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Contact pressure in the knee joint is a key element in themechanisms of knee pain and osteoarthritis. Assessing the contact pressure
in tibiofemoral joint is a challenging mechanical problem due to uncertainty in material properties. In this study, a sensitivity
analysis of tibiofemoral peak contact pressure to thematerial properties of the soft tissue was carried out through fractional factorial
and Box-Behnken designs. The cartilage was modeled as linear elastic material, and in addition to its elastic modulus, interaction
effects of soft tissue material properties were added compared to previous research.The results indicated that elastic modulus of the
cartilage is themost effective factor. Interaction effects of axial/radialmodulus with elasticmodulus of cartilage, circumferential and
axial/radial moduli of meniscus were other influential factors. Furthermore this study showed how design of experiment methods
can help designers to reduce the number of finite element analyses and to better interpret the results.

1. Introduction

Knee joint contact pressure is of critical importance in the
mechanisms of knee pain and osteoarthritis [1, 2]. Com-
putational models and finite element analyses (FEA) have
been utilized to study contact characteristics of normal and
injured knees, as well as total knee replacements (TKR) [3–8].
The purpose of these studies was to determine peak contact
pressure in order to predict either tissue degradation of the
knee or wear of ultra-high molecular weight polyethylene
(UHMWPE) in TKR. Some biomechanical factors, such as
material properties and geometries of tissues [9, 10], and
knee kinematic [11] can affect the contact behavior of the
knee and consequently the design of TKR. Impacts of horn
attachments stiffness and meniscal material properties on
tibiofemoral contact pressure using “semiautomatic” opti-
mization method were investigated by Haut Donahue et al.

[9], who set tolerances on the variables to restore the contact
pressure to within a specified error. The authors, however,
performed more than 60 analyses to determine whether an
individual factor is of importance. Meanwhile, interaction
effects between different factors were not considered in their
study. In order to better interpret the effects of variations in
the material properties of soft tissue, a powerful statistical
approach is required to design computational experiments.

Design of experiments (DOE) is a formal mathematical
method that helps to solve complicated problems and to
save time and resources (cost) by reducing the number of
required experiments (runs) while obtaining all the necessary
information. However, reducing runs associate with decrease
in resolution. Usually in an experiment, one or more factors
are deliberately changed in order to observe the effect of these
changes on one or more response variables. The statistical
design of experiments is an efficient method for planning
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Figure 1: Different parts of FE model and contact pairs.

experiments so that it can be analyzed to yield valid and
objective conclusions that can be obtained for a given amount
of experimental efforts. Recently, there has been an increasing
interest in use of DOE for sensitivity analysis based on FEA in
biomedical applications [11–15]. So far, this method has only
been applied in few studies related to the human knee joint
[11, 14, 15]. Yao et al. [15] focused on the medial compartment
of the knee and investigated the sensitivities of medial
meniscal motion and deformation to material properties
of soft tissues. They used Taguchi approach and central
composite design to fit the finite element model (FEM) to the
experimental data in the anterior cruciate ligament-deficient
knee. Furthermore, Julkunen et al. [14] used a three-level
fractional factorial design in combination with composition-
based finite elementmodel to determine the effect of different
cartilage constituents on the mechanical response of the tis-
sue. Due to the uncertainty in material properties [16], finite
element analysis of the tibiofemoral joint becomes a very
challenging mechanical problem. Therefore, the aims of this
paper are to explore themost important parameters related to
thematerial properties ofmeniscus and cartilage affecting the
tibiofemoral joint contact pressure and to make a regression
model based on main interaction and quadratic effects of
variables to understand how they influence andminimize the
error of FEA output. In this regard, fractional factorial design
was applied in screening step and Box-Behnken method was
used in response to surfacemethod and optimization process.

