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Abstract

Motivation: Mendelian randomization is an epidemiological technique that uses genetic variants as instrumental
variables to estimate the causal effect of a risk factor on an outcome. We consider a scenario in which causal esti-
mates based on each variant in turn differ more strongly than expected by chance alone, but the variants can be div-
ided into distinct clusters, such that all variants in the cluster have similar causal estimates. This scenario is likely to
occur when there are several distinct causal mechanisms by which a risk factor influences an outcome with different
magnitudes of causal effect. We have developed an algorithm MR-Clust that finds such clusters of variants, and so
can identify variants that reflect distinct causal mechanisms. Two features of our clustering algorithm are that it
accounts for differential uncertainty in the causal estimates, and it includes ‘null’ and ‘junk’ clusters, to provide pro-
tection against the detection of spurious clusters.

Results: Our algorithm correctly detected the number of clusters in a simulation analysis, outperforming methods
that either do not account for uncertainty or do not include null and junk clusters. In an applied example considering
the effect of blood pressure on coronary artery disease risk, the method detected four clusters of genetic variants. A
post hoc hypothesis-generating search suggested that variants in the cluster with a negative effect of blood pressure
on coronary artery disease risk were more strongly related to trunk fat percentage and other adiposity measures
than variants not in this cluster.

Availability and implementation: MR-Clust can be downloaded from https://github.com/cnfoley/mrclust.

Contact: christopher.foley@mrc-bsu.cam.ac.uk orsb452@medschl.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies have discovered many genetic var-
iants associated with various traits and conditions. Such genetic var-
iants can aid understanding of the biological mechanisms that
influence traits (Plenge et al., 2013). They can also be used to link
modifiable traits to disease outcomes. Due to random mating (i.e.
the choice of partner is independent of the genetic variants under in-
vestigation) and Mendel’s laws of segregation and independent as-
sortment, genetic variants are typically distributed independently of
traits that they do not directly influence, and so can be treated simi-
larly to random treatment assignment in a randomized controlled
trial (Davey Smith and Ebrahim, 2003; Lawlor et al., 2008). Genetic
variants associated with a given trait are therefore plausible instru-
mental variables (IVs) for that trait (Didelez and Sheehan, 2007).
The use of genetic variants as IVs to assess the causal effect of a risk

factor on an outcome is known as Mendelian randomization
(Burgess and Thompson, 2015).

While the hypothesis of whether a risk factor has a causal effect on
an outcome can be assessed with a single valid IV (Didelez and
Sheehan, 2007), most genetic variants do not explain enough variability
in the risk factor to have sufficient power to reliably detect a moderate-
sized causal effect. Additionally, it is prudent to use all relevant data to
address the causal hypothesis of interest. Under strict parametric
assumptions (described below), the causal estimates based on each valid
IV will target the same causal parameter—the average causal effect
(Hernán and Robins, 2006). Excess heterogeneity between causal esti-
mates from different genetic variants is often interpreted as evidence
that not all genetic variants are valid IVs (Verbanck et al., 2018).

However, it may be that different genetic variants influence the
risk factor in distinct ways, leading to heterogeneity between causal

VC The Author(s) 2020. Published by Oxford University Press. 531

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(4), 2021, 531–541

doi: 10.1093/bioinformatics/btaa778

Advance Access Publication Date: 11 September 2020

Original Paper

http://orcid.org/0000-0002-0970-2610
http://orcid.org/0000-0002-5931-7489
https://github.com/cnfoley/mrclust
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa778#supplementary-data
https://academic.oup.com/


estimates calculated using different variants. For example, several
hundred genetic variants have been demonstrated to be independent-
ly associated with blood pressure (Evangelou et al., 2018). Different
genetic variants may influence blood pressure via distinct biological
mechanisms. Alternatively, some variants may have pleiotropic
effects on traits that are causally upstream of blood pressure rather
than blood pressure directly. Or it may be that blood pressure is in
fact a composite trait consisting of multiple components that is cap-
tured only as a single measurement. Variants that influence the risk
factor in a similar way are likely to have similar causal estimates.

Several previous attempts have been made to cluster genetic var-
iants that are associated with a given risk factor. Walter et al. (2015)
took 32 genetic variants associated with body mass index (BMI) and
divided the variants into four groups based on biological under-
standing of the function of the variants. They then compared the
causal estimates of BMI on depression based on each group of var-
iants. Udler et al. (2018) took 94 variants associated with Type 2
diabetes, and divided the variants into 7 groups based on their asso-
ciations with 47 diabetes-related traits. Tanigawa et al. (2019)
applied a truncated singular value decomposition method to genetic
association estimates from the UK Biobank study to find clusters of
variants having similar associations with a range of traits.

In this article, we introduce a method to cluster variants that
have similar causal estimates for the given risk factor and outcome.
As we do not use data on genetic associations with alternative traits
to form the clusters, an advantage of this approach is that genetic
associations with traits can be used to validate the division into clus-
ters. If traits can be found that predict cluster membership, this
increases the plausibility that the clusters have a biological interpret-
ation. We refer to our method as MR-Clust.

Our manuscript is structured as follows. First, we provide an over-
view of Mendelian randomization, and introduce the modelling
assumptions and notation used in Section 2. We also consider factors
that may lead to heterogeneity between causal estimates based on differ-
ent genetic variants, and in particular investigate how this would lead to
clustered heterogeneity. Next, we introduce a statistical approach for
detecting clusters of variants with similar causal estimates, which are
likely to influence the risk factor in a similar way (Section 3). There are
two distinct aspects of our method over conventional applications of
clustering. First, we account for differential uncertainty in the causal
estimates that we are clustering. Second, we include a ‘junk’ cluster in
our model, so that variants with estimates that do not fit into any clus-
ters are included in the junk cluster rather than any other cluster. We
apply our method in a simulation study, and to consider 180 independ-
ent genetic variants associated with blood pressure at a genome-wide
level of significance, and find clusters in the causal estimates of blood
pressure traits on coronary artery disease (CAD) risk (Section 4). We
conclude by discussing the results of the manuscript, and their applica-
tion to epidemiological practice (Section 5).

2 Materials and methods

The aim of a Mendelian randomization analysis is to establish
whether there exists a causal relationship between a risk factor X
and an outcome Y using genetic variants Gj, j ¼ 1;2; . . . ; J as IVs.
An additional aim is to estimate the causal effect of the risk factor
on the outcome. In this section, we introduce assumptions and meth-
ods for IV estimation, and discuss when the estimates based on dif-
ferent IVs will be similar and when they will be different.

