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A B S T R A C T

Cardiovascular diseases (CVD) have been the leading causes of death in the U.S. for nearly a century. Numerous
studies have linked eicosanoids to cardiometabolic disease. Objectives and Methods: This review summaries
recent advances and innovative research in eicosanoids and CVD. Numerous review articles and their original
human or animal studies were assessed in the relevant and recent studies.
Outcome: We identified and discussed recent trends in eicosanoids known for their roles in CVD. Their sub-
sequent relationships were assessed for any possible implications associated with consumption of different
dietary lipids, essentially omega fatty acids. Eicosanoids have been heavily sought after over recent decades for
their direct role in mediating the enhancement and resolution of acute immune responses. Given the short half-
life of these oxidized lipid metabolites, studies on atherosclerosis have had to rely on the metabolites that are
actively involved in eicosanoid production, signaling or redox reactions as markers for atherosclerosis-related
molecular behaviors.
Conclusion: Further investigations expending current knowledge, should be applied to narrow the specific class
and species of eicosanoids responsible for inciting inflammation especially in the context of recent clinical
studies assessing the role of dietary lipid in cardiovascular diseases.

Introduction

According to the CDC’s National Vital Statistics Reports in the
United States, heart disease has been the leading cause of death for
approximately 90 years [1]. The onset of cardiovascular event is often
sudden and deadly, unless treated immediately. Cardiovascular events,
such as a myocardial infarction, and angina pectoris, are often the result
of atherosclerosis, a coronary artery disease (CAD). Notable risk factors,
based on the Framingham Heart Study and other studies by the CDC
and WHO, include: smoking, diabetes, physical inactivity, body mass
index (BMI), systolic blood pressure and total blood cholesterol/lipid
levels [2].

The formation of atherosclerotic fibrous plaque is the result of an
acute phase response of the innate immune system, involving mono-
cytes, macrophages, neutrophils and platelets. Studies involving an
acute phase response have identified extracellular molecules, cytokines
and eicosanoids, as mediators of inflammation [3–7].

Eicosanoids are a group of lipid mediators derived from eicosapo-
lyenoic acid. They represent the oxidized lipid products of an acute
innate response and have been widely explored since the genesis of
non-steroidal anti-inflammatory drugs (NSAIDs) [8].

Precursors to eicosanoids are polyunsaturated, long fatty acid chains
derived from ω-3 (n-3) and ω-6 (n-6) fatty acids (Table 1). Eicosanoids
contain 20 carbons. Eicosanoid synthesis may only begin if the pre-
cursor PUFA has been cleaved from the membrane bound phospholipids
by cytosolic phospholipase A2 (cPLA1) [9–11]. cPLA2 activation relies
on Ca2+, which rises as a result of inositol triphosphate receptor (IP3)
activation. Eicosanoids have been shown to mediate receptors involved
in Ca2+ influx and transcription factors that potentiate the propagation
of an acute immune response [12–15].

Specific eicosanoids that have been identified for having a role in
atherosclerosis pathogenesis have been found to derive mainly from
endothelial cells, epithelial cells and myeloid-derived granulocytes
[15,16]. The three pathways responsible for the production of eicosa-
noids are recognized by the enzymes involved, such as cyclooxygenase-
1 (COX-1), cyclooxygenase-2 (COX-2), lipoxygenases 5, 12 or 15 (5-LO,
12-LO, 15-LO) and cytochrome P450 (cyP450) [14,17]. This review will
discuss the biomarkers, enzymatic activities and precursors involved in
the production of notable eicosanoids, such as prostaglandin H1

(PGH1), prostaglandin D2 (PGD2), prostaglandin I2 (PGI2) and its pre-
cursor, prostaglandin E2 (PGE2), thromboxane A2 (TXA2), leukotriene
B4 (LTB4) and its products, Lipoxin A4 (LXA4), 12(S)-hydroxy-
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eicosatetraenoic acid (12(S)-HETE), 15(S)-hydroxy-eicosatetraenoic
acid (15(S)-HETE), 13-hydroxyoctadeca-dienoic acid (13-HODE), re-
solvin E (RvE), protectin D1 (PD1) and 15-epi-lipoxain A4 (15-epi-
LXA4) (Tables 2 and 3). These specific eicosanoids have been identified
in past and recent studies for their observable relationship with ather-
ogenesis and relevant nutritional studies [12–15,18–21]. Oxidative
states are known to be highly involved in the exogenous production of
eicosanoids and oxidized low density lipoproteins (oxLDL), which are
generally pro-atherogenic [21]. The reactive oxygen species (ROS) re-
leased by necrotic foam cells only further drives this oxidative state.

