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ABSTRACT

Impaired DNA damage repair, especially deficient
transcription-coupled nucleotide excision repair,
leads to segmental progeroid syndromes in human
patients as well as in rodent models. Furthermore,
DNA double-strand break signalling has been pin-
pointed as a key inducer of cellular senescence.
Several recent findings suggest that another
DNA repair pathway, interstrand cross-link (ICL)
repair, might also contribute to cell and organism
aging. Therefore, we summarize and discuss
here that (i) systemic administration of anti-cancer
chemotherapeutics, in many cases DNA cross-
linking drugs, induces premature progeroid frailty
in long-term survivors; (ij) that ICL-inducing
8-methoxy-psoralen/UVA phototherapy leads to
signs of premature skin aging as prominent long-
term side effect and (iii) that mutated factors involved
in ICL repair like ERCC1/XPF, the Fanconi anaemia
proteins, WRN and SNEV lead to reduced replicative
life span in vitro and segmental progeroid syndromes
in vivo. However, since ICL-inducing drugs cause
damage different from ICL and since all currently
known ICL repair factors work in more than one
pathway, further work will be needed to dissect the
actual contribution of ICL damage to aging.

INTRODUCTION

Each human cell has to repair the large numbers of
different DNA damages encountered each day: around
50000 single-strand breaks (SSB), 10 double-strand
breaks (DSB), 10000 depurinations, 600 depyrimidations,
2000 oxidative lesions, 5000 alkylating lesions and 10
interstrand cross-linking events (1). Although rare, DNA
interstrand cross-links (ICLs) are among the most deadly
types of damage. The cross-linking of the two comple-
mentary DNA strands prevents replication as well as

transcription and prevents the use of information encoded
by the complementary strand for repair. Thus, ICL
formation poses a major challenge for the cellular repair
systems, also reflected by the fact that estimated 40 ICLs
in repair deficient mammalian cells are sufficient to induce
cell death (2). ICLs are considered to be mainly sensed
during replication in S-phase, where they lead to collapse
of replication forks and DSBs, while little is known
on transcription-coupled sensing and repair of ICLs.
Surprisingly, ICL repair seems also absent in mitochon-
drial DNA (3).

The mechanisms that lead to repair of ICLs are still not
well understood in mammalian cells, but two major
pathways have been identified. The minor pathway
depends on ERCCI/XPF and translesion bypass by
Rev3 and is error-prone (4). The major pathway depends
again on ERCC1/XPF and error-free homologous recom-
bination repair (5). Excellent recent reviews summarizing
ICL repair are available for yeast (6,7) as well as for
mammalian cells (8-11).

While other DNA damage repair pathways like
transcription-coupled nucleotide excision repair (NER)
have well-established links to aging of cells, tissues and
organisms (12), it is not yet clear if and to what extent
ICLs are involved in causing or contributing to progeroid
functional decline. Therefore, we here summarize several
findings suggesting that exogenous exposure to ICL
inducing agents or endogenous ICL repair deficiencies
are associated with signs of premature aging.

PREMATURE AGING AS SIDE EFFECT OF
CHEMOTHERAPIES

ICL inducing agents used in tumour therapy

Most of our current knowledge on ICL repair derives
from the use of ICL-inducing chemicals in biochemical or
genetic analysis of cells and cell lines on the one hand and
from their wide and successful use as anticancer
chemotherapeutics (13) on the other hand. Common to
all of these chemical compounds is their bifunctional
character that allows them to react with both DNA
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strands. Although this is widely accepted as major
cytotoxic effect, it should be noted that the individual
ICL-inducing agents induce different specific steric DNA-
adduct structures and that they generate other than ICL
damage like DNA monoadducts, intrastrand cross-links,
damage to lipids, RNA and proteins. Furthermore,
different reactive intermediates can be formed by cellular
metabolism. For a detailed review, see Ref. 7. The most
important substance classes used in cancer therapies are
briefly summarized in the following.

Platinum compounds, the most famous of which is
cisplatinum diammine dichloride II (CDDP) was one of
the first chemotherapeutics originally identified as inhib-
itor of bacterial cell division (14). Since then it has been
used to treat a wide range of different tumours (15,16) and
second-generation drugs are intensely worked on (17). The
damage to the DNA mainly consists of intrastrand cross-
links as well as around 5-8% ICL of total adducts (18,19),
which are responsible for the main cytotoxic effects (20).