2.1 Instrumental variable assumptions
A genetic variant Gj is a valid IV if it satisfies three assumptions:

• (relevance) it is associated with the risk factor,
• (exchangeability) its association with the outcome is not con-

founded and
• (exclusion restriction) it has no effect on the outcome except that

mediated via the risk factor (Clarke and Windmeijer, 2012;

Greenland, 2000).

Under these assumptions, any association between the genetic
variant and the outcome is indicative of a causal effect of the risk
factor on the outcome (Baiocchi et al., 2014).

To estimate a causal parameter, we make further parametric
assumptions of linearity and homogeneity in the relationships be-
tween the genetic variant, risk factor and outcome. Specifically:

EðXjGj ¼ gÞ ¼ bXj0 þ bXj g; (1)

EðYjGj ¼ gÞ ¼ bYj0 þ bYj g; (2)

EðYjdoðX ¼ xÞÞ ¼ h0 þ h x; (3)

where h is the average causal effect of the risk factor on the outcome
(Angrist et al., 1996), and doðX ¼ xÞ is Pearl’s do operator, meaning
that the risk factor is intervened on to take value x (Pearl, 2000).
This model can be illustrated as a directed acyclic graph (Fig. 1).

It can be shown that h can be estimated consistently as the ratio of
the estimated genetic association with the outcome divided by the esti-
mated genetic association with the risk factor (Didelez et al., 2010):

ĥ j ¼
b̂Yj

b̂Xj

; (4)

which we call the ratio estimate of the jth variant. The standard error
of this quantity r̂ j ¼ seðĥ jÞ can be estimated using the delta method:

r̂j ¼
seðb̂YjÞ

b̂Xj

first orderð Þ or (5)

r̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seðb̂YjÞ2

b̂
2

Xj

þ
b̂

2

Yj seðb̂XjÞ2

b̂
4

Xj

�
2q b̂Yj seðb̂YjÞ seðb̂XjÞ

b̂
3

Xj

vuuut second orderð Þ;

(6)

where q is the correlation between the genetic association estimates
b̂Yj and b̂Xj. This parameter cannot be estimated directly from sum-
marized data, but it will be zero in a two-sample setting (i.e. the
genetic associations with risk factor and outcome are estimated in
non-overlapping datasets). When there is sample overlap, it can be
specified by the user based on the degree of overlap and the expected
correlation between the risk factor and outcome (Burgess et al.,
2016a). If second-order weights are used, then a sensitivity analysis
for this parameter is advised.

We note that these parametric assumptions are sufficient, but
not necessary for the estimation of the average causal effect; weaker
assumptions have been proposed (Swanson and Hernán, 2013).
Alternatively, under the monotonicity assumption (the genetic vari-
ant increases the risk factor in all individuals in the population, or
decreases the risk factor in all individuals), a local average causal ef-
fect can be estimated (Imbens and Angrist, 1994). However, local
average causal effects may differ between valid IVs. We return to
this point in the discussion.

2.2 Heterogeneity between causal estimates and

clustered heterogeneity
Even if the IV assumptions and parametric assumptions (1) and (2) are
satisfied for each genetic variant, it is plausible that the variant-specific

Fig. 1. Directed acyclic graph illustrating relationships between three genetic var-

iants that are valid IVs with a risk factor, outcome and confounders of the risk fac-

tor–outcome associations. The causal effect of the risk factor on the outcome is

indicated by h
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ratio estimates ĥ j differ by more than expected due to chance alone.
We are particularly interested in the case where there are distinct values
of the causal effect that are evidenced by multiple genetic variants,
such that if the sample size were to tend towards infinity, the ratio esti-
mates would tend towards a number of distinct values. We refer to this
situation as clustered heterogeneity. Clustered heterogeneity is interest-
ing to investigate as the identity of the genetic variants in the clusters
may reveal information about causal pathways relating to the out-
come. Figure 2 illustrates how different variants may be associated
with the risk factor and outcome via different mechanisms. This situ-
ation could arise in a number of ways:

1. Risk factor is a composite trait: the risk factor is not a single en-

tity, but in fact contains multiple components with distinct

causal effects. For example, although serum cholesterol concen-

tration can be expressed as a single measurement, evidence sug-

gests that cholesterol carried by low-density lipoprotein particles

has a different causal relationship to CAD risk compared with

cholesterol carried by high-density lipoprotein (LDL) particles

(Voight et al., 2012).

2. Multiple versions of treatment: The risk factor can be intervened

on in different ways, and each intervention leads to a different

size of change in the outcome. For example, interventions to

lower BMI via decreasing an individual’s caloric intake are likely

to lead to less cardiovascular benefit compared with interven-

tions to increase metabolic rate.

3. Pleiotropic effects via different biological pathways: Even if the

risk factor is a single trait and there is a single version of treat-

ment, genetic variants may associate with the risk factor via

pleiotropic pathways, which may influence the outcome directly

(i.e. not via the risk factor).

In the first two situations, identifying features of genetic variants
in different clusters could help explain how the outcome is influ-
enced by different components of the risk factor or different causal
pathways from the risk factor, and hence inform our biological
understanding of the causal relationship between the risk factor and
outcome. In the third situation, the IV assumptions are violated, as
the effects of the genetic variants on the outcome are not completely
mediated via the risk factor, but are mediated via the pleiotropic
variable. In this case, investigating traits that associate preferentially

with variants in different clusters could identify intermediaries on
the relevant causal pathway for each cluster.

In Supplementary Appendix Section SA, we provide some theor-
etical motivation that clustered heterogeneity arises if and only if
genetic variants in the same cluster affect the outcome via the same
distinct causal pathway, under assumptions of linearity and homo-
geneity. However, it is impossible to distinguish between the scen-
arios listed above on the basis of the genetic associations with the
risk factor and outcome alone. In particular, it is not possible to dis-
tinguish situations 1 and 2 (in which the risk factor causally affects
the outcome) from situation 3 (in which the effect on the outcome is
via a pleiotropic mechanism). In the applied example, we perform a
post hoc exploratory analysis to investigate whether there are traits
that associate preferentially with variants in a given cluster, as an at-
tempt to interpret the mechanism represented by the cluster. Such a
trait may represent a pleiotropic variable that is influenced by var-
iants in the cluster, or variable downstream of a specific causal
mechanism by which the risk factor influences the outcome.