Eicosanoids

The three major pathways involved in eicosanoid production are
referred to as the COX pathways, the LOX pathways or the cyP450
pathway [12]. The COX pathway is mediated by COX-1/2 activities
within nearly every cell of the body and is responsible for the pro-
duction of prostaglandins, prostanoids and thromboxanes. The LOX
pathway refers to the actions of 5/12/15-LO within leukocytes to

produce leukotrienes, lipoxins and some hydroxyeicosatetraenoic acids
(HETEs). The cyP450 pathway involves cytochrome P450’s production
of the remaining HETE’s and epoxyeicosatrienoic acids (EET’s). While
cyP450 is present within all cells, the majority of its activity involves
the metabolism of drugs occurring within the liver, large and small
intestines, lungs, kidneys and plasma [18,22,23]. The first major studies
conducted to track disease-related differences in eicosanoid levels were
limited to the analysis of urine samples containing mainly cyP450
metabolites, due to the extremely short half-life and predisposition for
oxygenation of eicosanoids and their metabolites [23,24]. CYP450 can
produces several other lipid mediators with vasoactive such as the
epoxyeicosatrienoic acids (EETs) which are mainly vasodilators, and
the 20-hydroxyeicosatetraenoic acid (20 HETE) which is a known va-
soconstrictor. Arachidonic acid metabolized by CYP enzymes results in
epoxygenase and hydroxylase metabolites. Epoxygenase metabolites
are generated by CYP2C or CYP2J enzymes and hydroxylasemetabolites
are generated by CYP4A or CYP4F enzymes. Several CYP450 single
nucleotide polymorphisms (SNPs) genes involved in arachidonic acid
metabolism via have been investigated for possible association with
cardiovascular disease (CVD). The development of fatty acid epoxy
drugs has advanced dramatically in the recent years. Large body of
literature on arachidonic acid CYP pathway is currently available on its
chemical structure, evaluation and potential clinical utilizations. The
recent identification of identified G-protein receptor 75 (GPR75) as a
specific target of 20-HETE has provided the molecular basis for the
signaling and pathophysiological functions of its modulation mediated
by 20-HETE in cardiovascular diseases. This also in line with the recent
identification of the soluble epoxide hydrolase inhibitors and the new
epoxyeicosatrinenoic acid analogs EET-A which are shown to reduced
renal TNF-α, IL-6, IL-1β, and IFN-γ expression and prevents renal injury
in a mouse model of SLE by reducing inflammation and EET-B treat-
ment reported to markedly increases heme oxygenase-1 (HO-1) im-
munopositivity in cardiomyocytes and reduced cardiac inflammation
and has an overall beneficial therapeutic actions to reduce cardiac re-
modeling in after myocardial infarction [25–32]

The metabolic events mediated by COX-1/2 and 5/12/15-LO are
heavily focused on the oxidation of arachidonic acid (AA) although
these metabolic pathways are assumed to be universal for all precursors
of eicosanoids, especially for EPA. However, there is evidence that the
minor molecular differences between products could be the difference
that dictates a pro-inflammatory role or an anti-inflammatory role (e.g.
EPA and γ-linolenic acid (GLA) products are categorized as anti-in-
flammatory while the majority of AA products are pro-inflammatory)
[25].

Cyclooxygenase-derived eicosanoids

The COX-1/2 pathways are widely known for their role as mod-
ulators of inflammation and are the major target of non-steroidal anti-
inflammatory drugs (NSAID’s). COX-1/2 are also referred to as pros-
taglandin H-synthase 1 (PGH-S1) and prostaglandin H-synthase 2
(PGH-S2), respectively. The most abundant products of the COX
pathways are prostaglandins, prostanoids and thromboxanes.
Prostaglandins were the first eicosanoids discovered in the early 1930’s,
making them the oldest group within the eicosanoid family [25]. Of

Table 1
ω-3 and ω-6 PUFAs involved in the eicosanoid family.

