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Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent
antigen exposure in the context of chronic infections and cancers. Although characterized
by progressive loss of effector functions, high and sustained inhibitory receptor expression
and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among
these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability
to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells.
These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but
the signals that regulate the developmental pathways and relationships among exhausted
cell populations are still unclear. Here, we review our current understanding of Tex cell
biology, and discuss some less appreciated molecules and pathways affecting T cell
exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role
in inducing or restraining T cell exhaustion, as well as signaling pathways that may be
amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and
IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+

populations and therefore improve immunotherapy responsiveness. Understanding
features of and pathways to exhaustion has important implications for the success of
immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
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INTRODUCTION

CD8+ T cells play critical roles in both fighting infection and restraining tumor growth. Activation
of CD8+ T cells occurs upon the engagement of the T cell receptor (TCR) complex that recognizes
foreign or tumor antigens presented by MHC Class I molecules, in conjunction with co-receptors
that enhance or diminish TCR signaling.

During acute infection, CD8+T cells can adopt several fates: they can become cytolytic short-lived or
long-lived effector cells that help clear infections; alternatively, they can differentiate into memory-
precursor cells that form long-lived central and effectormemory cells poised for future protection (1). In
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contrast, during chronic infections and cancer, chronically
stimulated antigen-specific T cells progressively decrease in
quantity and function as they enter a state of hyporesponsivness
called “T cell exhaustion”, characterized by the loss of cytokine
production and proliferative potential, development of metabolic
dysfunction and increased expression of inhibitory receptors (IRs),
including PD-1, Tim-3 and CTLA-4. Targeting these IRs has been
validated as a promising therapeutic strategy against cancer, and
potentially chronic infection, as illustrated by clinical success
achieved with immune checkpoint blockade (ICB) using
monoclonal antibodies (mAbs) against PD-1 and CTLA-4 in
metastatic melanoma (2, 3). Although exhausted T (Tex) cells
display impaired responses to TCR engagement, this
hyporesponsive state enables Tex cells to persist under conditions
of chronic stimulation (4). Extensive efforts have focused on
understanding cellular and molecular mechanisms that drive T
cell exhaustion, and finding potential strategies to recover and
maintain effector T cell function under conditions of exhaustion.

Nonetheless, heterogeneity has been observed among Tex cells,
related to the progressive nature of this process. A specific subset of
Tex cells, defined as ‘precursor exhausted’ or ‘stem-like’ progenitor
(pTex) cells, retains some effector function and shares
characteristics with memory cells (Figure 1). pTex cells are
defined by and require the expression of the transcription factor
TCF-1,which is critical forT cell ‘stemness’ (5–7) and is essential for
the development of central memory T cells during acute infection
(7, 8). TCF-1+ pTex cells both self-renew and, upon persistent
antigen stimulation, convert into more ‘terminally exhausted’
states, as well as cytolytic effector-like cells (9). Thus, pTex cells
are critical tomaintainCD8+Tcells underconditionsof exhaustion.
Data argue thatpTex cells, as opposed to thebulkofTex cells thatdo
not express TCF-1, play an indispensible role in immunotherapy,
since this population is required for and correlates with efficient
responses to ICB (5–7, 10, 11).

Recent studies have revealed that Tex cells also acquire a distinct
epigenetic state. The transcription factor Tox is central to this
process via its role in epigenetic remodeling and transcriptional
cascades that orchestrate Tex cell development by directing histone
acetylation(12–14).These conservedepigenetic features in terminal
exhaustion become fixed and can persist independently of chronic
antigen stimulation and inflammation (15–17): this exhausted state
cannot be rescued. In contrast, the transcriptional repressor
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BACH2 is transcriptionally and epigenetically active in TCF-1+

pTex cells and has been shown to suppress the molecular program
driving terminal exhaustion (18, 19). Since only a fraction of cancer
patients’ respond to current ICB such as anti-PD-1 mAbs,
therapeutic efforts to recover Tex effector functions may require
new approaches including those that increase epigenetic plasticity
of Tex cells and promote pTex cells.

In this review, we focus on some less-appreciated pathways
affecting the development of T cell exhaustion. We discuss two co-
stimulatory receptors, CD226 and CD137, as well as signaling
pathways that may be amenable to pharmacological inhibition with
a focusonPhosphoinositide-3Kinase (PI3K) and IL-2partial agonists
and their complex roles in T cell function and exhaustion. Finally, we
discuss novel methods that may promote TCF-1+ populations and
potentially enhance immunotherapy responsiveness. Understanding
molecular pathways that contribute to exhaustion has important
implications for improving successful immunotherapy, including
both ICB and adoptive T cell transfer approaches.
THE ROLE OF ACTIVATING RECEPTORS
IN T CELL EXHAUSTION

The original two signal model for lymphocyte activation states
that T cells require both antigen-receptor engagement and co-
stimulatory signals to achieve appropriate activation following
interaction with activated antigen presenting cells. Since this
original hypothesis and early experiments supporting this
concept were published, several decades of work have
elucidated an important diversity not only in positive co-
stimulatory pathways that increase lymphocyte activation, but
also IRs that counterbalance these activation signals (20, 21).