Bis(2-chloroethyl)methylamine (HN2) and other mem-
bers of the nitrogen mustard family are as well widely used
as anti-cancer drugs (21). Again the majority of damage
consists of monoadducts to the DNA, however, the 1-5%
ICLs are responsible for the high cytotoxicity (22).
Oligonucleotides conjugated to nitrogen mustards can be
used to introduce ICLs at specific sites in the genome (23).

One of the most used chemotherapeutics of the
nitrosurea class is bis(2-chloroethyl)nitrosurea (BCNU,
carmustine), which decomposes in aqueous phase to so far
uncharacterized reactive bifunctional molecules (24). The
number of ICLs formed by this drug is estimated to be
around 8% of all adducts, and again this seems to be the
main cytotoxic component (25).

Mitomycin C (MMC) is a quinine-containing antibiotic
isolated from streptomycetes. Only its intermediates that
are formed after several intracellular metabolic activation
steps generate ICLs, which make up 5-14% of all adducts
(26). The ICLs mainly affect dCpG sequences in the minor
groove of DNA. A recent derivative, aziridinomitosene 4,
has been shown to have very high ICL-forming activity
without prior metabolization (27). Besides forming
adducts, MMC also induces production of reactive
oxygen species (ROS), which also contributes to its
cytotoxicity (28).

Pyrrolo[2,1-¢][1,4]benzodiazepines (PBD) are a family
of DNA interactive anti-tumour antibiotics derived from
various Streptomyces species. One of the most promising
derivatives thereof is SJG-136, which displays a 440-fold
higher ICL formation activity than the nitrogen mustards
(29,30). ICLs are targeted to the minor groove of the
DNA even in a non-reductive environment (31).

Early onset of progeroid frailty after chemotherapy

Only now, after several decades of using ICL-inducing
drugs in chemotherapy against cancer, sufficient patients
with more than 10 years survival are available for studying
long-term side effects. Several years after the initial
treatment, patients suffer from a variety of problems that
usually occur later in life like decline of cognitive functions,
visual deterioration, musculoskeletal decline, osteoporosis,
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skin changes, chronic fatigue and sexual dysfunction (32)
as well as cardiovascular complications (33). We therefore
propose to refer to this side effect of chemotherapies as
acquired premature progeroid syndrome (APPS) in
analogy to the term premature progeroid syndromes for
hereditary diseases that resemble accelerated aging (34).
While it is clear that a large proportion of cancer
patients received ICL-inducing chemotherapeutics, the
data so far have not been apportioned according to
the drugs used. Thus, it is not yet clear if and how the
individual cross-linking agents differ in their long-term
effects and if and how they differ from chemotherapeu-
tics with other modes of action.

Similarly, it is not yet clear what causes APPS as a long-
term side effect. One possibility is the exhaustion of
proliferative potential of stem and progenitor cells as well
as of normal differentiated cells by the cytotoxic drugs.
In this scenario, DNA damage induces cellular senescence
and/or apoptosis in damaged cells, forcing the surround-
ing undamaged cells to undergo repeated proliferation in
order to maintain tissue homoeostasis. This idea is
supported by several observations.

Increased apoptosis as well as senescence after che-
motherapy has been reported in many studies (35), and
senescent cells accumulate in different tissues and organs
with age (36-38) and even in tumours (39). One trigger of
senescence is critically short, uncapped telomeres (40) and
indeed accelerated telomere shortening has been observed
in chemotherapy-treated patients versus age-matched
controls (41). Furthermore, deficiencies in DNA repair
have been shown to impair haematopoietic stem cell
function (42) or to even deplete the pool of haematopoie-
tic stem cells with age (43). Therefore, APPS might be
caused by a general decline of tissue regeneration and
repair capacity in consequence to chemotherapy.

PSORALEN/UVA-INDUCED ICLs AND
PREMATURE SKIN AGING

Psoralens belong to the furocoumarins, bifunctional
agents that form ICLs as well as thymine monoadducts
upon UVA activation and are among the most potent
interstrand cross-linking agents. Upon selection of differ-
ent wavelengths up to 40% of the monoadducts can be
converted to ICLs. Psoralen cytotoxicity is clearly linked
to ICL-forming activity, since exposure of cells to
psoralens with UV wavelengths that do not induce ICLs
or monofunctional psoralens not able to form ICLs are
markedly less toxic (44).