PUFA Acronym ω C:Δ Δ IUPAC

α – Linolenic Acid ALA (αLA) 3 18:3 9, 12, 15 (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid
Arachidonic Acid AA 6 20:4 5, 8, 11, 14 (5Z,8Z,11Z,14Z)-eicosa-5,8,11,14-tetraenoic acid
dihomo – γ – linolenic acid DGLA 6 20:3 8, 11, 14 (8Z,11Z,14Z)-eicosa-8,11,14-trienoic acid
Docosahexaenoic acid DHA 3 22:6 4, 7, 10, 13, 16, 19 (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid
Eicosapentaenoic acid EPA 3 20:5 5, 8, 11, 14, 17 (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoic acid
Linoleic Acid LA 6 18:2 9, 12 (9Z,12Z)-octadeca-9,12-dienoic acid

Table 2
Actions of selected prostaglandins, and thromboxane involved in cell signaling.

Molecule Molecular Formula Action

PGH2 Precursor to mediators of
inflammation

PGD2 Cell adhesion molecule
expression activation,
enabling leukocytic
chemotaxis

PGE2 15-ketoPGE2 precursor,
induces hypertrophy

PGF2α Increases intracellular
Ca2+ levels, stress on heart
enhances production,
biomarker of heart failure

PGI2 Vasodilation, platelet
aggregation inhibitor

TxA2 Induces vasoconstriction,
platelet aggregation

15-keto-PGE2 PPAR-γ agonist: cell
growth regulation
(adipogenesis, tumor
suppression)
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those, the COX products most involved with atherosclerosis and their
roles are PGD2, PGE2, PGI2, TXA2 and 15-keto-PGE2.

COX-1/2 can produce any prostaglandins, their activities rely on the
cleavage of AA from its membrane bound phosphoglycerates by cyto-
solic phospholipase A2 (cPLA2). cPLA2 requires activation by Ca2+ le-
vels. cPLA2 has a unique mechanism for the removal of AA, as it resides
within the bilayer of the plasma membrane and converts AA to pros-
taglandin G2 (PGG2) within the cytosol [12,13,33,34].

COX-1 is expressed within nearly every cell of the body, as is COX-2,
however COX-1 is constitutively active while COX-2 is only activated by
inflammation. Studies have shown COX-2 to be constitutively active
within kidney, brain, tracheal, epithelial and endothelial cells. 19 The
reasoning for this is believed to be due to the sensitivity of these tissues
or their constant interactions with toxins, similar to cyP450. Thus, the
mechanisms of AA metabolism into series 2 prostaglandins are gen-
eralized in the majority of literature as COX-1/2, where the only factors
telling whether COX-1 and COX-2 are acting simultaneously or not is
the type of cell being examined and the presence of inflammation. This
difference between COX-1 and COX-2 is that in the face of inflamma-
tion, COX-2 activation adds to COX-1’s constitutive metabolism of AA,
resulting in a significantly enhanced robust inflammatory response.
Just as COX-1/2 mechanisms are generalized as one, the same me-
chanisms that are known to happen to AA, are also believed to occur
with EPA, save for a few molecular differences in COX-1/2 products, as
EPA has one more double bond than AA does. EPA derivatives from the
COX pathways are referred to as series 3 prostaglandins, thromboxane
and prostanoids.

Upon Ca2+ activated cPLA2 metabolism of AA into PGG2, PGG2 is
converted to PGH2 intracellularly along the plasma membrane via heme
dependent COX-1/2 (FADS1/2), present in nearly all cells of the body
[12,13]. PGH2 is the primary precursor of all prostanoids, prostacyclins
and thromboxanes. Leukocytes are unique in that they possess hema-
topoietic PGD synthase (H-PGDS), which is glutathione (GSH) and Ca2+

dependent and has Mg2+ as a co-factor that reacts with PGH2 to pro-
duce PGD2 [35]. Given this characteristic of H-PGDS, PGD2 is a leu-
kocyte-specific product that is only produced in response to in-
flammation. PGE2 is derived from PGH2 within myeloid-lineage derived
cells as well, with an enzyme containing GSH as a co-factor. PGE2 has a
demonstrated capacity to sustain cytokine signaling and regulate hor-
mone production (i.e. estrogen and progesterone). However, PGE2 as-
sociated cytokines relationship with atherogenesis is not well under-
stood [36].