2. Methods

2.1. Creation of Finite Element Analysis. Geometries of
bony structures and soft tissues were taken from a healthy
human knee of a 24-year-old man. Solid models of the femur
and tibia and geometries of soft tissues, including articular
cartilages and menisci, were developed from the magnetic
resonance images (MRI). Each image was taken at 3.2mm
interval in a sagittal plane. The obtained data, subsequently,
was used to create a three dimensional computer aided design
(3D CAD) model in order to import into ABAQUS 6.8

software (Dassault Systèmes Simulia Corp., Providence, RI,
USA). The model consisted of two bony structures (femur
and tibia), both the femoral and tibial articular cartilages,
and both the medial and lateral menisci. Figure 1 shows the
generated 3D model in details. The model did not include
ligaments.Thefinite elementmesh generationwas performed
leading to 41709 linear 4-noded tetrahedron elements for
articular cartilage and menisci (25293 for femoral cartilage,
9130 for tibial cartilage, 3866 for medial meniscus, and
3420 for lateral meniscus). Contact was defined between
the femoral cartilage and meniscus, the meniscus and tibial
cartilage, and femoral cartilage and tibial cartilage for both
lateral and medial compartments, resulting in six contact-
surface pairs. Completely general contact condition involving
small sliding of pairs was applied on the model and all
contact surfaces were modeled as frictionless. The cartilage
in the knee is a complex structure, composed mainly of
networks of collagen fibrils that embed water and a non-
fibrillar matrix. The cartilage is known to be inhomogeneous
and anisotropic material, but considering that the loading
time of interest is related to a single leg stance and that the
viscoelastic time constant for cartilage is approximately 1500
seconds from biphasic theory [3, 9], the elastic solution does
not diverge from the biphasic solution [17]. The cartilage,
therefore, was assumed to behave as a homogeneous linearly
isotropic elastic material for contact pressure computations,
similar to the previous studies [18, 19]. The meniscus, also,
has similar structure to that of cartilage and it is also known
to be inhomogeneous and anisotropic material, but various
material property definitions can be found in the literature
for this component [20–22]. Furthermore, the meniscus has
a time constant, as large as 3300 seconds [9], and can also
be considered as an elastic material for compression of the
joint during the short loading times (single leg stance). In
this study, the menisci were treated as linearly elastic, trans-
versely isotropic material to represent the circumferential
fiber arrangement. Femur and tibia were represented by rigid
bodies because this is time efficient in a nonlinear analysis
and accurate due to their much larger stiffness compared
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to that of soft tissues. Meanwhile, the previous study [3]
confirmed that this simplification has no substantive effect on
contact variables. Horn attachments, in the current model,
were defined by 10 linear springs. For boundary conditions,
the tibia was fully constrained and femur was constrained
from rotation and free to translate in anterior-posterior,
medial-lateral, and inferior-superior axes.

For validation of the model, static loads equivalent to 0,
500, 734, 800, 1000, 1500, 2000, and 2500N were applied
on the model at 0∘ flexion angle in order to compare
with previously reported measurements and predictions [3,
29–31]. In this regard, the initial cartilage elastic modulus
and Poisson’s ratio were considered as 15MPa and 0.475,
respectively [25], and for menisci the primary values were
moduli of 20MPa in axial/radial directions and 140MPa in
circumferential direction. The values used for in-plane and
out-of-plane Poisson’s ratios and shear modulus were 0.2, 0.3,
and 50MPa, respectively [20, 21, 23, 24].The stiffness of horn
attachments was considered 200N/mm, which resulted in
2000N/mm total stiffness. Figure 2 shows the finite element
representation of the joint.

2.2. Verifying the Results of FEA. The results of peak contact
pressure for different magnitudes of force are shown in
Figure 3. The applied force is transferred through the femur-
meniscus, femur-tibia, and meniscus-tibia at the contact
regions. The stresses were computed and it was seen that
the total stress multiples by area equilibrate the total load in
the knee joint. The predicted reaction forces at each loading
condition, also, were in equilibrium with the applied load.
Although, the finite element solution may have satisfied
the equilibrium, indicating that the finite element solution
was accurate to some extent, confidence in the validity of
the model itself were obtained by comparing the computed
values of the peak contact pressure with the previously
reported measurements and predictions. Among the various
researches that have measured the peak contact pressure on
the tibial plateau [3, 4, 8–10, 29–31], studies of Brown and
Shaw [31], Ahmed et al. [29], Fukubayashi and Kurosawa
[30] and Donahue et al. [3] were chosen because they used a
load application system with various compressive loads (734,
800, 1000, 1500, and 2500N) at 0 flexion angle and computed
the peak contact pressure on the tibial cartilage. It can be
seen that, the results of present study fall well within the
ranges provided by the literature. Hence the present results
are verified.