For studying response to and repair of specific ICLs,
targeted single ICLs can be introduced into the genome
using either oligonucleotides forming triplex DNA at the
complementary sites or peptide nucleic acids conjugated to
dimeric bis-psoralen (45,46). Furthermore, a digoxigenin-
4,5 8-trimethylpsoralen conjugate enables visualization of
ICLs in cultured cells (47).

The clinical conditions for which 8-methoxy-psoralen/
UVA treatment (PUVA) has been widely and successfully
used over decades are skin diseases like psoriasis, vitiligo
and mycosis fungoides. The therapeutic effect depends on
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formation of ICLs the massive formation of which has
been observed in treated tissues (48). One prominent side
effect of repeated PUVA treatment is premature aging of
the skin (49-51).

As a model to study the underlying mechanisms, human
fibroblasts and keratinoycytes have been subjected to
PUVA treatment. These studies suggest that premature
skin aging might be due to induction of a cellular
senescence programme triggered specifically by ICL
formation (51-54) resembling a combined DNA damage
and stress-induced phenotype at least at the transcrip-
tional level (55).

PUVA-induced senescence is signalled by ATR (56),
whose importance for ICL repair is emphasized by data
from Saccharomyces cerevisiae. Yeast ATR’s homologue
Mecl is activated by the heterotrimeric Radl7-
Mec3-Ddcl complex (57). Surprisingly, MEC3 has
recently been identified to be allelic to Pso9, mutations
in which render yeast cells sensitive to PUVA (58).
Furthermore, the human Rad17-Mec3-Ddcl homologue
called Rad9/Radl/Husl (911) complex localizes to telo-
meres and modulates telomere length and telomerase
activity (59).

While in the short-term cell cycle arrest is telomere-
independent, after 28 days after recovery from PUVA
treatment, senescence is still maintained with DNA
damage foci persisting mainly at telomeres as detected
by co-staining of y-H2AX with telomere-specific fluores-
cence in situ hybridization. In contrast, intrachromosomal
DNA damage has largely been repaired during the
recovery (56). It is not clear why the damage foci persist
at the telomeres and what might be the nature of this
damage. In this regard, it is of interest that telomeric
t-loops are efficiently maintained after psoralen cross-
linking (60), and that telomeric sequence contains the TA
basepairing within the TTAGGG repeats that are prime
targets of 8-methoxypsoralen (61). This suggests that the
telomeres might be exquisitely susceptible to ICLs and
that PUVA treatment might cause more ICL per kilobase
DNA at the telomere than within genomic sequences, and/
or that ICL repair is less efficient at the telomeres.

Besides senescence, apoptosis might be involved in the
reduction of the proliferative capacity of skin cells, since
in vitro and in vivo PUVA has been shown to induce
apoptosis in epidermal cells via p53 and Fas ligand (62).

DOES ENDOGENOUS FORMATION OF ICLs
INCREASE WITH AGE?

So far, ICL formation by exogenous sources is undoubted,
but how do ICLs arise spontaneously within cells and
tissues? One of the few currently known endogenously
generated molecules causing ICLs is the bifunctional lipid
peroxidation product malondialdehyde. Various studies
have identified specific cross-link structures by malondial-
dehyde with DNA in vitro (63) as well as in vivo in a
variety of human tissues (64—66).

ROS necessary for peroxidation of lipids to malondial-
dehyde arise from intrinsic cellular pathways, above all
from cell respiration, but also during prostaglandin

biosynthesis, and oxidative burst of immune cells.
Extrinsic sources like UV light, or heavy metal ions
contribute to ROS production as well (67).

Free radicals have been postulated to be a major cause
of aging in the ‘free radical theory of aging’ (68) and there
is little doubt that ROS contribute to deterioration of cell
(69) and organ function, e.g. brain (70), kidney (71,72),
liver (73) or heart (74). Increased formation of ROS (75),
lipid peroxidation products and reactive aldehydic mole-
cules (one of which would be malondialdehyde) has indeed
been observed during aging (76-78). In addition, lipid
peroxidation products have been suggested as one
parameter in a possible set of clinical aging markers (79).

However, direct evidence for an increase of malondial-
dehyde and in consequence malondialdehyde-ICLs has
not yet been provided, since the age-comparative studies
so far were based on quantification of the bulk of reactive
aldehydes only, e.g. using thiobarbituric acid reactive
substances (TBARS) assay.