PGE2 is indirectly correlated with atherosclerosis via its influence on
estrogen and progesterone production, due to its products: PGF2α and
PGI2. PGF2α has been shown to prevent corpus luteum formation in vivo
in microminipigs in Japan, providing novel insights for contraceptive
methods that could decrease risk for CVD in females currently using
contraceptive pills [37]. Higher estrogen levels exhibit lower LDL and
higher HDL levels in whole blood while progesterone exhibits the op-
posite effect. As the precursor for PGI2, a prostacyclin known to induce
vasodilation and prevent platelet aggregation, PGE2 is necessary for the
subsequent resolution of inflammation, despite the abundance of stu-
dies over the last 30 years depicting PGE2 as pro-atherogenic. In ad-
dition to the findings of these studies, a novel contraceptive mechanism
has been discovered [36,38].

Prostaglandin I synthase (PGIS) is a heme dependent, ferrous en-
zyme that is responsible for converting PGH2 into the anti-atherogenic
prostacyclin, PGI2 [10]. PGI2 receptors (IP1 and IP2) are isomers of IP3

and are present on endothelial cells, VSMC’s, platelets and mesangial
cells [39]. Unlike IP3’s known mechanism for protein mediated Ca2+

influx leading to cPLA2 activation, IP1/2 have been shown to have
overall cardio-protective actions, suggesting they have an antagonist
mechanism from IP3 [40]. Alternatively, PGH2 interactions with the
heme dependent thromboxane A synthase (TXAS) result in the pro-
duction of pro-atherogenic TXA2 [13,41]. Expression of TXA2 receptor
isoforms, thromboxane receptor’s α and β (TPα and TPβ) is abundant on
platelets, VSMC’s, macrophages and mesangial cells [42].

PGE2 is also a precursor for 15-keto-PGE2, which has specific anti-
atherogenic roles in relation to cell cycle regulation and tissue growth,
nearly opposite of TXA2. This conversion is facilitated by 15-hydro-
xyprostaglandin dehydrogenase (15-HPGD) in association with NAD+

or NADP+ for COX-1 or COX-2, respectively [13,42]. 15-keto-PGE2 is
anti-atherogenic due to its agonist relationship with peroxisome pro-
liferator receptor-γ (PPAR-γ), which is a ligand-activated transcription
factor that has been shown to regulate lipid metabolism, glucose
homeostasis, proliferation, specifically adipogenesis and inflammation
[42]; by binding PPAR-γ and blocking its activation. One other ligand
of PPAR-γ, 15-deoxy-Δ12,14-prostaglandin J2 (15ΔPGJ2), has also been
shown to have anti-inflammatory effects that decrease mPGES expres-
sion levels, lowering PGE2 production. Lastly, one more atherogenic
product of PGE2 is PGF2α, which has been shown to increase in-
tracellular Ca2+ levels regulate estrogen and progesterone and is con-
sidered a marker of atherogenesis within endothelial cells [35,43].
Although PGE2 has been viewed as one of the major mediators of

Table 3
Actions of selected Leukotrienes and other precursors involved in cell signaling.

Molecule Molecular Formula Action

LTA4 Precursor to mediators of inflammation (e.g., smooth muscle contraction; leukocyte recruitment)

LTB4 Activates lipid metabolism, leukocyte recruitment, catabolized by PPARα, inhibition of apoptosis

LTE4 Major product of PMN leukocytes and lymphocytes (murine)

5(S)-HETE Leukotriene precursor, regulates LDL oxidation in monocytes and Mφ’s

12(S)-HETE Activates lipid oxidation (stimulate oxLDL accumulation), leukocyte recruitment & proliferation, regulates monocyte-
endothelial cell adhesion interactions

15(S)-HETE Activates lipid oxidation (stimulate oxLDL accumulation), leukocyte recruitment and differentiation, PPAR-γ-specific
activation, regulates monocyte-endothelial cell adhesion interactions, activate LDL oxidation in monocytes & Mφ’s, Mφ
cholesterol efflux regulatory factor
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inflammation, however recent studies have demonstrated that PGE2
can serve both pro- and anti-inflammatory functions [44]. Frolov et al.
have demonstrated PGE2 as important negative regulators of neu-
trophil-mediated Inflammation [44]. In another study Qian et al. re-
ported that PGE2 negatively regulate inflammation by inhibiting CCL5
expression in activated macrophages [45]. Work by Loynes et al. illu-
strated that PGE2 production at sites of tissue injury promotes an anti-
inflammatory neutrophil phenotype and determines the outcome of
inflammation resolution in vivo [46]. Similarly, a study by Thompson
et al. on myeloid-PTP1B knockout mice on atherogenic background
(ApoE-/-/LysM-PTP1B) revealed a decreased atherosclerotic plaque
lesions associated with increased secretion of circulating anti-in-
flammatory cytokines and PGE2 [47], these reports clearly indicate that
PGE2 indeed retain two-edged properties.

