggest the bradycardia
(Figure 12; red line) and peripheral vasoconstriction (Figure 12;
orange line) are mediated by neurons in the rostral medulla, and
their input by trigeminal neurons is either direct via primary
afferent fibers or indirect via the MDH. Since there are inferences
implicating that some marine species “will” the DR as well
as numerous instances when humans breath-hold, suprabulbar
control must intercede in the reflex circuitry, much like when
humans induce a response similar to the blink reflex and “wink.”

The universal inclusion of the DR in a wide variety of
vertebrates, both marine and terrestrial, is made throughout this
review. Indeed, even early diverged mammals, like the platypus,
exhibit a dive response (Johansen et al., 1966; Bethge et al.,
2003). Although it is utilized best and most by marine mammals,
the dive response is also pronounced in non-marine species
like common laboratory rodents. While marine mammals have
both harnessed the DR as well as adapted numerous systems to
prolong underwater submersion, there is no explanation as to
why terrestrial animals also have this profound response. It must
be remembered, however, that pinnipeds and cetaceans evolved
after a migration of terrestrial ungulates adapted to an aquatic
environment (Thewissen et al., 2007). Thus, the physiological
consequences of underwater submersion that we term the DR
may have been directed by NSs before marine mammals even
existed. This implies that perhaps the moniker “DR” is misleading
and in fact a misnomer. Perhaps a purpose of this enigmatic reflex
is to indeed to preserve life of the organism (Panneton, 2013).

The neural circuits driving the DR are probably intrinsic in
all vertebrate species, implying these circuits are the simplest, the
most organized and the most automatic. Those circuits driving
the DR also probably were born early in our evolutionary history.
The commonality speaks to ancient evolutionary adaptations
shared by all vertebrates in their battles against asphyxiation
(Hagen, 2018). There are some references in the diving literature
about the evolutionary significance of the DR (Hochachka, 1997;
Mangum and Hochachka, 1998; Mottishaw et al., 1999), but
most of such references are implied only for marine mammals.
More work must still be done in dissecting the components
of the neural circuits important for the DR, but perhaps more
discussions on the teleology of this phenomenal response also are
in order to better understand it. The phrase “Master switch of life”
(Scholander, 1963), or the striking redistribution of blood supply
to organs most essential to life (the heart and brain), may provide
new discussion on this phenomenal response.

This essay deals with the neural circuits driving the DR in
the medulla of two species of rodents, which are the preferred
animals for many laboratory experiments. However, the use of
terrestrial rodents to study the mammalian DR does not discount
the plethora of data accumulated over the past eighty years,
and still being produced, on the DR of marine mammals. As
mentioned previously, these large marine mammals are thought
to possess considerable intelligence, and, in least in our opinion,
make it ethically unfathomable to sacrifice these animals to
study their brains. We thus offer these rodent models to those
interested in studying the neural control of the mammalian
DR. If the profound autonomic changes seen in the DR can be
utilized in its clinical implications for SIDS, SUDEP, arrhythmias,
stroke, headache, anxiety, and others in humans, perhaps the
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FIGURE 12 | Proposed brainstem circuitry mediating the cardiorespiratory depression with underwater submersion, e.g., the mammalian diving response. We
propose direct primary afferent projections from nasal and paranasal areas (green lines) both to the MDH for relay and to the lateral reticular formation, where cardiac
motoneurons and sympathetic interneurons lie. We know that the DR can be blocked in the MDH (Figure 3) and neurons from this area project (purple lines) to the
CVLM, the RVLM (including sympathetic interneurons and respiratory rhythm-generating neurons), and the ventral medullary surface, where respiratory
chemosensitive neurons are found (see text for discussion). Although the location of respiratory neurons sending inhibitory signals to the phrenic motor nucleus in the
cervical spinal cord (blue lines) is unknown, the respiratory inhibition may be the result of inhibition of the respiratory pattern generator. The presympathetic neurons
in the RVLM project to the intermediolateral cell column of the thoracic spinal cord and are important for mediating the peripheral vasoconstriction (orange lines)
during diving. While preganglionic cardiac motoneurons are found throughout the medulla, most neurons double-labeled after diving were near to the compact
formation of the nucleus ambiguus juxtaposed to primary afferent fibers, many from the AEN. We propose that these neurons (red lines) project to postganglionic
neurons near the heart, inducing the bradycardia seen in the diving response. We suggest this relatively simple but well-organized circuit orchestrates the automatic
reflex responses (100% of our rodents 100% of the time show a diving response to underwater submersion). We also propose that such a circuit provides the
substrate upon which suprabulbar neurons impinge, allowing higher mammals to willfully control their diving response.

power of this response may be harnessed for the betterment of
mankind. The DR is more than an invariant hardwired response
and has many overlying factors effecting the DR are best seen
in the variables regulating the HR in marine mammals. We
suspect that its neural control in higher marine mammals makes
adjustments for many conditions, even those for “anticipated”
physiological needs, but eventually the output will traverse the
basic circuit described.

Perhaps humans can be trained to harness the incredible
power the DR has over the automatic systems which drive our

organism, thus mimicking those seen in pinnipeds and cetaceans.
The innumerable choices inflicted on contemporary man, from
all strata of all societies, parallels that of the rise in anxiety
and stress levels; some in the general public already promote
inducing the DR as a relaxation technique. The DR’s power over
cerebral blood flow may be a fast and efficient way to treat
incipient migraine headaches as well as minimize the effects
of transient ischemic attacks (TIA) and reduce the ischemic
penumbra of stroke. Controlling the powerful DR may open
doors into therapies for numerous human pathologies.
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