3 Algorithm

We proceed to introduce a statistical method for clustering causal
estimates from different genetic variants. We suppose that there are
Kþ2 disjoint clusters of genetic variants: K substantive clusters, a
null cluster and a junk cluster. The substantive clusters S1; . . . ; SK

have means hk, k ¼ 1; . . . ;K. The null cluster S0 has mean h0 ¼ 0.
The presence of the null cluster ensures that genetic variants which
do not suggest a causal effect of the risk factor do not contribute to
the estimates of the substantive cluster means. The junk cluster SKþ1

comprises all remaining genetic variables that are not members of
the other clusters. The presence of the junk cluster ensures that gen-
etic variants which do not fit into any of the substantive clusters do
not contribute to the estimates of the substantive cluster means.
Together, the null and junk clusters require there to be substantial
evidence of similarity of estimates from several genetic variants to
define a substantive cluster. This should minimize false-positive
findings from the method. If we only used a single null cluster with a
large variance and no junk cluster, then variants having estimates
close to the null may be selected into one of the substantive clusters.
However, there is no reason why different genetic variants having
null associations with the outcome would share a common
mechanism.

Fig. 2. Scenarios that could lead to clustered heterogeneity, defined as the case where causal estimates from multiple variants tend towards a number of distinct values as the

sample size increases. Clustered heterogeneity could arise in a number of ways: the mechanisms may represent distinct components of the risk factor, or distinct pathways by

which the risk factor may influence the outcome, or intermediaries on the causal pathway from the genetic variant to the outcome
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3.1 Mixture model
For each genetic variant j ¼ 1; . . . ; J, we introduce a cluster alloca-
tion label zj, such that zj ¼ k() Gj 2 Sk. For variants in the sub-
stantive and null clusters, we assume that the ratio estimate ĥ j for
variant j in cluster k follows a normal distribution with mean hk and
standard deviation r̂j, taken as the standard error of the jth ratio
estimate:

ĥ jjfH; r̂2
j ; zj ¼ kg � Nðhk; r̂

2
j Þ for k ¼ 0; 1; . . . ;K; (7)

where H is a vector of the cluster means. For simplicity, we do not
account for uncertainty in the estimate of the standard error.

Following Crook et al. (2018), we assume ratio estimates for var-
iants in the junk cluster follow a generalized t-distribution with
degrees of freedom �¼4, mean l taken as the sample mean of all
the ratio estimates (l ¼

P J
j¼1ĥ j=J), and scale parameter w taken as

jĥmax � ĥminj þ 2r̂max; (8)

where ĥmax is the maximum of the ratio estimates, ĥmin is the min-
imum of the ratio estimates and r̂max is the maximum of the stand-
ard errors of the ratio estimates. We discuss the specification of this
distribution in Supplementary Appendix Section SB.

We obtain a mixture model for the ratio estimates ĥ j:

pðĥ jjH; r̂2
j Þ ¼

XKþ1

k¼0

pðĥ j; zj ¼ kjH; r̂2
i Þ

¼
XKþ1

k¼0

pðzj ¼ kÞpðĥ jjH; r̂2
j ; zj ¼ kÞ

¼ p0 /ðĥ jj0; r̂2
j Þ þ

XK

k¼1

pk /ðĥ jjhk; r̂
2
j Þ

þ pKþ1 T ðĥ jÞ;

(9)

where pk is the mixture proportion for cluster k, /ðxjl; r2Þ denotes
the univariate normal density evaluated at x with mean l and vari-
ance r2, and T ðxÞ denotes the generalized t-distribution evaluated at
x with degrees of freedom �¼4, and mean l and scale parameter w
as discussed above.

3.2 Parameter estimation via expectation maximization
The 2Kþ 1 parameters hk and pk (K cluster means and Kþ2 pro-
portions, less one as the proportions must sum to one:

P
Kþ1
k¼0 pk ¼ 1)

in Equation (9) are estimated via an expectation-maximization (EM)
algorithm for a given number of substantive clusters K. We then esti-
mate the number of substantive clusters.

The log-likelihood of the sample data ĥ (the ratio estimates) is

log pĥjfh;p;Kg ¼ log pðĥjh; p; r̂;KÞ
¼
X

J
j¼1 log ½p0 /ðĥ jj0; r̂2

j Þ
þ
X

K
k¼1pk /ðĥ jjhk; r̂

2
j Þ þ pKþ1 T ðĥ jÞ�:

(10)

We denote the maximum likelihood estimate (MLE) of the un-
known parameters for a given K as fh�K; p�Kg. For ease of presenta-
tion, we drop the index K in this section.

We index each iteration of the EM algorithm by the variable i so
that the pair fhðiÞ; pðiÞg denotes estimates of the cluster means and
mixture proportions at the ith iteration of the algorithm. We stop
updating the parameters when the difference in log-likelihood be-
tween two iterations falls below a user-defined tolerance d.

We describe the algorithm in three main steps: (i) an initializa-
tion step to obtain initial values of the parameters, and (ii) an ex-
pectation step and (iii) a maximization step to update the parameter
values.

3.2.1 Initialization step

Reliable estimation of the MLE might depend crucially on the ini-
tialization of the parameters. To mitigate sensitivity to the initializa-
tion, our algorithm computes multiple estimates of the MLE over

various initializations of the parameters. When K>0, for each
initialization, we generate values for the cluster means fhð0Þg via a k-
means clustering of the data fĥg. We note this method does not
account for the uncertainty in the ratio estimates. The initial mixture
proportions fpð0Þg are computed by first randomly drawing values
for the proportion of samples in the null and junk mixtures
fpð0Þ0 ;pð0ÞKþ1g from the range ð0:05;0:4Þ. This ensures that the prior
probability of belonging to either the null or junk cluster is at least
10% and at most 80%. The remaining parameters fpð0Þ1 ; . . . ; pð0ÞK g
are then computed as the proportion of observations assigned to
each of the K clusters from the k-means analysis multiplied by�

1� pð0Þ0 � pð0ÞKþ1

�
.

3.2.2 Expectation step

Let Z denote the collection of cluster allocation labels
fz1; z2; . . . ; zJg for the variants j ¼ 1;2; . . . ; J. Before updating the
unknown parameters in the maximization step, we first evaluate:

EZjĥ;hðiÞ ;pðiÞ ½log pĥ ;Zjfh;pg�

¼
XJ

j¼1

XKþ1

zj¼0

rijzj
log½Iðzj � KÞpzj

/ðĥ jjhzj
; r̂2

j Þ

þIðzj ¼ Kþ 1ÞpKþ1T ðĥ jÞ�

(11)

which requires computation of the conditional allocation probabil-
ities for each observation:

rijk ¼ p
�

zj ¼ kjĥ; hðiÞ;pðiÞ
�

¼
pðiÞk /ðĥ j; h

ðiÞ
k ; r̂

2
j Þ

pðiÞ0 /ðĥ j; 0; r̂2
j Þ þ

X
K
k¼1p

ðiÞ
k /ðĥ j; h

ðiÞ
k ; r̂

2
j Þ þ pðiÞKþ1T ðĥ jÞ

(12)

for k ¼ 1; . . . ;K, and:

rijk ¼
pðiÞKþ1T ðĥ jÞ

pðiÞ0 /ðĥ j; 0; r̂2
j Þ þ

P
K
k¼1p

ðiÞ
k /ðĥ j; h

ðiÞ
k ; r̂

2
j Þ þ pðiÞKþ1T ðĥ jÞ

(13)

for k ¼ Kþ 1. The rijk are sometimes referred to as the responsibil-
ities of the kth component for the jth observation (evaluated here at
the ith iteration of the EM algorithm).