Metabolisms of COX-1/2 pathways have been shown to occur within
the cytosol, along the plasma membrane, as the enzymes are mainly
membrane bound with local receptors. The subsequent implications of
where prostaglandin synthesis and signal transductions occur could be
explanatory with the short amount of time that is required to produce
eicosanoids. Recent findings involving γ-linolenic acid (GLA) have
shown that its molecular behavior favors its metabolism into Dihomo-
gamma linolenic acid (DGLA, 20:3, n-6) (DGLA), PGG1 then PGH1 and
the remainder of series 1 prostaglandins accordingly to the aforemen-
tioned COX-1/2 mechanisms modeling AA metabolism. Series 1 pros-
taglandins resulting from GLA are highly cited for their anti-in-
flammatory benefits and rare plant-derived oils that are high in GLA
have recently grown in popularity due to this knowledge [25].

As NSAIDs target the COX enzymes to prevent inflammation and
pain, numerous studies have shown the necessary role of pro-in-
flammatory eicosanoids in order to produce anti-inflammatory eicosa-
noids with specific NSAIDs being more correlated to developing CAD
risk than others, this been reported in numerous studies. The loss of
COX-2 in an in vivo murine model was reported to be detrimental to the
resolution of inflammation, potentiating damage, resulting in higher
rates of atherogenesis [48,49]. In addition to these findings, a very
recent study has displayed that two different bacterial pathogens can
elicit very different products and behaviors from the COX enzymes
within macrophages [50]. Meanwhile, the most beneficial NSAID cur-
rently is aspirin, due to its numerous glycosylation events with enzymes
belonging to both the COX and LOX pathways. Studies have shown that
specific COX enzyme inhibition allows for LOX enzyme compensation
to occur, by metabolizing HETEs and other essential fatty acids, such as
DHA or EPA instead of AA, into anti-inflammatory oxidized fatty acids.

Lipoxygenase-derived eicosanoids

Lipoxygenase expression was previously debated as being solely
unique to leukocytes or unique to parenchymal cells and their asso-
ciated mast cells, however there is evidence for both now [51]. Most
evidence identifies leukotrienes (LTs), however, that are derived from
leukocytes and before settling this debate, LTs were named based on
their source and structure, as leuko- is the Greek root word, meaning
white in relation to the white blood cells that produced them, and triene
refers to the three conjugated double bonds in a given oxidized PUFA
chain produced via lipoxygenase activities [52]. The most abundant
products of the LOX pathway include leukotrienes and HETEs, which
are precursors for lipoxins, protectins, resolvins and hydroxyoctadeca-
dienoic acids (HODEs), which are most often noted due to their ap-
parent role in resolving inflammation and protecting tissue from further
damage (i.e. fibrosis or oxLDL induced necrosis). Mast cells, in response
to allergy-triggered asthma or platelet activation, and PMN’s are the
focal point of most LOX studies as they are the most abundant source of
LTs and are easier to culture than parenchymal cells [15,53–55].

Nearly all LTs are derived from leukotriene A4 (LTA4), the primary
product of AA through conditional lipoxygenase activation. Synthesis of
LTA4 relies on a complex mechanism that includes the dimerization of

5-LO activating protein (FLAP) leading to its translocation from the
cytosol to the perinuclear membrane to activate 5-LO cPLA2 with AA
[56]. Methods to inhibit 5-LO target FLAP (e.g. MK886) to prevent its
phosphorylation-induced dimerization and therefore, its ability to ac-
tivate 5-LO. By developing these agonists, the mechanisms of FLAP and
5-LO perinuclear translocation could be better under as these agonists
did not appear to interrupt the translocation event of 5-LO, suggesting
5-LO translocation occurs independently of FLAP activities [52]. Once
FLAP has been inhibited, 5-LO activation for translocation was de-
monstrated to be by phosphorylation, leading to AA metabolism into
LTA4 [13,52]. LTA4 actions have been associated with smooth muscle
contractions and leukocyte recruitment, however LTA4’s exact roles in
these mechanisms are unclear and knowledge of LTA4 metabolites only
casts more doubt. LTA4 can undergo one of two different pathways, all
of which occur within the perinuclear membrane, allowing leukotriene
and lipoxin close proximity to their ligand activated transcription fac-
tors. This evidence supports prior knowledge of upregulated levels of
transcription and translation within activated leukocytes during an
acute phase response.