2.3. Design of Experiments. DOE starts with determining the
objectives of an experiment. These objectives are as follows:
comparative, screening, and modeling [32–34]. Objective
of comparative designs is to find a suitable method for an
initial comparison. Screening designs identify which factors
are important and help to screen out unimportant factors.
Response surface modeling seeks for one or more of the
following objectives: hit a target, maximize or minimize a
response or make it robust.

In this research, seven factors including axial/radial and
circumferential elastic moduli of meniscus (𝐸

2,3
and 𝐸

1
),

Figure 2: The finite element representation of the joint.
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Figure 3: Comparison of the results of peak contact pressure on the
tibial plateau.

stiffness of meniscus horn attachment (𝐾), in-plane and out-
of-plane Poisson’s ratios (𝜐

12
, 𝜐
23
), shear modulus (𝐺

12
), and

elastic modulus of cartilage (𝐸) were considered as initial
variables for sensitivity analysis. Due to the large number of
factors and levels, in the first step fractional factorial design
was applied to screen out less significant factors. It is useful
and efficient when full factorial design becomes unpractical
[35]. Two levels for each factor impose (27 = 128) treatment
combinations for full factorial design, but the 1/8 fractional
factorial design suggested 16, so it can be used as a rational
way for choosing the treatment combinations of experiments.
The 1/8 fractional design corresponds to resolution IV in
which the main effects are not confounded with two-way
interactions. However, a limitation of fractional factorial
design is the use of only two levels for each factor and the
responses are assumed to be approximately linear over the
range of the factor levels chosen. More detailed discussions
can be found in Montgomery [36]. In the next step, after
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Table 1: Name and variation range of factors.

Factor Name Range of variation References
A 𝐸

1

(Mpa): circumferential modulus of meniscus 100–200 [20, 21, 23]
B 𝐸

2,3

(Mpa): axial/radial modulus of meniscus 15–60 [20, 23, 24]
C 𝜐

12

: in-plane Poisson’s ratio 0.1–0.4 [9]
D 𝜐

23

: out-of-plane Poisson’s ratio 0.1–0.35 [9]
E 𝐺

12

(Mpa): shear modulus of meniscus 27.7–77.7 [9]
F K (N/mm): stiffness of meniscus horn attachment 500–30,000 [9]
G E (Mpa): elastic modulus of cartilage 5–20 [25–28]

Table 2: Actual values of 27-3 screening design and response.

Run no. 𝐸
1

(Mpa) 𝐸
2,3

(Mpa) 𝜐
12

𝜐
23

𝐺
12

(Mpa) K (N/mm) E (Mpa) Peak contact pressure (Mpa)
1 180 50 0.2 0.3 30 1500 12 7.396
2 120 50 0.3 0.2 30 1500 20 6.381
3 120 15 0.2 0.2 30 1500 12 7.546
4 120 15 0.2 0.3 30 6000 20 6.361
5 180 15 0.3 0.2 30 6000 12 7.542
6 180 50 0.3 0.3 60 6000 20 6.389
7 120 15 0.3 0.3 60 1500 12 7.537
8 180 50 0.2 0.2 30 6000 20 6.386
9 180 15 0.3 0.3 30 1500 20 6.364
10 180 15 0.2 0.2 60 1500 20 6.366
11 120 50 0.3 0.3 30 6000 12 7.400
12 180 15 0.2 0.3 60 6000 12 7.533
13 120 50 0.2 0.2 60 6000 12 7.492
14 180 50 0.3 0.2 60 1500 12 7.386
15 120 50 0.2 0.3 60 1500 20 6.384
16 120 15 0.3 0.2 60 6000 20 6.362

screening out the less significant factors, Box-Behnken design
was applied to do more investigations and hit the value of
experiment in the FE model. The Box-Behnken is a good
design in response surface methodology due to estimation
of the parameters in the quadratic model. Furthermore, it is
slightly more efficient than the central composite design [37],
which was used by Yao et al. [15] in the sensitivity analysis of
the knee joint.