3.2.3 Maximization step

Updates for the unknown parameters are obtained by maximizing
Equation (11). For the cluster means hk, we solve the system of
equations

X
J
j¼1rijk

@

@hk
log /ðĥ jjhk; r̂ j;KÞ ¼ 0; k ¼ 1; 2; . . . ;K:

Re-arranging for hk, and taking this as the update hðiþ1Þ
k , returns

hðiþ1Þ
k ¼

PJ
j¼1rijkĥ jr̂

�2
jP J

j¼1rijkr̂
�2
j ; k ¼ 1; 2; . . . ;K:

(14)

The updated Equation (14) resembles the inverse-variance
weighted (IVW) estimate of the causal effect of the risk factor on the
outcome (Burgess et al., 2013; Johnson, 2013). For a cluster S of
ratio estimates that target the same causal parameter (i.e. the ratio
estimates tend to the same causal parameter as the sample size
increases), the IVW estimate is the best linear unbiased estimate
(BLUE) of this parameter (Wooldridge, 2009). It is given by

ĥIVWðSÞ ¼
P

j2S ĥ jr̂
�2
jP

j2S r̂�2
j

:
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Comparing the above with Equation (14), it follows that the EM
update hðiþ1Þ

k is a re-weighted IVW estimate for the parameter hk.
The weights are multiplied by the responsibilities rijk which penalize
the influence of observations that are centred away from the current
estimate of hðiÞk and/or are highly diffuse (i.e. r̂ j is large). In the large
sample limit, as r̂ j ! 0 for each j, it follows from Equation (12) that

r�jk ¼
1; if ĥ j ! hk

0; if ĥ j 6!6! hk

;

(
(15)

) h�k ¼ ĥIVWðSkÞ k ¼ 1;2; . . . ;K; (16)

where r�jk denotes the responsibility of the kth component for the
jth observation computed at an iteration of the EM algorithm in
which the MLE is achieved.

The updated equations for the mixture proportions pk are obtained
by first modifying Equation (11) to account for the constraint thatP

Kþ1
k¼0 pk ¼ 1 by introducing a Lagrange multiplier, and then maximiz-

ing. This is equivalent to solving the following system of equations:

@

@pk

 X
J
j¼1rijk log pk þ kð

XKþ1

k¼0

pk � 1Þ
!
¼ 0;

) k ¼ J and pðiþ1Þ
k ¼

X
J
j¼1rijk

J
;

(17)

for k ¼ 0; 1; . . . ;Kþ 1, where k denotes the Lagrange multiplier.

3.3 Determining the number of clusters
We first calculate the MLEs fh�K;p�Kg for each value of K 2
f0;1; . . . ; Jg possible substantive clusters present in the data. We es-
timate the number of substantive clusters K� by minimizing the
Bayesian information criterion (BIC):

min
K2f0;1;...;Jg

BICðKÞ

¼ min
K2f0;1;...;Jg

�
ð2Kþ 1Þ log J � 2 log pĥjfh�K ;p�Kg

�
¼ BICðK�Þ:

(18)

This helps to avoid overparameterization, as the BIC penalizes
models which assume that the data are generated from larger num-
bers of underlying clusters.

Pseudocode outlining all steps in the MR-Clust algorithm is given in
Algorithm 1. In practice, if J is large, then we calculate the MLE and
BIC for increasing values of K starting at zero, and stop the algorithm
once there is evidence that the BIC is increasing monotonically with K.

4 Implementation

We perform a simulation study, comparing results from our MR-Clust
method to those obtained using three comparison methods. The
Mclust method (Scrucca et al., 2016) is a popular model-based cluster-
ing, classification and density estimation method based on finite nor-
mal mixture modelling. Unlike MR-Clust, Mclust does not account for
observation-specific uncertainty in the ratio estimates when assigning
observations to clusters, but rather estimates a cluster-specific variance
parameter for each cluster. It also does not incorporate null or junk
clusters. We also compare results against the T-Augmented Gaussian
Mixture model (TAGM) method, an extension of Mclust to include a
junk component (Crook et al., 2018). The original version of TAGM
was a semi-supervised method, which is relevant to its initial applica-
tion to proteomic data, but is not relevant here. We have adapted
TAGM to exclude this aspect of the method for comparison. We also
compare with a version of the MR-Clust method without a junk clus-
ter. Unless indicated otherwise, all references to the MR-Clust method
relate to the implementation of the method with a junk cluster.

The four methods are summarized in Table 1. By comparing
these methods, we show how features of the MR-Clust method, the
null and junk clusters and allowance for differential uncertainty in
the observations, help MR-Clust to correctly identify the number of

clusters present in the data. We then perform an applied analysis to
demonstrate the method in practice. Unless indicated otherwise, all
references to the MR-Clust method relate to the implementation of
the method with a junk cluster.

4.1 Simulation: set-up and scenarios
We simulate data on genetic associations with a risk factor (b̂Xj) and
with an outcome (b̂Yj) for 90 genetic variants indexed by j. These asso-
ciations imitate coefficient estimates from linear regression of a con-
tinuous variable with variance 1 on a single nucleotide polymorphism
(SNP). A SNP can be thought of as a binomial random variable taking
values 0, 1, 2, representing the number of minor alleles inherited from
one’s parents at a particular location of the genetic code.

b̂Xj � N lbXj
;

1

N MAFjð1�MAFjÞ

� �
;

b̂Yj � N hj b̂Xj;
s

N MAFjð1�MAFjÞ

� �
;

lbXj
� Nð0; 1Þ;

MAFj � Uniformð0:05; 0:5Þ;

seðb̂XjÞ ¼ seðb̂YjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N MAFjð1�MAFjÞ

s
;

(19)

where N is the notional sample size in which the genetic associations
are estimated, lbXj

is the true genetic effect on the risk factor for
variant j, hj is the causal effect for variant j, MAFj is the minor allele
frequency of variant j, s is an overdispersion parameter, and all dis-
tributions are sampled independently.