Plant models of LTA4 production reference a cytosolic and ferrous 5-
LO which derives LTA4 from 5-HpETE intermediates that had been
obtained from ALA or LA, which plants have the ability to produce from
unsaturated fatty acids. This enzyme’s independent self-maintenance is
unique from mammalian 5-LO pathways, as the plant Fe2+ within 5-LO
is responsible for facilitating the redox reactions required to return 5-
LO to its active form after each reaction. Alternatively, mammalian 5-
LO requires an independent lipid hydroperoxide reaction to occur in
order to restore 5-LO to its active form after reacting with AA [52].

Leukotriene A4-hydrolase (LTA4-H) is responsible for metabolizing
LTA4 into leukotriene B4 (LTB4), which is a marker of atherosclerosis
with known mechanisms that induce pro-inflammatory behaviors.
Further oxidation of LTB4 by 5-LO produces 5(S)-HpETE, a precursor
for identified anti-inflammatory lipoxins. If LTA4 is not metabolized
into LTB4 then leukotriene C4-synthase (LTC4-S) can metabolize LTA4

into LTC4 , which is a major precursor of glutamic acid (Glu) and two
more isoforms involved in resolving inflammation. Next, γ – glutamyl
transpeptidase (GGT) is responsible for the conversion of LTC4 to Glu
and LTD4, which is followed by membrane-bound zinc metalloprotein
dipeptidase (MBD) facilitating LTD4’s metabolism into LTE4. LTE4 is a
cysteinyl of notable interest for identifying risk for atherosclerosis be-
cause it can be analyzed in urine samples and, therefore, has been as-
sociated with chronic inflammation deriving from lupus erythematosus
[17,53–57]. LTE4, as well as TXB2 and PGE2, have been shown to have a
negative correlation with vitamin B6 through clinical studies supple-
menting different combinations of B vitamins and assessing homo-
cysteine levels.

GGT is activated by glycosylation and inhibited when acetylated by
aspirin, which allows LOX enzymes to compensate by oxidizing other
essential PUFAs or eicosanoids into characterized anti-inflammatory
lipoxins, protectins, resolvins and HODEs. Identified anti-atherogenic
products resulting from GGT acetylation, have been shown to be pro-
ducts of hydroperoxyl-eicosatetraenoic acids (HpETEs) derived by
cyP450’s metabolism of AA, although both LOX enzymes and cyP450
have been shown to produce various HETE isomers. 5-LO, 12-LO and
15-LO derive 5(S)-HETE, 12(S)-HETE and 15(S)-HETE accordingly from
5/12/15(S)-HpETEs. 15(S)-HETE is the precursor Lipoxins (i.e. LXA4

and LXB4) and can also be produced by 15-LO independently of cyP450
and aspirin.

Other products associated with aspirin treatment include 13-HODE,
17(S)-HpDHA, 15-epi-LXA4 and PD1 and RvE, which possess potent
anti-atherogenic affects, supporting aspirin’s role as an anti-in-
flammatory drug lipid [52]. 15-epi-LXA2 is also referred to as aspirin-
triggered LXA4 (ATLa9), inspiring the molecular structure of synthetic
anti-inflammatory drugs [58]. PD1 and RvE have specifically been
characterized for their capacity to protect tissues from injuries asso-
ciated with extensive inflammation and resolving the inflammation of
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an acute phase response, respectively (see Fig. 1).
In addition endothelial nitric oxide (NO) and foam cell ROS, nearly

all leukotrienes and their products are capable of being involved in
extracellular redox reactions, which can also oxidize membrane lipids
or lipoproteins. ROS are produced within macrophages for the lysis and
oxidation of phagocytosed pathogens or debris.

Novel drug development

Aspirin is still the most successful NSAID used in treating in-
flammatory acute episodes and even its products have inspired the
structure of novel synthetic drugs (e.g. ATLa) [58]. Given the re-
storative and protective effects of these anti-inflammatory lipoxins re-
sulting from treatment with aspirin, ATLa’s (an aspirin-triggered lipoxin
A4 synthetic analog) have inspired the design of novel drugs that mimic

their active sites. In one successful study, the design of numerous iso-
mers resulted in two extremely successful molecules that mimic the
triene-nature of ATLa’s [58].