In this study, sensitivity analysis was performed under
2500 (N) static load at full extension and the reference value
of the peak contact pressure was taken from the experimental
work of Brown and Shaw [31], which was equivalent to
6.5 (MPa). At this load, the optimum values of parameters
were obtained by the estimatedmodel based onBox-Behnken
design. The predicted optimum values were subsequently
tested for other applied loads at 0 flexion angle. The study
of Brown and Shaw [31] was chosen because it measured
the peak contact pressure on tibial cartilage under the same
loading condition (static load of 2500N at 0 flexion angle).
The considered factors and their investigated ranges based on
the literature are demonstrated in Table 1. The combination
of parameters was generated and analyzed using Minitab
software [38], and the design generators were E = ABC,
F = BCD, and G = ACD.

3. Result and Discussion

3.1. Screening Analysis. Table 2 shows the treatment combi-
nations and the results of peak contact pressure, according to
fractional factorial design.The ranges in this stepwere chosen
according to the most prevalent values used in the literature.
For example, however the given range for elastic modulus of
cartilage is 5–20MPa, themajority of studies have considered
values equal or more than 12MPa [3, 4, 8, 9, 11, 39, 40].

The location of peak contact pressure was on the lateral
compartment of the tibial cartilage in all FE analyses. Figure 4
shows the distribution of contact pressure for the first
experiment; the red region represents the maximum contact
pressure. The maximum variations in the location of peak
contact pressurewere 0.10mm in anterior-posterior direction
to the anterior and 1.74mm in medial-lateral direction to the
lateral side.

Table 3 demonstrates both the magnitude and the impor-
tance of the parameters effects. Any absolute value of the
effect greater than 𝛼 = 0.05 is potentially important. Hence,
factor E which represents the elastic modulus of cartilage
has the most effect on peak contact pressure, followed by
𝐸
1
∗𝐾 (representing both circumferential and horn stiffness)

and 𝐸
2,3

(axial/radial modulus of meniscus), respectively.
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Figure 4: Contact pressure distribution in the tibial cartilage in first experiment.

Table 3: Considered terms, effects, and alias structure in 1/8 fractional design.