While most strategies for countering T cell exhaustion focus on
IRs restraining effector functions of CD8+ T cells, activated T cells
constitutively express or upregulate numerous activating co-
stimulatory molecules that can fine tune CD8+ T cell activation
andare important for regulatingCD8+Tcell responses topersisting
infections and cancer. These receptors present potential therapeutic
targets. However, analyses of these pathways also highlight the
complex nature of co-stimulation in the development and function
of Tex cells, where promoting activation can invigorate cells but
may also paradoxically promote exhaustion.
FIGURE 1 | Progressive changes in T cell exhaustion. Stem-like or progenitor exhausted cells (pTex) self-renew and, in the presence of continual antigen stimulation,
give rise to more exhausted T (Tex) cells, characterized by expression of inhibitory receptors, loss of effector cell functions, proliferative capacity and their ability to respond
to ICB. CD137 stimulation of early pTex cells induces high expression of Eomes, which, together with posttranslational mechanisms induced by CD155 expressed on
cancer cells, drives CD226 downregulation. Loss of CD226 further impairs TCR signaling and contributes to T cell dysfunction. Figures drawn using Biorender.
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The Importance of Being There: CD226 in
T Cell Exhaustion
CD226 (DNAX accessory molecule 1, DNAM-1) is expressed on
T cells and contributes to cytotoxic lymphocyte (CTL) activation
(22, 23). Studies examining CD226-deficient mice indicated that
CD226 serves as a co-stimulatory receptor that amplifies CTL
and NK cell-mediated cytotoxicity against targets expressing its
ligands CD112 and CD155 (24, 25).

In chronic infection with HIV-1 and HIV-2, downregulation of
CD226 has been observed in the peripheral blood: increased
CD226-PD-1+ antigen-specific CD8+ T cells correlated with
increased viral load (26, 27). CD226 downregulation also occurs
in antigen-specific CD8+ T cells in mice chronically infected with
LCMV clone 13, a common model used to evaluate T cell
exhaustion. These studies suggest that Tex cells lose CD226
expression; however, the functional consequences remained unclear.

Through complementary experiments involving human
samples and mouse tumor models, two groups showed that
loss of CD226 induces hypo-responsiveness in CD8+ T cells,
and limits both TCR signaling and responsiveness to anti-PD-1
mAbs (28, 29). CD226-CD8+ T cells failed to proliferate and
produce effector cytokines upon CD3/CD28 mAbs stimulation,
whereas ectopic re-expression of CD226 in CD226-CD8+ cells
rescued responsiveness. Single-cell RNA sequencing (RNAseq)
of tumor-specific CD8+ T cells isolated from murine melanomas
revealed that CD226+ Tumor Infiltrating Lymphocytes (TILs)
exhibited an enrichment for genes associated with T cell
activation and immune synapse formation compared to
CD226- counterparts (28). Of note, decreased TCR signaling is
observed in CD8+ Tex cells during chronic infection, as
evidenced by low expression of the Nr4a1-GFP reporter and
RNAseq analysis of TCR signaling-associated genes (30).

However, RNAseq comparing CD226+ and CD226- CD8+ T
cells post CD3/CD28 mAbs stimulation revealed that activated
CD226-CD8+ T cells exhibited increased expression of genes
associated with pTex cells including Tcf7, Slamf6 (encoding TCF-
1 and Ly108, respectively), as well as increased Tox. Nonetheless,
one principal characteristic of pTex cells, the ability to response to
ICB, is not shared by CD226- cells. Anti-PD-1 mAbs failed to
restore effector functions of TILs lacking CD226 expression in a
transplantable melanoma model, suggesting that this Tex
population resembles a more terminally exhausted population: a
recent study confirmed that CD226 expression is required on TILs
for efficient ICB responsiveness (31). Indeed, a continuum of low,
intermediate, and high CD226 expression within PD-
1+CD39+CD8+ exhausted TILs has been described. High CD226
expression correlated with increased ability of CD8+ TILs to secrete
IFN-g, suggesting that CD226 expression defines functional states
among Tex and potentially more cytotoxic cells (28). These studies
provide support that the absence of CD226 represents an
unappreciated mechanism limiting TIL responsiveness
independently of IR expression.