Might there also be a difference between fast induction
of ICLs versus slow gradual increase as expected during
aging due to gradual ROS increase (80,81)? Two studies
suggest that slow accumulation of DNA damage indeed
results in higher cytotoxicity than short-term high-dose
exposure. In the first study, HCT 116 cells were treated for
24 h with low doses of the ICL-inducing agent SJIG-136,
leading to gradual formation of ICLs, and limited
p21-induced cell cycle arrest. This resulted in significantly
higher cytotoxicity than a 1 h treatment with high doses of
SJG-136 that caused full DNA damage response, although
dose and time of treatment were carefully chosen to yield
similar final levels of ICLs within the cells (82). Similarly,
in the second study, low doses versus high doses of the
DNA-damaging agents, hydroxyurea and UV were
compared in three cell lines partially deficient in different
components of ATR-mediated signalling. Again, low
doses were found to cause significantly more cell death
accompanied with slow/insufficient activation of damage
signalling and repair (83).

ICL REPAIR DEFICIENCY CONTRIBUTES TO
SIGNS OF ACCELERATED AGING

Although ICL repair is still not fully understood in higher
eukaryotic cells, several central players have been identi-
fied during the last years including, ERCCI1/XPF, the
Fanconi anaemia proteins, but also the RecQ helicases
WRN and BLM. Patients and corresponding animal
models with mutations in these factors display various
grades of segmental progeroid syndromes. In addition,
other factors contributing to ICL repair like SNM1/hPso2
or SNEV have been connected to cellular aging and
telomere biology. However, it has to be kept in mind that
all of the ICL factors described so far work in more than
one DNA repair pathway or exert more than one
function.

ERCC1/XPF

ERCCI1/XPF is a structure-specific heterodimeric endo-
nuclease essential in NER, but also during ICL repair.



Incisions near the ICL site that ‘unhook’ the cross-linked
oligonucleotide specifically depend on ERCCI1/XPF
(84,85). Mutations in both of its subunits have been
found to cause segmental progeroid syndromes in
humans. Similarly, mouse models deficient in ERCCI
(86,87) as well as in XPF (88) show a congruent severe
progeroid phenotype that is quite distinct in severity from
most other mouse models deficient in NER only. ERCC /-
mice show ataxia, kyphosis, osteopenia, weight loss, skin
atrophy, sarcopenia and hepatocellular polyploidization
(89) and the fibroblasts are exquisitely sensitive to cross-
linking agents but also to UV light (87).

Recently, the first patient deficient in ERCC1 has been
identified, displaying a severe disease phenotype of
cerebro-oculo-facio-skeletal syndrome that also in part
resembles premature aging and resulted in early death
(90). In contrast to the knockout mouse model, cells of
this patient, showed only intermediate sensitivity to UV
and MMC treatment, comparable to other NER-deficient
cells (90).

This finding suggests that XPF/ERCCI functions
besides NER repair might confer the severity of the
mutation. Indeed, XPF/ERCCI is required for meiotic
and mitotic homologous recombination in mouse and fly
(91,92) and also implicated in telomere processing,
responsible for removing the 3’ overhang of uncapped
telomeres (93). Surprisingly, the endonuclease function
required for both ICL and NER is separated from the
telomere processing function of XPF, since a point
mutation that abrogates DNA repair does not interfere
with 3’ overhang removal in cell culture experiments (94).
Furthermore, NER and ICL repair functions of XPF
might be separable as well (95).

This is consistent with the clinical appearance of the
currently known XPF mutations. Most of them result in
mild forms of xeroderma pigmentosa (XP), a cancer-prone
syndrome characterized by high UV sensitivity. In
contrast, one patient with a dramatic progeroid phenotype
has been identified bearing a novel mutation in XPF
(R153P9) interfering with formation of ERCCI1 hetero-
dimers (96). Primary fibroblasts of this patient are much
more sensitive to ICL-inducing MMC as compared to
XPA-derived cells, while they are only similarly sensitive
to UV irradiation (96). This finding would also support a
specific role of deficient ICL repair distinct from NER
deficiency in accelerating the aging process. Clearly,
further work is required for dissecting the contributions
of different mutations in XPF and ERCCI1 in the observed
progeroid features. It would for example be of high
interest, to complement XPF-deficient mice with con-
structs harbouring the various mutants, to see if and to
what extent ICL, NER, and dysfunctional telomere
processing of XPF contribute to their progeroid
phenotype.