Term Effect Alias structure (up to order 3)
𝐸
1

−0.0126 𝐸
1

+ 𝐸
2,3

∗ 𝑉
12

∗ 𝐺
12

+ 𝐸
2,3

∗ 𝐾 ∗ 𝐸 + 𝑉
12

∗ 𝑉
23

∗ 𝐸 + 𝑉
23

∗ 𝐺
12

∗ 𝐾

𝐸
2,3

−0.0496 𝐸
2,3

+ 𝐸
1

∗ 𝑉
12

∗ 𝐺
12

+ 𝐸
1

∗ 𝐾 ∗ 𝐸 + 𝑉
12

∗ 𝑉
23

∗ 𝐾 + 𝑉
23

∗ 𝐺
12

∗ 𝐸

𝑉
12

−0.0129 𝑉
12

+ 𝐸
1

∗ 𝐸
2,3

∗ 𝐺
12

+ 𝐸
1

∗ 𝑉
23

∗ 𝐸 + 𝐸
2,3

∗ 𝑉
23

∗ 𝐾 + 𝐺
12

∗ 𝐾 ∗ 𝐸

𝑉
23

−0.0121 𝑉
23

+ 𝐸
1

∗ 𝑉
12

∗ 𝐸 + 𝐸
1

∗ 𝐺
12

∗ 𝐾 + 𝐸
2,3

∗ 𝑉
12

∗ 𝐾 + 𝐸
2,3

∗ 𝐺
12

∗ 𝐸

𝐺
12

0.0091 𝐺
12

+ 𝐸
1

∗ 𝐸
2,3

∗ 𝑉
12

+ 𝐸
1

∗ 𝑉
23

∗ 𝐾 + 𝐸
2,3

∗ 𝑉
23

∗ 𝐸 + 𝑉
12

∗ 𝐾 ∗ 𝐸

K 0.0131 𝐾 + 𝐸
1

∗ 𝐸
2,3

∗ 𝐸 + 𝐸
1

∗ 𝑉
23

∗ 𝐺
12

+ 𝐸
2,3

∗ 𝑉
12

∗ 𝑉
23

+ 𝑉
12

∗ 𝐺
12

∗ 𝐸

E −1.1049 𝐸 + 𝐸
1

∗ 𝐸
2,3

∗ 𝐾 + 𝐸
1

∗ 𝑉
12

∗ 𝑉
23

+ 𝐸
2,3

∗ 𝑉
23

∗ 𝐺
12

+ 𝑉
12

∗ 𝐺
12

∗ 𝐾

𝐸
1

∗ 𝐸
2,3

−0.0124 𝐸
1

∗ 𝐸
2,3

+ 𝑉
12

∗ 𝐺
12

+ 𝐾 ∗ 𝐸

𝐸
1

∗ 𝑉
12

0.0129 𝐸
1

∗ 𝑉
12

+ 𝐸
2,3

∗ 𝐺
12

+ 𝑉
23

∗ 𝐸

𝐸
1

∗ 𝑉
23

0.0126 𝐸
1

∗ 𝑉
23

+ 𝑉
12

∗ 𝐸 + 𝐺
12

∗ 𝐾

𝐸
1

∗ 𝐺
12

−0.0126 𝐸
1

∗ 𝐺
12

+ 𝐸
2,3

∗ 𝑉
12

+ 𝑉
23

∗ 𝐾

E
1

∗ K 0.0714 E1 ∗ K + E2,3 ∗ E + V23 ∗ G12
𝐸
1

∗ 𝐸 0.0169 𝐸
1

∗ 𝐸 + 𝐸
2,3

∗ 𝐾 + 𝑉
12

∗ 𝑉
23

𝐸
2,3

∗ 𝑉
23

−0.0069 𝐸
2,3

∗ 𝑉
23

+ 𝑉
12

∗ 𝐾 + 𝐺
12

∗ 𝐸

𝐸
1

∗ 𝐸
2,3

∗ 𝑉
23

0.0129 𝐸
1

∗ 𝐸
2,3

∗ 𝑉
23

+ 𝐸
1

∗ 𝑉
12

∗ 𝐾 + 𝐸
1

∗ 𝐺
12

∗ 𝐸 + 𝐸
2,3

∗ 𝑉
12

∗ 𝐸 + 𝐸
2,3

∗ 𝐺
12

∗ 𝐾 + 𝑉
12

∗ 𝑉
23

∗ 𝐺
12

+ 𝑉
23

∗ 𝐾 ∗ 𝐸

The bold item shows the most important term.

The other parameters are not significant at the 5% level. It can
be seen that, however, other factors including 𝐸

1
and 𝐾 are

not significant, interaction of 𝐸
1
and𝐾 is significant.

Interaction is the variation among the differences
betweenmeans for different levels of one factor over different
levels of the other factor; and since in resolution IV designs,
two-factor interaction effects may be confounded with other
two-factor interactions, screening out of factors should
be done carefully, because confounding pattern makes it
difficult to determine which factors are the most important
ones. In this regard, Table 3 also shows alias structure up
to order 3. The alias structure indicates which effects are
confounded with each other. As shown in Table 3, effect of
𝐸
1
∗ 𝐾 aliased to 𝐸

2,3
∗ 𝐸 and 𝜐

23
∗ 𝐺
12
. Since factors 𝐸

2,3

and 𝐸 have been significant, so probably the main reason for
significance of 𝐸

1
∗ 𝐾 is due to the interaction of these two

significant factors (𝐸
2,3
∗𝐸); but for more confidence, factors

𝐸
1
and 𝐾 are kept for further investigation due to their

higher effect (0.0126, 0.0131, resp.) comparing to 𝜐
23
and 𝐺

12

(0.0121, 0.0091, resp.). Moreover, this result is in agreement
with research of Haut Donahue et al. [9] that showed

the importance of 𝐸
1
and 𝐾 for contact variables of the

tibial plateau. Furthermore, the importance of axial/radial
modulus (𝐸

2,3
) and circumferential moduli of meniscus (𝐸

1
),

as a result of the present study, is consistent with the findings
of Yao et al. [15], who revealed that the meniscal motion and
deformation are most sensitive to the circumferential and
radial/axial moduli of menisci.

According to screening experiments, the following results
can be estimated. (1) Peak contact pressure for 𝐸 = 12 (Mpa)
is, on average, 1.1049 (Mpa) more than that for 𝐸 = 20 (Mpa).
(2) Peak contact pressure at 𝐸

2,3
= 15 (Mpa) is, on average,

0.0496 (Mpa) more than that at 𝐸
2,3
= 50 (Mpa). (3) The

effect of 0.0714 for 𝐸
1
∗ 𝐾 can be interpreted to mean

that the effect of combining the high level factor 𝐸
1
with

𝐾 (𝐸
1
= 180Mpa, 𝐾 = 1500, and 6000N/mm) is, on

average, 0.0714 more than the effect of low level of factor
𝐸
1
with 𝐾 (𝐸

1
= 120Mpa, 𝐾 = 1500, and 6000N/mm).