How is CD226 expression regulated? Post-translationally, the
CD226 ligand, CD155, within the tumor microenvironment has
been implicated in the downregulation of CD226 on TILs.
Furthermore, mice with a Y319F mutation in CD226, which
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abrogates recruitment of the E3 ubiquitin ligase CBL-B for
ubiquitinylation and proteasomal degradation, exhibited
increased CD226 expression on CD8+ T cells and suppressed
tumor growth (28). Additionally, CD226 downregulation was
found to be dependent on the transcription factor
Eomesodermin (Eomes), which is associated with T cell
exhaustion (Figure 1) (32–34); increased Eomes was observed in
CD226-CD8+ cells compared to CD226+ counterparts upon in
vitro activation. In contrast, the absence of CD226 on CD4+ T cells
is associated with decreased T-bet, a closely related transcription
factor associated with IFN-g and effector function; similarly, in NK
cells, CD226 induces T-bet (35). Whether CD226 directly affects
these transcription factors in CD8+ T cells is unclear. It is therefore
of interest that another co-activating receptor, CD137 (4-1BB,
TNFRSF9), has been implicated in the induction of Eomes and
downmodulation of CD226 (29).

CD137 – Too Much of a Good Thing
CD137 was initially described as a co-stimulatory member of the
tumor necrosis factor receptor (TNFR) superfamily that
enhanced T cell proliferation and cytokine secretion, as well as
protected T cells from activation–induced cell death (36–38).
Injection of CD137 agonist mAbs expanded CD8+ effector T
memory cells and promoted tumor regression in a variety of
mouse tumor models in a CD8+ T cell-dependent manner (39,
40), suggesting CD137 is a promising target to increase T cell
function. In mouse tumor models, CD137 stimulation increased
cytotoxicity of CD8+ TILs through increased Eomes expression
(41). However, anti-CD137 mAb stimulation also promoted
accumulation of dysfunctional CD226-CD8+ T cells in C57BL/
6 WT mice (Figure 1).

Similar to hypofunctional CD226-CD8+ T cells within
tumors, CD226-CD8+ T cells induced by anti-CD137 mAbs in
C57BL/6 WT mice failed to proliferate and secrete TNF-a and
IFN-g in response to TCR stimulation. CD226-CD8+ TCR
transgenic T cells generated in response to CD137 stimulation
were devoid of effector functions after antigen stimulation in
vitro and had significantly weaker anti-tumor properties than
CD226-CD8+ T cells in vivo. Thus, hypofunctional CD226-CD8+

T cells are generated both in a tumor context and following
CD137 stimulation in mice. In view of the expression of CD137
ligand (CD137L) by dendritic cells (42) and by numerous tumor
lines (43, 44), CD137 may down-modulate CD226 both in early
phases of anti-tumor immune responses and in later phases at
the tumor site, respectively.

While the functions of CD137 may seem contradictory,
CD137 ligation, similar to chronic infection, increases T cell
activation, which may promote T cell exhaustion. These
observations may provide insight into why anti–CD137
agonists decrease clinical symptoms in mouse models of
autoimmunity including collagen-induced arthritis (45),
experimental autoimmune uveoretinitis (45), EAE (46) and
systemic lupus erythematosus (47). In addition, anti-CD137
mAbs can also activate NK cells (48, 49), macrophages (50)
and inhibit Treg cells (51, 52), further complicating
interpretation of their actions. Thus, these studies highlight the
July 2022 | Volume 13 | Article 926714
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paradoxical roles of CD137 signaling in T cell exhaustion and the
need for caution in clinical trials.
PHARMACOLOGICAL APPROACHES TO
MANIPULATE EXHAUSTION

Pharmacological interventions, particularly those increasing or
boosting TCF-1+ populations present alternative approaches to
countering exhaustion, which are not focused on directly
activating or inhibiting co-stimulatory molecules. In this
regard, recent data on Phosphoinositide 3 Kinase delta (PI3Kd
present intriguing possibilities.