We consider 4 scenarios, and simulate 1000 datasets in each
scenario. In Scenarios 1 and 2, there are no non-null clusters, and
hj ¼ 0 for all j. In Scenarios 3 and 4, there are three non-null clusters
hj ¼ 0:4 for j ¼ 1; . . . ;10; hj ¼ �0:4 for j ¼ 11; . . . ;30; hj ¼ 0:8 for
j ¼ 31; . . . ; 70, a junk cluster in which the hj are drawn from a stand-
ard normal distribution for j ¼ 71; . . . ; 80, and a null cluster hj ¼ 0

Algorithm 1 MR-Clust – Expectation Maximization (EM)

Algorithm

Require: global convergence parameter d, number of initiali-

zations I, number of variants J.

1: for K ¼ 0; 1; . . . ; J do

2: for initialization i ¼ 1; 2; . . . ; I do

3: generate: cluster means h
ð0Þ
K and mixture proportions

p
ð0Þ
K .

4: compute: r0jk; j ¼ 1;2; . . . ; J; k ¼ 0;1; . . . ;Kþ 1:

5: update: fhð1Þk ; pð1Þk g k ¼ 0; 1; . . . ;Kþ 1:

6: compute: log
�

p
ĥjfhð1Þ

K
;p
ð1Þ
K
g=pĥjfhð0Þ

K
;p
ð0Þ
K
g

�
7: set: i¼1.

8: while log
�

p
ĥjfhðiÞ

K
;p
ðiÞ
K
g=pĥjfhði�1Þ

K
;p
ði�1Þ
K
g

�
> d do

9: compute: rijk j ¼ 1;2; . . . ; J; k ¼ 0;1; . . . ;Kþ 1:

10: update: fhðiþ1Þ
k ; pðiþ1Þ

k g k ¼ 0;1; . . . ;Kþ 1:

11: set: i! iþ 1:

12: compute: log
�

p
ĥjfhðiÞ

K
;p
ðiÞ
K
g=pĥjfhði�1Þ

K
;p
ði�1Þ
K
g

�
.

13: end while

14: store: fhð�ÞK;i; p
ð�Þ
K;ig ¼ fh

ðiÞ
K ;p

ðiÞ
K g:

15: end for

16: compute: fhð�ÞK;i� ;p
ð�Þ
K;i� g

where maxi log p
ĥjfhð�Þ

K;i ;p
ð�Þ
K;ig
¼ log p

ĥjfhð�Þ
K;i� ;p

ð�Þ
K;i� g

.

17: store: fhð�ÞK ; p
ð�Þ
K g ¼ fh

ð�Þ
K;i� ; p

ð�Þ
K;i� g.

18: end for

Output: fK�; hð�ÞK� ; p
ð�Þ
K� g

where BICðK�Þ ¼ minK¼0;1;...;JBICðKÞ.
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for j ¼ 81; . . . ; 90. In Scenarios 1 and 3, we set s¼1 and in
Scenarios 2 and 4, we set s¼2. Scenario 1 represents a null scenario,
in which all genetic variants should be included in the null cluster.
Scenario 2 represents a variance-inflated null scenario, in which all
genetic variants should be included in either the null or junk clusters.
These scenarios are considered to assess whether the methods find
spurious clusters where they do not truly exist. In Scenarios 3 and 4,
the methods should find three clusters of 10, 20 and 40 variants
each, and the other 20 variants should be included in either the null
or junk cluster. We repeat the simulation for sample sizes of
N¼1000 and N¼5000. Parameter values are displayed in Table 2.

4.2 Simulation results
Results from the simulation study are displayed in Figure 3 for a
sample size of N¼1000 and Figure 4 for a sample size of N¼5000.
We present the Rand index (top panel), which measures the similar-
ity between the true and estimated allocations into clusters (Rand,
1971), and the number of clusters identified by each method (bot-
tom panel). For comparability, for the MR-Clust method, we show
the number of substantive clusters plus one for the null cluster, as
this is the number of clusters in the data as well as the number that
the Mclust and TAGM methods should detect. We compare two
versions of each method: (A) each variant is assigned to the cluster
with the greatest conditional probability (responsibility); and (B)
variants are only assigned to a cluster if the conditional probability
is � 0:8, otherwise they are unassigned, and only substantive clus-
ters with at least 4 assigned variants are reported. Version (B) is rec-
ommended to discourage the reporting of clusters that are evidenced
by only a few variants, which therefore may well be spurious. The
thresholds of 0.8 for the probability and 4 for the number of var-
iants are arbitrary choices, but gave good performance in the simula-
tion setting. In version (A), all variants contribute to the calculation
of the Rand index. In version (B), only variants in a cluster of at least
4 assigned variants contribute. In Scenarios 3 and 4, genetic variants
in the junk cluster do not contribute to the calculation of the Rand
index. This is to ensure a fair comparison between methods that in-
clude a junk cluster and those that do not.

In Scenarios 1 and 2, both versions of MR-Clust with and with-
out the junk cluster perform well, identifying spurious clusters in
less than 10% of simulated datasets. In contrast, both the Mclust
and TAGM methods identify spurious clusters more often. The

Rand index is close or equal to 1 for both versions of the MR-Clust
method for all simulated datasets, but substantially lower for the
Mclust and TAGM methods. In Scenarios 3 and 4, MR-Clust con-
tinued to perform well in both scenarios, regularly identifying all
four clusters in the data. Version (A) of the MR-Clust method with-
out the junk cluster occasionally detected an extra cluster, and ver-
sion (B) with and without a junk cluster sometimes failed to detect a
cluster in simulations with N¼1000. However, the Rand index was
consistently high for both MR-Clust methods. In contrast, the
Mclust and TAGM methods had much lower Rand indices, and
regularly failed to identify all four clusters.

There was little difference in performance between the MR-
Clust method with a junk cluster and without a junk cluster. This is
for two main reasons. First, junk variants do not contribute to the
Rand index. Hence the method with a junk cluster is not com-
mended for correctly assigning these variants to the junk cluster ra-
ther than to a substantive cluster. Second, junk variants are unlikely
to have similar estimates. Hence, it is unlikely that the presence of
junk variants will cause the method to incorrectly estimate the num-
ber of clusters. The presence of the junk cluster reduces the number
of false-positive members of a cluster by providing a fixed barrier to
cluster entry. If evidence that a variant belongs to a cluster does not
reach the necessary threshold, then rather than assigning it to the
nearest cluster, it is allowed to not belong to any substantive cluster.

