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Abstract: High-throughput virtual screening (HTVS) is, in conjunction with rapid advances in
computer hardware, becoming a staple in drug design research campaigns and cheminformatics.
In this context, virtual compound library design becomes crucial as it generally constitutes the first
step where quality filtered databases are essential for the efficient downstream research. Therefore,
multiple filters for compound library design were devised and reported in the scientific literature.
We collected the most common filters in medicinal chemistry (PAINS, REOS, Aggregators, van de
Waterbeemd, Oprea, Fichert, Ghose, Mozzicconacci, Muegge, Egan, Murcko, Veber, Ro3, Ro4, and
Ro5) to facilitate their open access use and compared them. Then, we implemented these filters in
the open platform Konstanz Information Miner (KNIME) as a freely accessible and simple workflow
compatible with small or large compound databases for the benefit of the readers and for the help in
the early drug design steps.

Keywords: high-throughput virtual screening; virtual screening; compound libraries; library design;
compound filtering

1. Introduction

Combinatorial chemistry (CC), novel library design methodologies, and high-throughput
screening (HTS) represent the standard approaches for synthesis and evaluation (search-
ing and selecting) of potential lead compounds in drug design efforts [1]. The combined
use of chemical libraries and HTS to sift through large libraries and select desired com-
pounds vastly increases the success rate of drug discovery programs [2,3]. Assays are now
performed with libraries consisting of several million compounds: (Pfizer, 4 million [4];
Novartis 1.7 million [5]; Astra Zeneca 4 million [6]). Physical compound libraries and HTS
are still regarded as the staple method for identification of leads; however, the advance
of computational tools and in silico chemistry means that computer-aided methods have
become indispensable in modern drug design efforts. If commercial physical compound
libraries include several million molecules, the virtual compound libraries nowadays span
from 107 to 1018 molecules. Nevertheless, such expansion of chemical space is a double-
edged sword, as on one hand the probability of finding potential leads when screening
larger libraries is greater, but on the other hand, screening of entire libraries even with
the aid of computational methods may not be economically viable or even accessible in a
timely manner. With the identification of the biological target in the early steps of the drug
discovery process and the definition of the binding site, the chemical space adequate for
further lead design becomes specific, and such information can be used to tailor compound
libraries [7]. The specific nature of molecular recognition and interaction combined with
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the fact that drugs must exhibit additional properties such as bioavailability and accept-
able toxicity profiles severely narrows the adequate chemical space making drug design a
monumental undertaking. Therefore, in a contemporary VS (virtual screening) or HTVS
(high-throughput virtual screening) scenario, the database design is essential for efficient
downstream calculations and in vitro testing. In order to achieve success in drug design
efforts we need to adhere to certain library design guidelines. Libraries should focus the
chemical space on the specific problem at hand, the compounds synthesizable and enriched
with molecules that have drug-like properties [8].

The main challenge of library construction is to cover as much diversity of the chemical
space as possible, while keeping the total number of compounds low to reduce time and
money consumption [9,10]. Various molecular filters are often used to increase the hit rates
of drug development campaigns [11]. With the hit rate of screening being on average as
low as 1%, the simplest and most direct way to increase hit rate is to eliminate molecules
with a low probability of becoming leads [12]. Filtering removes both unwanted chemical
structures and unwanted chemical properties and is used to tailor the molecular libraries
in a target focused manner [1]. The work on molecular filters was pioneered by Chris
Lipinski and coworkers, who compared early HTS and combinatorial chemistry drug hits
at Pfizer (up to 1994) with a subset of 2245 drugs from the World Drug Index [13]. The aim
was to understand the common molecular features of orally available drugs and using an
efficient version of the QSAR paradigm for structure permeability as suggested by Van
de Waterbeemd et al. [14]. They came to several conclusions on the factors affecting poor
absorption and permeation [15]. The main principle behind filtering of libraries is based on
the term of drug-likeness. Although the term is often used in different ways by different
authors, it generally refers to molecules that have properties or contain functional groups
that are consistent with the majority of the known drugs [3,16,17]. The typical drug-like
compounds exhibit desirable properties such as oral bioavailability, low toxicity, membrane
permeability, and reasonable clearance rates [18]. Drug-like molecules therefore occupy
distinct chemical space described by molecular descriptors and assigned cut-off values
derived from experience. The first and to this day the most popular filters in use focused on
finding effective and orally absorbable compounds [3]. The main goal of such filters was to
address ADME (absorption, distribution, metabolism, and excretion) issues. The research
on this topic points towards the fact that certain properties such as logP, MW (molecular
weight), and number of hydrogen bonding groups correlate with oral bioavailability. This
fact has been used to improve the success of finding lead-like molecules with filters that bias
the chemical space of libraries, resulting in filters designed for various drug development
applications [16,17]. Besides filters for drug-like properties, several filters exist that adopt
the same knowledge-based approach in their design but expand beyond the scope of
classic drug-like filtering. Filters such as the Ro4 (rule-of-4), designed to focus libraries on
protein–protein interaction inhibitors, use descriptor cut-offs that are opposite of what is
traditionally defined as drug-like and attest to the universal nature of molecular filters [19].