Similar to MK886 mechanisms, inhibiting FLAP translocation and
the subsequent activation of 5-LO, derivatives of ibuprofen (BRP-7, also
referred to as 6 FLAP inhibitor) have been designed to imitate this
action by inhibiting cPLA2 from releasing AA [59]. Currently, the most
successful agonist of cPLA2 is a derivative of BRP-7, which as a nitrile
group added to the C(5) position of the BI-ring that allows this com-
pound the highest affinity for cPLA2 and most significantly lowered
levels of AA’s immediate precursors [60]. The implications of a drug
that successfully limits AA metabolism would be applicable to diets
high in AA, such as the Western diet, and for those afflicted with a
chronic inflammatory disease, such as obesity, diabetes, lupus, irritable
bowel syndrome (IBS) or rheumatoid arthritis (Table 4).

Fig. 1. ω-3 and ω-6 PUFAs and their subsequent
products Omega 3& 6 PUFAs metabolic path-
ways in mammals leading to eicosanoid pro-
duction. ALA and LA are the major precursors of
eicosanoids, derived mainly from plants.
Desaturation and elongation reactions mediated
by specific enzymes generates AA, EPA and DHA,
which are the direct precursors of prostaglandins
(PGs), thromboxanes (TXAs) and leukotrienes
(LTs). EPA production inhibits AA metabolism as
EPA derivatives are widely known for anti-in-
flammatory and anti-atherogenic effects.

Table 4
Eicosanoids and other lipids precursor’s modulators of cell signaling.

Lipoxin Molecular Formula Action

LXA4 Vasodilation, competes with LTD4 receptors to regulate neutrophil recruitment

LXB4 Vasodilation

13-HODE Activate/deactivate tissue-specific transcription factors involved in cell growth

17(S)-HpDHA Precursor of PD1 and RvD1

PD1 Prevent (Mφ) apoptosis by enhancing PMN recruitment

RvE1 Tissue regeneration, lesion restoration

15-epi-LXA4(ATLa9) Reduces leukocyte infiltration to site of inflammation
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Nutrition

NSAID treatments have been correlated with increased risk of de-
veloping CAD and current evidence suggests COX inhibition also hin-
ders the conversion of ALA or LA into AA, EPA or DHA [60–63].
Overall, this knowledge only drives the need for more studies to iden-
tify alternative therapies via nutrition. Currently, essential n-3 and n-6
PUFAs are the focal point of these nutritional studies identifying their
regulation of eicosanoid production and atherosclerosis due to their
involvement in redox reactions as antioxidants that delay the occur-
rence of oxLDLs and subsequent formation of eicosanoids. Ideally, n-3
and n-6 consumption would be accomplished in a balanced fashion;
however, most diets tend to favor certain essential PUFAs over others,
especially AA in diets consisting mainly of meat and dairy or DHA in
diets that include an abundance of fish [64–68].

Dietary consumption of AA, EPA and DHA increases the availability
of these essential PUFAs for our tissues, as our bodies are not extremely
efficient in metabolizing ALA into AA or LA into EPA then DHA.
Additionally, competition for enzymes involved in producing EPA ac-
tually reduces production of AA [13]. In fact, one clinical study sup-
ports this as female participants on a vegan diet had the lowest levels of
AA and LDL [69,70] the biomarkers of atherosclerosis compared to
males/females on regular Western diets or vegetarian diets with con-
sistent dairy consumption [71–73].

AA, EPA and DHA are derived from ALA and LA through a series of
desaturation and elongation events, mediated by δ6-desaturase, elon-
gase and lastly, δ5-desaturase. δ6-desaturase and δ5-desaturase are also
referred to as fatty acid desaturase 1 (FADS1) and fatty acid desaturase
2 (FADS2), respectively, which are also the COX-1/2 enzymes. The
elongation process involved is also unique to these essential fatty acids,
as elongase has selective specificity for long fatty acid chains (10–24
carbon chains) [74–76].