A completely different and much unexpected link
between ERRCI deficiency and aging has been discovered
recently. Suppression of IGF1 signalling is one of the very
few conserved mechanisms that prolongs life span in a
wide range of model organisms from S. cerevisiae (97),
Caenorhabditis elegans (98), Dorsophila melanogaster (99),
and mouse (100,101). Surprisingly, this suppression of
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IGF1 signalling was found in livers of ERCCI1-deficient
mice (96). Similar suppression of the IGF1/GH axis is seen
after exposure of wild-type mice to chronic genotoxic
stress using MMC (96). This would suggest that high
levels of ICL damage provide a feedback signal to
suppress growth at the organism level, probably in order
to allocate more energy to cellular maintenance and repair
in order to prolong the life span (96). Absence of IGF1
suppression in XPA or Cockayne syndrome B-deficient
mice would argue against ERCC1’s NER function as
reason for developing progeroid phenotypes. It would be
interesting to test if impaired IGFI-signalling back-
grounds [e.g. in Ames or Snell dwarf mice (102)] would
additionally reduce the life span and increase severity or
accelerate the appearance of progeroid symptoms
observed with ICL repair deficiency.

Further contributions to a premature aging phenotype
might derive from increased apoptosis as observed in liver
tissue (103), decreased replicative potential of ERCC1 /-
embryonic fibroblasts (87) as well as depletion of
hematopoietic stem cells, which again is not observed in
XPA mutant mice (104).

An experimental setting that might allow for addressing
ERCCI deficiency in humans possibly arises from the
finding that ERCCI1 is transcriptionally repressed by
fludarabine treatment (105,106), and increases ICLs
synergistically with cisplatin or oxaliplatin (107,108).
Fludarabine is a chemotherapeutic drug mainly used
against haematological malignancies (109). It would be of
interest to analyse if this drug also leads to APPS in long-
term survivors.

FA pathway

FA is a disorder showing developmental and bone marrow
defects, as well as cancer predisposition (110). This rare
hereditary disease is caused by mutations in one of
currently 13 proteins constituting 13 complementation
groups [FANCA, B, C, E, F, G, L and M forming a core
complex, D1, D2(BRCA2), H, I, J]. FAAP24 has recently
been proven as an additional FA complex member,
although it has not been found mutated in FA patients
yet (111). Recent progress in understanding the functions
of FA proteins and the ‘FA pathway’ has been reviewed in
detail (9-11,112,113).

Although not being ranked among the segmental
progeroid syndromes in the initial listing by George
Martin (34), there still seems to be a segmental premature
aging component in FA. This consists of progressive bone
marrow failure, squamous cell carcinomas of the oral
cavity and genital area much earlier in life than in normal
individuals, impaired gametogenesis and premature repro-
ductive aging. Additionally, >80% of FA patients are
prematurely affected by endocrine abnormalities including
hyperinsulinaemia, hypothyroidism and growth hormone
deficiency, all of which are normally associated with
advanced age (114). Decline of growth hormone is of note,
since this leads to less IGF signalling similar to ERCC1/
XPF deficiency, supporting the idea of a general switch
from growth to repair upon (ICL?) damage.
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Furthermore, cells of FA patients show signs of
accelerated cellular senescence. PBMCs have accelerated
individual annual telomere-shortening rates in vivo
(115-117) while fibroblasts derived from FA patients
show accelerated telomere shortening in vitro (118),
consistent with a reduced replicative life span and earlier
entry into cellular senescence (119,120). This accelerated
telomere erosion, however, is not due to faster replicative
shortening, but to increased telomere breakage (121).
Together with an increase in apoptosis of haematopoietic
stem cells (122,123), this might also contribute to the
progressive bone marrow failure in patients (124) as well
as in knockout mouse models (125-127).