To further illustrate the MR-Clust method, we plot a kernel-
weighted density estimate of the distribution of estimated cluster
means across the 1000 datasets in Scenario 4 with a sample size of
N¼5000 (Fig. 5). On average, MR-Clust identified the correct clus-
ter means at f�0:4;0; 0:4; 0:8g as well the correct proportions of
variants belonging to each cluster. We also plot the value of the log-
likelihood at successive iterations of the EM algorithm correspond-
ing to 6 initializations of the parameters for a selected dataset gener-
ated under scenario 4 (Supplementary Fig. SA1). In this example,
the EM algorithm converged to different values of the log-likelihood
between the initializations. This indicates some sensitivity of the
method to the initial choice of mixture proportions and cluster
means, and motivates our use of multiple initializations in the algo-
rithm. We investigated this property across a range of further data-
sets and simulation scenarios, and usually found negligible
differences in MLEs across initializations. However, it is worth
checking convergence carefully in practice.

4.3 Applied example: blood pressure and coronary

artery disease risk
We illustrate our method by considering the relationship between
blood pressure and coronary artery disease (CAD) risk. Blood pres-
sure is a heritable trait that is influenced by multiple biological path-
ways (Evangelou et al., 2018; The International Consortium for
Blood Pressure Genome-Wide Association Studies, 2011). Elevated
blood pressure is considered to be a major risk factor for cardiovas-
cular disease. We assess evidence of clustered heterogeneity in
Mendelian randomization analyses for the causal effects of three
blood pressure traits on CAD risk: systolic blood pressure (SBP),
diastolic blood pressure (DBP) and pulse pressure (PP).

Genetic associations with the blood pressure traits were obtained
from the International Consortium for Blood Pressure, and were
estimated in 299 024 participants of European ancestry (Evangelou
et al., 2018). To avoid genetic associations being inflated due to
winner’s curse, we only considered genetic variants that had been
demonstrated to be associated with any blood pressure trait in a pre-
vious discovery genome-wide association study (GWAS) at a
genome-wide level of significance (P < 5� 10�8). For the analysis
of each of the three blood pressure traits, we included all variants
additionally associated with the trait under analysis (i.e. SBP, DBP
or PP) in a replication dataset at a P-value threshold of 10�5.
Variants were pruned to independence based on a distance thresh-
old; only one variant was included in the analysis per gene region.
The variants were all independently distributed (r2 < 0:01). For
SBP, 121 variants were included in the analysis; for DBP, 119 var-
iants and for PP, 85 variants. Genetic associations with CAD risk

Table 1. Summary of methods compared in the simulation study and

applied example

Method Allows for

differential

uncertainty?

Includes

junk

cluster?

Includes null

cluster?

Mclust No No No

TAGM No Yes No

MR-Clust without junk Yes No Yes

MR-Clust with junk Yes Yes Yes

Table 2. Number of variants and causal effect in each cluster for the

simulation study

Scenarios Number of variants Cluster causal effect (hj)

Null Junk Cluster 1 2 3 Null Junk Cluster 1 2 3

1 and 2 90 0 0 0 0 0 – – – –

3 and 4 10 10 10 20 40 0 �Nð0; 1Þ 0.4 –0.4 0.8

Note: In Scenarios 1 and 3, there is no excess heterogeneity in the genetic

associations with the outcome (s¼ 1); in Scenarios 2 and 4, there is excess het-

erogeneity (s¼ 2).
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were obtained from a meta-analysis of 122 733 cases and 424 528
controls primarily of European descent from the
CARDIoGRAMplusC4D consortium and UK Biobank (van der
Harst and Verweij, 2018). As the variants are strongly associated
with the exposure, any bias due to the small degree of sample over-
lap between the risk factor and outcome datasets will be minimal
(Burgess et al., 2016a). We applied the MR-Clust method to assess
evidence of clustered heterogeneity for each of the three blood pres-
sure traits on CAD risk separately.

4.3.1 Results

Results are displayed in Figure 6. An extract of the results is shown
in Table 3, and full results in Supplementary Table SA2. Following
the simulation study, we present results according to version (A) of
the method (all variants assigned to a cluster: top panels) and ver-
sion (B) (variants assigned to a cluster if conditional probability
� 0:8, only clusters with at least 4 variants reported: bottom pan-
els). Although the number of clusters identified varies between SBP
and DBP for version (A) of the method, four clusters are reported in
version (B) of the method for both traits. This is despite the number
and identity of variants varying between the analyses. The largest
cluster suggests a positive causal effect of blood pressure on CAD
risk. There are also two clusters suggesting a stronger positive causal
effect and one suggesting a weak negative effect. For PP, all three
substantive clusters in version (B) suggest a positive effect on CAD
risk. This suggests the presence of multiple mechanisms by which
blood pressure influences CAD risk.

We also performed analyses for SBP using the Mclust and
TAGM methods (Supplementary Fig. SA2). Each of the methods
identified the largest cluster that was also found by the MR-Clust

method. However, both methods combined all other variants into a
single diffuse cluster, despite these variants clearly not belonging to

a single cluster. This illustrates the value of using the variant-specific
standard errors in judging whether variants are compatible with

cluster membership, rather than estimating a cluster-specific hetero-
geneity without reference to these standard errors.

4.3.2 Hypothesis-generating search for causal mechanism

To demonstrate how clustering can reveal biological mechanisms in
the data, we focused on the genetic variants in the clusters for SBP
and DBP with a negative effect on CAD risk, and performed a post
hoc hypothesis-generating search of traits that associate with var-
iants in these cluster as an exploratory analysis. We consider this

cluster as it is smaller than the two positive clusters, and therefore
more plausible that a single mechanism may be driving cluster mem-
bership for the majority of variants. In total, 10 genetic variants

were assigned to this cluster with a conditional probability � 0:8 in
either the SBP or DBP analysis (Supplementary Table SA3). We

looked up genetic associations in PhenoScanner, a database of genet-
ic associations with traits and diseases (Staley et al., 2016). For each
trait in turn, we considered whether each variant was associated

with that trait at P < 10�5 and P < 10�8, and report the true-
positive rate (the proportion of variants in the cluster associated

with the trait) and false-positive rate (the proportion of variants not
in the cluster associated with the trait). This functionality is built
into the mrclust software package. In total, we considered 3269

traits, although this includes several repeated or synonymous traits,
and blood pressure traits. Also, some traits only had association esti-
mates for a limited number of variants. This makes it difficult to

Fig. 3. Results from the simulation study with sample size N¼ 1000 for MR-Clust (with and without junk cluster), Mclust and TAGM methods under four scenarios for the

Rand index (top panel) and the number of clusters identified (bottom panel). Points represent median values across simulated datasets, and vertical bars represent the first and

ninth deciles. The horizontal line in the bottom panel represents the true number of clusters in each scenario. Two versions of each method are presented: (A) each variant is

assigned to the cluster with the greatest conditional probability; (B) variants are only assigned to a cluster if the conditional probability is � 0:8 and clusters are only displayed

if at least 4 variants are assigned to the cluster
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correct for multiple comparisons. We therefore present results under
the caveat that no correction has been attempted.