(4) However, the effect of other factors and their interaction
are not significant. Figure 5 shows the main effect of factors.
The contact pressure decreases by increasing the 𝐸, 𝐸

1
, 𝐸
2,3
,

𝜐
12
, and 𝜐

23
and increases by increasing the 𝐺

12
and 𝐾. It is
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obvious that the main effect of factor 𝐸 is much larger than
the other factors and overshadows them. Interaction effect of
𝐸
1
and𝐾 is shown in Figure 6.
From the results of the screening experiment, factors of
𝐸, 𝐸
1
, 𝐾, and 𝐸

2,3
were collected for more investigation by

response surface method (RSM).

3.2. Response Surface Method . In this section, the response
surface method was used as a statistical design of experiment
tool, in order to produce precisemaps based onmathematical
models leading to optimumperformance [41].The regression
model was built in two phases. First started with linear model
but due to the lack of linear fit, quadratic model was applied
subsequently. For choosing the level of factorswhich screened
out in the last section, less interactions with other factors
were considered (𝜐

23
= 0.2, 𝐺

12
= 60MPa, and 𝜐

12
= 0.2).

The Box-Behnken method was used at three levels of each
factor and a single center point was considered because the
FEM experiments include no actual experimental error; thus,
duplication of center point was not necessary [42, 43]. The
results of simulation runs and Box-Behnken design in RSM
are given in Table 4. In this step, in order to assess more levels
of each factor, other ranges of variables were chosen.

Estimated linear regression for peak contact pressure
(PCP) is as follows:

PCP = 8.80182 − 0.13871 ∗ 𝐸∗∗∗ (𝑅2adj = 95.8%) . (1)

Results of ANOVA revealed that with 99% confidence,
increase of one unit of𝐸 (𝑃 value<0.01) will result in decrease
of peak contact pressure by 0.13871MPa.

Although, the adjusted 𝑅2 demonstrates that 95.8% of
variation in peak contact pressure can be explained by
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variation in 𝐸, Figure 7(a) shows that the residuals of linear
regression model for peak contact pressure are not normal;
hence, the regression model should be revised. The full
quadratic regression coefficients for peak contact pressure are
estimated as follows:

PCP = 13.4733 − 0.7265 ∗ 𝐸∗∗∗ + 0.0182 ∗ 𝐸2∗∗∗

+ 0.0001 ∗ 𝐸 ∗ 𝐸
∗∗

2,3

(𝑅
2

adj = 100%) .
(2)

According to the outputs of ANOVA the following can
be concluded. (1) 𝐸 affects peak contact pressure with 99%
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Figure 7: Normal probability plot of residuals. (a) Linear and (b) full quadratic regression model (response is peak contact pressure).

Table 4: Response, factors, and levels for the Box-Behnken experi-
mental design.

Run
no.

E
(Mpa)

𝐸
1

(Mpa)
K

(N/mm)
𝐸
2,3

(Mpa)
Peak contact pressure

(Mpa)
1 16 150 2000 40 6.572
2 14 130 4000 30 6.917
3 16 150 2000 20 6.562
4 16 150 6000 40 6.572
5 16 130 4000 40 6.571
6 14 150 2000 30 6.918
7 18 150 6000 30 6.363
8 14 150 4000 40 6.916
9 16 150 6000 20 6.562
10 18 150 4000 40 6.367
11 16 150 4000 30 6.568
12 16 170 6000 30 6.569
13 18 150 2000 30 6.363
14 14 150 6000 30 6.918
15 18 130 4000 30 6.362
16 18 170 4000 30 6.364
17 16 130 4000 20 6.560
18 18 150 4000 20 6.359
19 16 170 2000 30 6.569
20 14 150 4000 20 6.920
21 16 130 6000 30 6.567
22 14 170 4000 30 6.918
23 16 130 2000 30 6.566
24 16 170 4000 40 6.573
25 16 170 4000 20 6.564

confidence (∗∗∗means 𝑃 value <0.01), as −0.7265 ∗ 𝐸 +
0.0182 ∗ 𝐸

2, and with 95% confidence (∗∗means 𝑃 value
<0.05) as 0.0001 𝐸 ∗ 𝐸

2,3
, if the effects of factor 𝐸

2,3
are held

constant. (2) 𝐸
2,3

affects the peak contact pressure with 95%
confidence (𝑃 value <0.05) as 0.0001 ∗ 𝐸 ∗ 𝐸