To what extent are the FA proteins involved in ICL
repair? While indeed hypersensitivity against ICLs by
MMC and diepoxybutane is a common hallmark of all
FA cells and used as standard diagnosis of FA, there is a
broad spectrum of additional sensitivities against geno-
toxic damage including y-irradiation, bleomycin, UV and
methyl methane sulphate depending on the cell type of the
same patient (128) as well as on the complementation
group (129). For example, FANCG null Chinese hamster
ovary (CHO) cells are similarly sensitive against mono-
alkylating agents as against ICL-inducing agents (130).
Furthermore, monoubiquitination of FANCD?2, a crucial
step in activation of the ‘FA protein pathway’ is also
induced by chemically blocking replication forks (131).
These findings led to the proposal that the FA proteins—
rather than being specifically necessary for ICL—might
act more globally on stabilizing collapsed replication forks
that do not exclusively arise due to ICL (11). Collapse
of replication forks leads to formation of DSB, which
have recently been suggested to be a prerequisite for
HR-dependent repair of ICL (132). The FA proteins
might prevent the DSBs from being repaired by non-
homologous end joining by keeping the broken strands in
close proximity. Thus, the FA pathway might largely
counteract genomic instabilities by favouring base sub-
stitutions and small deletions over larger deletions and
chromosomal rearrangements (10,11,133). Still, FA pro-
teins are needed together with Msh2, ERCCI1/XPF and
Rev3 in HR-dependent repair of single psoralen-induced
ICLs (132).

Further work is necessary to dissect if and to what
extent reduced ICL repair, failed stabilization of replica-
tion forks or other DNA damage contribute to the
progeroid symptoms in FA. To further complicate
things, FA cells also show elevated ROS levels and
increased sensitivity against ROS (123). Therefore, it
cannot be excluded that ROS cause or additively
contribute to premature aging in FA patients.

BLM and WRN helicases

Besides its function in base excision DNA repair (134), the
RecQ helicase member WRN has also been implicated in
ICL repair. Cells from Werner syndrome patients show
sensitivity to ICL-inducing drugs (135,136) and WRN
helicase activity has been shown necessary for repair of
PUVA-induced ICLs (137).

WRN activity might be necessary at different points of
ICL repair. It interacts with the SNEV-complex (see
below) in early steps of repairing single psoralen ICLs
in vitro (138), while in the later HR repair step it interacts
with a complex containing Rad51, ATR, Rad54 and
Rad54B (139) localizing to stalled replication forks (140).
Another protein—protein interaction linking WRN to ICL
repair derives from yeast, where its homologue sgsl
interacts with Pso5/rad16 (141), involved in ICL repair
and global NER (142).

A second RecQ helicase family member, which also
physically and functionally interacts with WRN (143),
is BLM. Fibroblasts derived from Bloom’s syndrome
patients show sensitivity to MMC treatment (144)
and to cisplatin (145). Both helicases have also been
found to interact with members of the FA complex
subunits and with HR factors (137,146-148).
Furthermore, FA core complex assembly is necessary
for BLM phosphorylation and localization to nuclear foci
upon ICLs (144). The unwinding activity of BLM also
enhances Mus81 endonuclease activity (149), which
converts ICLs to DSBs (150). Genetic interaction
between Mus81 and BLM homologues in D. melanogaster
further supports their function in a common
pathway (151).

Mutations in both helicases cause prominent segmental
progeroid syndromes. WRN mutations are the cause of
Werner syndrome (152). High genomic instability is
observed in cells of Werner syndrome patients due to
massive loss of telomeric sequences during replication
(153), also leading to a reduced replicative life span in vitro
(154).

Similarly, Bloom syndrome, is prominently ranked
among the segmental progeroid disorders (152) and
BLM, like WRN, is necessary for telomere functionality
(155). Again, a clear attribution of accelerated aging to
ICLs is not possible in the background of WRN and BLM
mutations, since their functions are not limited to ICL
repair.

hPSO2 (SNM1)

The nomenclature of the Pso genes is derived from
yeast cells displaying sensitivity to 8-methoxy-psoralen/
UVA treatment (142). Yeast Pso2 is involved in trans-
lesion synthesis repair of ICL during G1 (156). The five
homologues in humans are SNM1, SNM1B/Apollo, and
SNMI1C/Artemis, ELAC2 and CPSF73, all of them
containing a B-CASP/metallo-B-lactamase domain (157).
Sensitivity to ICL has been established for SNMI1 in
knockout mice (158) and for SNM1B/Apollo in human
cells by siRNA-mediated knockdown (159). SNMI
knockout mice-derived cells show MMC sensitivity (158)
as well as increased tumour incidence and immune
deficiency (160). However, only weak resemblance to
aging is observed in these mice.