Results are shown in Table 4. The trait ‘Trunk fat percentage’
was associated with 5 out of the 9 variants in the cluster that were
present in the dataset (true positive ¼ 0.555), and only 14 out of the
169 variants not in the cluster (false positive ¼ 0.083). Similarly
‘Impedance of arm right’ was associated with 4 out of 9 variants in
the cluster (true positive ¼ 0.444), and 15 out of the 169 variants
not in the cluster (false positive ¼ 0.089). Impedance is a measure of
electrical resistance. It is greater when the body part has a higher fat
percentage. At a threshold of P < 10�8, ‘Arm fat percentage’ was
associated with 3 out of 9 variants in the cluster (true positive ¼
0.333) and only 4 out of the 169 variants not in the cluster (false
positive ¼ 0.024).

This suggests that while most biological mechanisms associated
with increased blood pressure lead to increased CAD risk, there also
may be a biological mechanism associated with decreased blood
pressure that leads to increased CAD risk. This mechanism relates to
measures of adiposity and fat distribution. However, the directions
of association with the adiposity measures were not consistent
across variants in the cluster (Supplementary Table SA3).

We performed a multivariable Mendelian randomization ana-
lysis for SBP on CAD risk additionally adjusting for body mass
index to assess mediation of the causal effect of SBP via adiposity
(Burgess et al., 2017). The coefficient for body mass index was im-
precisely estimated and not significantly different from zero, sug-
gesting that body mass index is not a strong mediator of the effect of
SBP on CAD risk. Additionally, as a negative control, we searched
whether variants in the null cluster were associated preferentially
with any trait. No traits were preferentially associated with variants

in the null cluster, confirming our view that there is no reason why
variants in the null cluster should share a common mechanism.

We also performed the contamination mixture method for SBP
on CAD risk. This is a method for Mendelian randomization that
allows the possibility of multiple causal estimates in the analysis of a

Fig. 4. Results from the simulation study with sample size N¼ 5000 for MR-Clust (with and without junk cluster), Mclust and TAGM methods under four scenarios for the

Rand index (top panel) and the number of clusters identified (bottom panel). Points represent median values across simulated datasets, and vertical bars represent the first and

ninth deciles. The horizontal line in the bottom panel represents the true number of clusters in each scenario. Two versions of each method are presented: (A) each variant is

assigned to the cluster with the greatest conditional probability; (B) variants are only assigned to a cluster if the conditional probability is � 0:8 and clusters are only displayed

if at least 4 variants are assigned to the cluster

Fig. 5. Kernel-weighted density plot of cluster means identified by MR-Clust method

in simulation scenario 4. Dashed vertical lines represent the true values of the cluster

means
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single risk factor and outcome, but does not attempt to cluster genet-
ic variants (Burgess et al., 2020). The main utility of the contamin-
ation mixture method is to provide a robust estimate of the causal
effect evidenced by the largest subset of genetic variants. The log-
likelihood function from this method is plotted in Supplementary
Figure SA3. In this case, the log-likelihood is unimodal. While there
is possibly a secondary peak in the log-likelihood at a negative value
of the causal estimate, this is not clear. This result provides empirical
evidence of the superiority of MR-Clust over the contamination
mixture method for detecting multiple causal estimates.

4.4 Applied example: HDL-cholesterol and coronary

artery disease risk
As a further example, we applied the MR-Clust method to an ex-
ample of HDL cholesterol and CAD risk that we have considered
previously (Burgess et al., 2020). Results from the MR-Clust method
are displayed in Supplementary Figure SA4. The method identified
three clusters of variants: two with negative causal estimates, and
one with a positive causal estimate. This is similar to results from
the contamination mixture method, which also had two negative

Fig. 6. Genetic associations with blood pressure traits (mmHg) and coronary artery disease risk (log odds) per additional blood pressure-increasing allele. Each genetic variant

is represented by a point. Error bars are 95% confidence intervals for the genetic associations. Colours represent the clusters, and dotted lines represent the cluster means. Top

row: method version (A)—each variant is assigned to the cluster with the greatest conditional probability. Bottom row: method version (B)—variants are only assigned to a

cluster if the conditional probability is � 0:8, and clusters are only displayed if at least 4 variants are assigned to the cluster. Left column: systolic blood pressure; middle col-

umn: diastolic blood pressure; and right column: pulse pressure

Table 3. Extract of summary of genetic variants and assignment to clusters

rsid SBP DBP PP

Cluster Mean Estimate SE Cluster Mean Estimate SE Cluster Mean Estimate SE

rs3184504 4 0.113 0.100 0.010 4 0.131 0.131 0.012 – – 0.390 0.037

rs12579720 4 0.113 0.119 0.021 4 0.131 0.132 0.024 – – – –

rs12940887 4 0.113 0.140 0.020 4 0.131 0.150 0.022 – – – –

rs6797587 4 0.113 0.124 0.019 4 0.131 0.157 0.024 – – – –

rs2521501 4 0.113 0.118 0.011 3 0.204 0.186 0.018 4 0.231 0.273 0.026

rs1063281 4 0.113 0.137 0.025 3 0.204 0.237 0.043 – – – –

rs112557609 4 0.113 0.121 0.025 – – – – – – 0.180 0.037

rs2972146 4 0.113 0.113 0.022 – – 0.202 0.039 – – – –

Note: Separate analyses for systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP): cluster number (greatest conditional probabil-

ity), cluster mean, ratio estimate for that variant and its standard error. The full results for all 180 variants are in Supplementary Table SA2. Dashes either indicate

that the variant was not associated with the relevant blood pressure trait at P < 10�5 (if the estimate is absent), or that the variant was assigned to the null or

junk cluster (if the estimate is present).
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maxima, although it was not able to identify the cluster with a posi-
tive causal estimate.