2,3
, if the effects

of factor 𝐸 are held constant. (3)There is no reason to believe
the importance, of other factors, interactions and any other
quadratic effects. Residuals of full quadratic regressionmodel
are shown in Figure 7(b). According to the results of RSM,
surface plot of peak contact pressure versus 𝐸

2,3
and 𝐸 is

shown in Figure 8. It demonstrates the negative effect of 𝐸 on
peak contact pressure. Contour plot of peak contact pressure
in Figure 9 shows that𝐸

2,3
hasmore effect on contact pressure

than 𝐸
1
. Figure 10 represents that the peak contact pressure

does not change when 𝐾 is greater than 4000 (N/mm).

3.3. Optimization. The optimal region to run a process is
typically determined after a sequence of experiments and
developing empirical models. From a mathematical view-
point, the objective is to find the operating conditions that
maximize, minimize, or close the system’s response to the
true one. Therefore, the goal of this section is minimizing
difference between estimated quadratic model obtained in
the last section and experimental data of Brown and Shaw
[31]. By considering 99% confidence, the estimated quadratic
model will only include factor𝐸. Figure 11 shows the behavior
of peak contact pressure with respect to 𝐸. In regression
analysis, usually developing a model includes the fewest
numbers of explanatory variables which permit an adequate
interpretation:

Min 𝑓 = PCP − 6.5

= (13.4733 − 0.7265 ∗ 𝐸 + 0.0182 ∗ 𝐸
2

) − 6.5

s.t 14 ≤ 𝐸 ≤ 18.

(3)

The value of 𝐸was obtained to be 16.059 (Mpa) by solving
the above nonlinear problem using generalized reduced
gradient (GRG) algorithm on Microsoft Excel software.
Furthermore, according to Figure 11, it is obvious that the
minimum contact pressure is at 𝐸 = 20 (MPa).
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Figure 11: Behavior of quadratic estimated model for peak contact
pressure with respect to 𝐸.

Table 5: Box-Behnken experimental design after optimizing the 𝐸.

Run no. 𝐸1(Mpa)
𝐸
2,3

(Mpa)
K

(N/mm)
Peak contact pressure

(Mpa)
1 100 60 6000 6.566
2 200 40 10000 6.567
3 150 20 2000 6.554
4 150 40 6000 6.565
5 150 60 2000 6.569
6 200 20 6000 6.558
7 100 40 10000 6.561
8 200 60 6000 6.572
9 150 60 10000 6.570
10 200 40 2000 6.567
11 100 40 2000 6.560
12 150 20 10000 6.554
13 100 20 6000 6.550
𝐺
12
= 60 (MPa), 𝜐

23
= 0.2, 𝜐

12
= 0.2, and 𝐸 = 16.059 (MPa).

Further analyses were carried out after optimizing the 𝐸
and removing its strong shadow on the other factors. Table 5
shows the Box-Behnken design with one center point, three
factors, and peak contact pressure. In this stage, wider ranges
of parameters were considered to investigate the maximum
effects of factors.

Estimated full quadratic regression coefficients for peak
contact pressure by considering optimized value of 𝐸, factors
𝐸
1
, 𝐸
2,3
, and𝐾 are as follows:

PCP = 6.517 + 0.00099 ∗ 𝐸
2,3
+ 0.00019 ∗ 𝐸

1

− 0.00001 ∗ 𝐸
2

2,3

(𝑅
2

adj = 99.8%) .
(4)

According to the outputs of ANOVA, it can be concluded
that with 99% confidence, 𝐸

2,3
affects peak contact pressure

as 0.00099 ∗ 𝐸
2,3
− 0.00001 ∗ 𝐸

2

2,3

, 𝐸
1
as 0.00019 ∗ 𝐸

1
and

there is no reason to believe the importance of factor𝐾, other
interactions, and any other quadratic effect. Figure 12 shows
normality of residual in the above estimated regressionmodel
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Figure 12: Normal probability plot of residuals for regressionmodel
using optimized value of 𝐸.

and Figure 13 demonstrates random distribution of residuals
versus the fitted values.