The enzymes involved in the production of AA, EPA, DHA and ei-
cosanoids also rely upon the involvement of specific vitamins and mi-
nerals as the active donor for reactivating their active sites or as the
active site in catalytic metalloproteases. FADS1 relies on vitamin B6
[77], Mg2+ and Zn2+, while FADS2 activity is dependent upon niacin,
Zn2+ and vitamin C, and the involvement of these vitamins and mi-
nerals can be supported by studies that demonstrate an association
between their supplementation or deficiency and relative levels of in-
flammation or rates of atherosclerosis in vivo [78–80]. In the LOX
pathway, LTA4-H, GGT and MBD are all Zn2+ dependent metallopro-
teases. Studies that specifically supplemented niacin, folic acid and/or
folate have distinguished niacin’s role in promoting inflammation re-
solution and the combined effect of folic acid and folate in lowering the
aforementioned homocysteine levels (LTE4, LXB4 and PGE4) [81,82]. A
few common foods that are rich in niacin/vitamin B3 include poultry,
peanuts, mushrooms, liver, tuna and peas.

Some studies suggest increasing n-3 consumption while others favor
n-6 consumption [51,83–86]. However, numerous studies shows that
simply increasing one or the other only increases expression levels of
COX enzymes and subsequently their primary products, which tend to
be pro-atherogenic [87,88]. In this specific study, Wister rats were fed
either a strict flaxseed oil diet or palm oil diet. The flaxseed oil diets
enhanced COX enzyme expression resulted in heightened aortic sensi-
tivity to phenylephrine, a vasodepressor often utilized clinically to
lower blood pressure or as a nasal decongestant [89]. In light of this
study and given the antioxidative nature of n-3/n-6’s, preventing the
oxidization of LDLs during an acute phase response, it can be ques-
tioned as to whether or not these heightened levels of n-3/n-6 PUFAs
also potentiate the conversion of primary eicosanoids to their anti-
atherogenic counterparts. Additionally, a new source of n-3 PUFAs from
botanical oils (e.g. primrose essential oil) has been identified to have
equally anti-atherogenic capacities as fish oil or echium oil [25].
Primrose essential oil is known to have higher levels of GLA, which is
rare in nature, and could be of more clinical importance given theTa
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potentially potent anti-inflammatory effects of its series 1 pros-
taglandins.

Foods identified to have high levels of essential omega-fatty acids
can be found in studies involving PUFA’s that are abundant in walnuts,
flaxseeds, botanical oils and conjugated LA (CLA) are most geared to-
wards nutritional therapies than other novel therapies. In one study
investigating nutritional therapy for metabolic syndrome, cinnamalde-
hyde demonstrated antioxidative and anti-inflammatory effects that
preserved the vascular endothelium from fructose-induced cardiovas-
cular damage [90–93].

Other dietary methods that have been identified to reduce in-
flammation related to atherosclerosis cite anthocyanins and other
polyphenolic compounds, found mostly in highly pigmented fruits and
vegetables that are dark red, purple or blue. These polyphenols com-
pounds demonstrated that they can prevent atherogenesis by lowering
levels of TXB2 and 12-HETE and showing reduced platelet aggregation
[94–98]. The proposed involvement of anthocyanins and polyphenols
are not specific to COX or LOX, but their affinity for redox reactions
could theoretically attenuate overall lipid oxidation levels, which can
been associated with overall lower levels of eicosanoids and subse-
quently less robust acute phase responses altogether [98–102] (see
Table 5).

Conclusion

The role of chronic inflammatory diseases linked to atherosclerosis
often involves cardiometabolic dysfunctions; the relatively reactive
nature of eicosanoids is responsible for their specifically local actions in
an acute phase response; only supporting the need for more studies
identifying nutritional therapies. Additionally, AA levels in the Western
diet raises questions involving its activation-dependent COX-2 meta-
bolism in leukocytes in relation to constitutive COX-1 activities, which
produces mainly GLA from LA. The effect of excess AA on these en-
zymes would be useful in identifying potential improvement targets
related to a Western diet. The association of high dietary AA with
atherogenesis further supports evidence for critical nutrition’s inter-
vention in atherosclerosis and highlights the need for nutritional
therapy development over pharmaceutical drugs intervention for the
treatment of eicosanoids driven inflammation and oxidative stress re-
sponsible for CVD. Ideally, diets that balance n-3 and n-6 in combina-
tion with the vitamins or minerals associated with their enhanced
metabolism and bioavailability would be beneficial to these afore-
mentioned diseases or biomarkers for atherosclerosis. Additionally,
current initiatives to increase consumption of fruits and vegetables
could potentially lower future rates of heart disease especially in
Westernize societies.
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