5 Discussion

In this article, we have discussed how causal estimates based on dif-
ferent genetic variants in a Mendelian randomization investigation
could differ. In particular, we have introduced the notion of clus-
tered heterogeneity, and described how variants that influence the
risk factor in different ways could target distinct causal effect
parameters. We have introduced the MR-Clust method that detects
clusters of variants having similar causal estimates. There are several
distinguishing features of this method: it accounts for differential
uncertainty in the causal estimates, and it includes null and junk
clusters, so that variants are only included in a substantive cluster if
there is strong evidence that they belong to that cluster. We demon-
strated the benefits of these features in a simulation study, showing
how our method outperforms clustering methods that do not have
these features. Finally, we illustrated an application of the method
to analyse the causal effect of blood pressure on CAD risk, demon-
strating the existence of clusters of genetic variants in an empirical
example.

In developing this method, our strong concern was to avoid find-
ing spurious clusters of genetic variants that arise due to the chance
similarity of causal estimates from different variants. For this rea-
son, we recommend a conservative implementation of the method
(version B), only assigning a variant to a cluster if the conditional
probability of cluster assignment is � 0:8, and only reporting a clus-
ter if at least 4 variants satisfy this criterion. A cluster is more ro-
bustly evidenced when it contains more genetic variants, and
particularly if a trait can be found that associates specifically with
variants in that cluster. We would advise particular caution in the
interpretation of a risk factor as causal on the basis of a small cluster
of variants, especially if the majority of variants are in the null
cluster.

Our approach in this article was to cluster genetic variants based
on their causal estimates for a single risk factor and outcome. There
are several advantages to this approach. First, there is a natural in-
terpretation of clusters in terms of the causal effect of the risk factor
under investigation. Second, as the causal estimate is the ratio of the
genetic association with the outcome to the genetic association with
the risk factor, two variants can appear in the same cluster even if
one has weaker associations with the risk factor and outcome, and
the other has stronger associations. This is important, as the magni-
tude of genetic associations is independent of the causal pathway by
which it influences the risk factor. Third, as cluster assignment is
made on the basis of genetic associations with the risk factor and
outcome only, genetic associations with other traits can be used to
validate cluster membership, and to explore distinct mechanisms by
which the risk factor influences the outcome. If data on genetic asso-
ciations with multiple traits were used to cluster variants, then the
clusters might be more precisely defined, but it would not be pos-
sible to determine which traits were driving the division into clusters
without further analysis. We have previously demonstrated that a
group of variants having similar causal estimates for the effect of

HDL-cholesterol on CAD risk also had a distinct pattern of associa-
tions with blood cell traits, although without using a formal cluster-
ing method (Burgess et al., 2020). The associations with blood cell
traits suggested a causal pathway relating to platelet aggregation.

To interpret causal estimates as average causal effects, we made
parametric assumptions of linearity and homogeneity. We have dis-
cussed these assumptions at length previously (Burgess et al.,
2016b). Briefly, the associations of genetic variants with traits are
typically small, and so while substantial non-linearity is plausible
when considering the causal relationship between a risk factor and
outcome across the range of the risk factor distribution, it is less
likely when considering the impact of small changes in the average
level of the risk factor, as estimated in Mendelian randomization. If
the homogeneity assumption is not satisfied, then causal estimates
can be interpreted as local average causal effects under the assump-
tion of monotonicity. The monotonicity assumption is generally
plausible for genetic variants, as it is difficult to conceive a biological
reason why a genetic variant would increase the risk factor in one
subset of the population, and decrease it in another. This provides
another reason why causal estimates from different genetic variants
may differ, as the complier populations corresponding to different
genetic variants may differ. However, we believe differences in local
average causal effects for different complier populations are unlikely
to be substantial in practice. A claim that there are multiple causal
pathways from the risk factor to the outcome is more plausible
when traits can be found that predict cluster membership, particu-
larly if these traits are potential mediators or moderators of the
causal effect of the risk factor.

This is not the first method to consider clustering of genetic var-
iants based on their associations with various traits. Previous
researchers have considered Bayesian non-negative matrix factoriza-
tion (Udler et al., 2018), truncated singular value decomposition
method (Tanigawa et al., 2019) and hierarchical clustering
approaches (Ruth et al., 2020). We believe that our method has im-
portant properties when clustering variants based on their causal
estimates, which are calculated using associations with a single risk
factor and outcome. A potential extension of this framework could
consider clustering variants based on associations with multiple
traits. There has also been previous work in the Mendelian random-
ization literature that assigns variants into subgroups. The MRMix
method (Qi and Chatterjee, 2019) takes a large number of genetic
variants and divides the variants into four subgroups: those associ-
ated with the risk factor and outcome through a causal mechanism,
those associated with the risk factor and outcome through a pleio-
tropic mechanism, those associated with the outcome alone and
those associated with neither the risk factor nor the outcome. The
motivation of the MRMix method is to provide a single estimate of
a single causal effect that is robust to some genetic variants not being
valid instruments. Our method has a very different objective, which
is to find clusters of variants having similar causal effects, rather
than to label some variants as valid and others as invalid. Another
related method is the MR-TRYX method (Cho et al., 2020). This
method also considers whether different genetic variants have simi-
lar causal estimates, but instead of focusing on subgroups of variants
with similar estimates (as we do here), it instead focuses on individ-
ual outliers, and tries to find associations of those variants that may

Table 4. Traits from hypothesis-generating search of predictors of cluster membership for cluster with negative causal effect

Trait Threshold True positives (%) False positives (%) P-value

Trunk fat percentage 10�5 5/9 (55.5%) 14/169 (8.3%) 0.0022

Impedance of arm 10�5 4/9 (44.4%) 15/169 (8.9%) 0.0239

Arm fat percentage 10�8 3/9 (33.3%) 4/169 (2.4%) 0.0001

Note: True positives is the fraction of variants in the cluster that are associated with the trait at a P-value below the threshold. False positives is the fraction of

variants not in the cluster (i.e. in any other cluster or not in a cluster at all) that are associated with the trait at a P-value below the threshold. The P-values in the

rightmost column are for the hypothesis that association with the trait is independent of cluster membership. P-values are calculated by exact computation from

the relevant hypergeometric distribution. We note that while in total 10 variants were assigned to the target cluster, 1 variant was not present in UK Biobank, the

dataset in which the associations with these particular traits were all estimated. Hence the number of true positives is a fraction of 9, the number of variants pre-

sent in UK Biobank.
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explain why they are outliers. We believe that in most cases, it will
not be possible to demonstrate convincingly that a single covariate
association explains why a genetic variant is an outlier, and hence
our approach, which tries to find groups of variants having similar
estimates and then find what is similar between them in terms of
their genetic associations, is preferable.

In conclusion, we have proposed a method in the context of
Mendelian randomization that clusters genetic variants associated
with a given risk factor according to the variant’s associations with
the risk factor and outcome. We have shown theoretically and em-
pirically how the method can help elucidate distinct causal pathways
by which the risk factor influences the outcome.
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