PI3Kd and the Regulation of CD8+ T Cell
Function
PI3Ks are lipid kinases that catalyze the addition of phosphate to
the D3 position of phosphoinositides, most notably the ubiquitous
membrane phospholipid PI(4,5)P2, to generate PI(3,4,5)P3 (PIP3).
PI3Kd is highly expressed in hematopoietic cells and participates
in signaling downstream from the TCR, CD28, ICOS, as well as
chemokine and cytokine receptors. PIP3, in turn, recruits proteins
containing Pleckstrin homology and other PIP3-binding domains
to the membrane where they can interact with other proteins and/
or be phosphorylated. Among its effectors, AKT kinases are key
components of PI3K-activated pathways, phosphorylating
downstream targets including transcription factors such as
FoxO1 and BACH2, the chromatin modifier Ezh2, and
regulators of mTOR (53). AKT-mediated phosphorylation leads
to nuclear exclusion and inactivation of FoxO1 and BACH2.
These signaling cascades can be counterbalanced by PD-1-
Frontiers in Immunology | www.frontiersin.org 4
mediated SHP1 recruitment which limits PI3K activation (54) as
well as lipid phosphatases such as SHIP and PTEN (53).

Recent data suggest that PI3K plays a major role in regulating
expression of Tcf7, which is a FoxO1 transcriptional target (55).
Evaluation of asymmetric T cell division ex vivo, revealed a
bifurcation of TCF-1 expression: daughter cells that inherit
robust PI3K activity inactivate FoxO1 and silence Tcf7
expression. Daughter cells with reduced PI3K activity maintained
TCF-1 and generated a self-renewing memory population (8, 56–
58). Antagonism of PI3K activity in vitro limited repression of Tcf7
and induction of differentiation markers (58). Conversely, recent
work from our laboratory showed that expression of an activated
PI3Kd allele suppressed the maintenance of a TCF-1+CD8+ T cell
population and the development of central memory cells during
acute viral infection. Instead, activated PI3Kd-expressing CD8+ T
cells were driven to a long-lived effector cell fate with increased
expression of effector cytokines IFN-g and TNF-a (8). Similarly, T
cells from patients with the immunodeficiency, Activated PI3K
Delta Syndrome, failed to maintain a TCF-1+ population when
expanded in vitro (8, 56). Together these studies raise the possibility
that inhibition of PI3Kd could promote expansion of TCF-1+ pTex,
thereby increasing the population that can respond to ICB
(Figure 2). Inhibition of PI3K would also be expected to prevent
BACH2 inactivation, which also promotes pTex cells.

Nonetheless, PI3Kd also plays an important role in both
effector T and B cell differentiation (8, 59). Intriguingly,
CD226-mediated induction of T-bet and cytotoxicity in NK
cells occurs via FoxO1-mediated regulation (35); it is
intriguing to speculate that CD226 engagement increases CD8+

T cell effector function via PI3K-mediated pathways. Thus, while
PI3Kd inhibition may increase TCF-1+ pTex, this may come at
the expense of the ability to develop effector cells and even to
FIGURE 2 | PI3K and regulation of stem-like pTex cells. Right: Upon T cell activation, PI3K generates PIP3, which recruits AKT, leading to its activation at the
plasma membrane, which then leads to the phosphorylation and nuclear exclusion of FoxO1 and BACH2. Downstream genes associated with stemness and
memory differentiation, such as Tcf7 are no longer induced by FoxO1, whereas effector genes such as T-bet and GranzymeB, usually suppressed by FoxO1,
can be transduced. How CD226 integrates in this model is not yet clear. Left: Under conditions of low PI3K activity, FoxO1 remains active, and Tcf7 and other genes
associated with pTex cells are expressed.
July 2022 | Volume 13 | Article 926714
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respond to ICB (60). Manipulation of PI3Kd pathways therefore
raises multiple issues, including how to appropriately balance the
promotion of TCF-1+ populations, while allowing development
of effective cytolytic CD8+ T and other immune cell responses.
Whether PI3Kd inhbitors are useful during ex vivo expansion of
TILs or CAR-T cells to maintain a TCF-1+ population that then
can be transfered in vivo or further expanded without PI3K
inhibition remains to be seen.
IL-2: A Key Player in T Cell Differentiation
and Function
Another approach that has been considered is therapeutic
administration of cytokines such as IL-2, to reinvigorate Tex
cells; however, this has yielded disparate results. In vitro, IL-2
drives the differentiation of cytolytic effector CD8+ T cells and
the acquisition of effector functions (61, 62). Accordingly,
following LCMV chronic infection, in vivo IL-2 treatment
boosted the number of antigen specific Tex cells and improved
viral control (60, 63). Interestingly, IL-2 treatment combined
with PD-1 blockade had synergistic effects, perhaps through anti-
PD-1 effects on pTex cells and IL-2 effects on promoting effector
cells (60). However, IL-2 treatment can also result in the
expansion of immunosuppressive Tregs, as well as vascular
leakage syndrome and thus may have undesirable secondary
effects (64, 65). IL-2-anti-IL2 complexes and stabilized forms of
IL-2 also can have distinct effects on different cell-types.