In order to find the optimum value for 𝐸
1
and 𝐸

2,3
, it was

tried to minimize the difference between the above estimated
quadratic model and experimental data again:

Min 𝑓 = PCP − 6.5

= (−0.00001 ∗ 𝐸
2

2,3

6.517 + 0.00099 ∗ 𝐸
2,3

+0.00019 ∗ 𝐸
1
− 0.00001 ∗ 𝐸

2

2,3

) − 6.5

s.t 100 ≤ 𝐸
1
≤ 200

20 ≤ 𝐸
2,3
≤ 60.

(5)

The optimum values for𝐸
1
and𝐸

2,3
were 100 and 20MPa,

respectively. The suitable value for 𝐾 can be considered
≥2000N/mm. This value supports the idea that meniscal
replacement surgery should attach the horns through a
technique providing high stiffness. Using the values obtained
from the optimization process, finally the results of the
proposed model were tested by running another two simula-
tions with two compressive loads of 1000N [30] and 3000N
[31] at 0 degrees of flexion. The errors between FEA and
experimental data of peak contact pressure decreased to be
less than 10% and 5% for 1000 and 3000N, respectively.

It should be pointed out that in the FEM, some anatomical
geometries are missing or simplified depending on the com-
plexity of the problem. Ligaments were not included in our
FE model. The posterior cruciate ligament (PCL) and lateral
collateral ligament (LCL) are slack under axial compressive
loading at 0 flexion angle [8], but the anterior cruciate liga-
ment (ACL) and the medial collateral ligament (MCL) both
contribute in the axial compression experienced by the joint.
Under no external load, the joint is primarily compressed
due to the prestress in these two ligaments and the axial
compression sustained by the joint is, thus, greater than the
applied external load. Therefore, the influence of missing
these two ligaments in this FEA is that the results of peak
contact pressure only correspond to the external load. Future
studies will consider including ACL and MCL. However,
according to Haut Donahue et al. [9], contact characteristics
are not sensitive to the nonlinear material properties of
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Figure 13: Residuals versus the fitted values in estimated regression
model using optimized value of 𝐸.

MCL during axial compression. Furthermore, cartilage can
be assumed to have linear elastic material property in contact
analyses from the biphasic solution, but the huge influence
of its elastic modulus on contact pressure might indicate the
requirement for more precise material model in this compo-
nent. This is supported by the study of Julkunen et al. [14]
which showed that the mechanical responses of the cartilage
under different loading conditions are dependent on tissue
composition and structure. Therefore, future investigations
will focus on the effect of anisotropic nonlinear behavior of
cartilage on contact outputs. Moreover, it will be interesting
to investigate the sensitivity of contact pressure to material
properties under different degrees of flexion, which was not
considered in this research.

4. Conclusion

A sensitivity analysis of tibiofemoral peak contact pressure
to the material properties of soft tissue was performed and
design of experiments methods was used to reduce the num-
ber of program runs and to minimize the contact pressure
error. The present study evaluated the effect of cartilage
elastic modulus and interaction effects of the parameters
in addition to previous research. It was demonstrated that
elastic modulus of the cartilage is the most influential factor.
Another important finding was that after cartilage elastic
modulus, interaction of axial/radial modulus with elastic
modulus of cartilage, circumferential and axial/radial moduli
of meniscus are significant factors. The importance of cir-
cumferential and axial/radial moduli of meniscus as a result
of this study is in agreement with the past predictions. Fur-
thermore, this research demonstrated the complex relations
between material properties of tissue and contact pressure
of tibiofemoral joint. The result of sensitivity analyses can
be used as a guideline for experimental efforts intended
at determining material properties of soft tissue, because
estimating the most sensitive parameters should be done
precisely. However, this analysis is only valid under full
extension loading mode and with elastic assumptions of soft
tissues. Further biomaterial studies may reveal more factors
ormore realistic formofmaterial properties of human tissues.
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However, more investigation in this regard based on DOE
techniques will provide a remarkably versatile strategy for
analysis of knee joint biomechanics and help researchers with
faster and more reliable analysis.
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