The second homologue, SNM1B/Apollo interacts with
TRF2 and thus localizes to telomeres (161-163). Its
knockdown in human fibroblasts leads to rapid loss of
telomeric sequences, accelerated entry into replicative
senescence and formation of y-H2AX DNA damage
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Figure 1. Overview of a proposed contribution of DNA interstrand cross-links (ICLs) to aging: increased formation of ICLs leads to acquired
premature progeroid syndrome (APPS) by exhaustion of replicative potential of stem and progenitor as well as normal cells, while suppression of

IGF1 signalling redirects energy from growth to repair and maintenance.

foci. If SNM1B/Apollo mutations also affect organismal
aging has not been analysed yet.

SNEV (hPSO4)

The SNEV core complex consisting of CDCSL, SNEV
(hPSO4, hNMP200, hPRP19), SPF27 (BCAS1) and
PLRGI together with WRN helicase is essential in early
steps of ICL repair in vitro using single psoralen
cross-linked plasmids as substrate for fractionated HeLa
nuclear extracts (138). Furthermore SNEV binds dsDNA
and might accumulate upon MMC, but also upon
v-irradiation and bleomycin treatment in cell cultures
(164), while it clearly is ubiquitinated upon MMC and
methyl-methan-sulphonate treatment (165).

SNEV’s involvement in DNA repair is consistent with
the role of its yeast orthologue Pso4 (Prpl9) (166,167),
where the temperature-sensitive mutant strain pso4-1
displays a pleiotropic phenotype that includes sensitivity
to 8-methoxy-psoralen/UVA treatment (168). In yeast,
Pso4 has been assigned to epistasis groups rad6 and rad52,
emphasizing its pleiotropic nature (169,170).

How is SNEV connected to aging? It was originally
isolated as mRNA that decreases during replicative
senescence of endothelial cells (171), while upon over-
expression it extends the replicative life span and reduces
basal apoptotic levels (172). Targeted disruption of SNEV
is early embryonic lethal, but haploinsufficiency causes
mouse embryonic fibroblasts to enter early into replicative
senescence in vitro (173). In addition, we recently found a
decrease in the self-renewal capacity of haematopoietic
stem cells derived from SNEV '/~ mice as well as from
senescence accelerated SAMPS mice. Haematopoietic
stem cells from both have significantly reduced SNEV
levels as compared to wild-type or long-lived SAMRI
controls (174). This further supports a link between DNA
repair, low replicative life span and the regenerative
capacity of stem cells.

However, the multiplicity of SNEV’s functions as an
essential pre-mRNA splicing factor (167,175), as ubiquitin
E3 ligase (176,177) and lipid droplet-binding protein

(178), again makes it very difficult to dissect if its
ICL repair function is connected to cellular aging. If
SNEV haploinsufficient mice show premature progeroid
symptoms and reduced life span like the SAMPS mice is
currently under investigation.

CONCLUSIONS

Three different types of conditions that induce increased
levels of ICLs have been summarized here: chemother-
apeutic treatment of cancer using ICL-inducing drugs,
PUVA treatment of skin diseases and increase of
endogenously formed ICLs by impaired ICL repair. All
of these conditions lead to more or less pronounced
progeroid features, clearly indicating that DNA damage is
among the driving forces of aging and age-associated
pathologies. Although it seems clear that ICLs contribute
to aging-like loss of functions, their specific contribution
remains unknown due to the facts that all ICL-inducing
drugs cause additional damage other than ICL and all
currently known proteins involved in ICL repair have
other functions as well. Similarly, several other factors
conferring hypersensitivity to ICL-inducing agents have
not been linked to aging yet, e.g. the other Pso proteins
like Psol/Rev3 or the Rad51 paralogues XRCC2, XRCC3
and Rad5IC.

How is ICL damage translated to aging of organisms?
A major contributor might be the exhaustion of replicative
potential of stem, progenitor and normal cells due to
increased apoptosis and senescence upon damage, while
suppression of the IGF1 signalling might be a counter-
active measure aimed at funnelling energy to repair and
maintenance of the damaged cells as summarized in our
model (Figure 1).

While our model is consistent with the idea that aging is
accelerated by stochastic damage but counteracted by
genetically programmed repair (179), it is so far only
based on induction of premature progeroid syndromes
and shortening of life span. An important unanswered
question therefore is if reduced ICL induction or
improved ICL repair, e.g. by overexpression of ICL
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repair factors would be able to prolong the life and health
span of organisms.
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