While the effects of IL-2 and IL-2-complexes are beyond the
scope of this review, recent data on IL-2 variants have yielded
some intriguing results (63–66). An engineered pegylated-IL-2
variant, THOR-707, was found to selectively engage the IL-2R b/
g complex and have a longer half-life, leading to tumor reduction
without Treg expansion (67). Another engineered IL-2 partial
agonist, H9T, that also activates IL-2Rb/g, promoted CD8+ T
cells with sustained TCF-1 expression and maintenance of a
stem-like state, with higher spare respiratory capacity indicative
of improved mitochondrial fitness (68). Although pAKT was
unaffected under the conditions examined, it is interesting to
speculate that H9T and other IL-2 variants may indirectly affect
PI3K and thereby, FoxO1-mediated regulation of Tcf7.

These engineered IL-2-variants unveil promising strategies for
boosting immunotherapeutic treatment regimes via promoting
TCF-1+ pTex cells (65). Interestingly, data argue that following
antigen stimulation, TCF-1 is required for the induction of
glycolytic capacity of central memory T cells, which rely on fatty
acid oxidation during memory phases in acute infection (69–71).
TCF-1 expression in Tex cells may therefore be critical to maintain a
state that can meet the continued bioenergetic demands in response
sustained antigen exposure. Indeed, metabolic profiling revealed the
importance of metabolism in Tex cell fate. Tex cells display
metabolic insufficiency, including diminished glucose uptake and
OXPHOS (72–74), resulting at least in-part from decreased
expression of the transcriptional coactivator peroxisome
proliferator-activated receptor gamma co-activator 1-alpha,
PGC1a, which has critical roles in mitochondrial biogenesis and
anti-oxidant responses (74). An in vivo CRISPR–Cas9 mutagenesis
Frontiers in Immunology | www.frontiersin.org 5
screen found that targeting the ribonuclease REGNASE-1
reprogrammed CD8+ T cells into long-lived effector cells with
improved mitochondrial fitness and anti-tumor responses. These
findings highlight the importance of mitochondrial quality, and
potentially mitochondrial activity, in orchestrating T-cell function
and fate during exhaustion (72, 74).

Nonetheless, Tex cells originating from a TCF-1+ population
during chronic infection following antigen elimination (‘recovered’
cells) likely still remain compromised: these cells maintain features
of an exhausted chromatin landscape and have been referred to as
‘epigentically scarred’ (15, 16, 75). Whether this contributes to the
failure of checkpoint blockade in many cases is unknown. Thus,
increasing the TCF-1+ population may not be sufficient as a
therapeutic strategy; approaches to increase epigenetic plasticity of
TCF-1+CD8+ T cells remain an important area for further
investigation. Such approaches could involve dampening chronic
inflammation (16) as well as preventing nutrient deprivation and/or
elimination deleterious metabolities (73, 76, 77).
NOT ALL ROADS LEAD TO ROME –

ROUTES TO PREVENT EXHAUSTION

In a striking report, intravenous vaccination using a TLR7/9 agonist
in conjunction with nanopartical presentation of a neoantigen
induced a higher proportion of stem-like CD8+ T cells compared
to subcutaneous immunization. Moreover, the stem-like TCF-1+

cells generated were able to differentiate into effector CD8+ T cells to
elicit anti-tumour responses (78). Similarly, the duration of antigen
presentation by specific dendritic populations in the draining lymph
node and spleenmay help augment and/or maintain the reservoir of
TCF-1+CD8+ T cells required for optimal immunity during chronic
antigen exposure (79–81). Such reports suggest that routes and
types of immunizations can elicit responses that facilitate the
development of successful tumor vaccines to overcome limitations
of exhaustion. Whether these approaches can work in combination
for chronic infection and cancer, whether they affect some of the
pathways described above, including activation of PI3K, IL-2 or
costimulatory pathways and what other techniques may be used to
boost the long-lived potential of adoptive cell therapies remain
important questions.
SUMMARY

The study of T cell exhaustion and the development of ICB has
moved rapidly in recent years. However, while the success of
immune-based therapies has been striking, the successful
implementation in only a fraction of cancers, argues that new
approaches are needed. Here, we reviewed several novel
approaches including stimulation of activating receptors and
pharmacological methods to increase TCF-1+ pTex cells.
Nonetheless, these data highlight the complexity of T cell
exhaustion and the fragile balance between T cell activation
and exhaustion. Combinations that recognize these limitations
July 2022 | Volume 13 | Article 926714
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while taking advantage of distinct features of these approaches
may ultimately help improve the success of immunotherapy.
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