With preparation of molecular libraries, it is not just a question of what to filter out
but when. Rules in the form of filters mean that compounds are discriminated on a pass or
fail basis—compounds that pass the rules are considered equal, as are all that breach the
rules [20]. Typically, filters are employed in the starting steps of a drug discovery campaign.
Applying such filters upfront reduces the number of compounds analyzed in successive
steps, speeding up the drug development process. However, this comes at the price of
eliminating compounds that could show desirable properties in later phases. This is espe-
cially true for stringent filters [21] and for the use of compounds that have conformational
flexibility [22]. The application of filters in the later stages avoids the problem of eliminating
potential leads, but also causes the computationally intensive tasks to be performed on
larger libraries, increasing both the financial and time costs. Moreover, we would like to
point out that some authors argue against screening out promiscuous compounds in the
early drug discovery [23]. Opponents of filtering point out that any rule-based system of
filtering ignores the fact that exceptions exist, and that blind use of such restrictive filters
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would eliminate potential drugs such as cyclosporine and erythromycin, where the majority
of the drug-like rules break down [3]. Exceptions such as the aforementioned drugs bring
up an important topic of distinction between properties of useful lead-like molecules and
drugs. Regardless of whether the screening is done upfront of filtering on more diverse
libraries or after filtering on more focused libraries, structural changes for lead optimization
will usually be necessary [3]. In general structures, lead compounds exhibit less molecular
complexity (less MW, fewer number of rings and rotatable bonds) and are less hydrophobic
(lower clogP and logD). This indicates that the process of optimizing simple leads into
drugs is favorable, supporting the idea of filtering libraries before screening and optimizing
them into drugs later [24]. Filtering out “undesirable” molecular species using compu-
tational filters thus forms a key element in library preparation and carries an informed
decision in defining “favorable” or “undesirable” properties [25]. Thresholds for such
properties are often derived from the experience of the pharmaceutical industry [21]. The
criteria of “undesirable” structures should always be considered in their suitable scientific
context, e.g., the loss of peptidomimetic molecules employing typical rule-based filters
such as the Ro5 (Lipinski’s rule of five) in the development of a protease inhibitor library
would result in a poor hit rate [13,26]. Therefore, we encourage the reader to consider the
biological context of the target, the drug discovery campaign, and to employ a plethora of
filters to flag compounds for consideration and design in the subsequent drug discovery
campaign steps. When using multiple filters in a sequential manner it is generally best
to employ the filter that removes the most compounds first to reduce time consumption
in later steps. One should also consider which filters will be applied without exceptions
and which ones will merely flag the compounds for later assessment. Those that will
filter without exceptions should be applied beforehand. A good example of a consecutive
filtering protocol is described in the work of Jukič et al., where the library was first filtered
for large and small compounds followed by filtering for aggregators, PAINS and REOS [27].

To successfully apply filters in HTVS, the selected compound library must use sup-
ported data formats, for example, the string representation SMILES (simplified molecular
input line entry specification format) or 3D representations such as SDF (structure-data
file format) or MOL (MDL Molfile) [28]. In most cases, 3D conformational data are not
required for the use of filters, as these filters are usually referred to as “2D filters”. Despite
the widespread adoption of SMILES for storage and interchange of chemical structures no
standard for generating SMILES strings exist. The application of canonical SMILES, which
use only a single string per molecule, is recommended to avoid duplication and problems in
future filtering. To address issues of specifying isotopism and stereochemistry of a molecule
the isomeric SMILES was developed and is useful for scoping the library for stereoiso-
merism duplicates or to generate stereoisomers and expand the chemical space. A SMILES
string can be canonical and isomeric at the same time [29]. The SMILES expansion SMARTS
(SMILES arbitrary target specification) allows specification of sub-structural patterns and
is used for specification of protonation state, hydrogen count, and ionization states. As
both the SMILES and SMARTS format are not an open project and are proprietary, this has
resulted in the use of different generation algorithms by software developers, resulting in
different SMILES versions for the same compounds. Moves towards the open-source string
representations of compounds and standardization have been made with OpenSmiles and
InChI [30]. However, with the current state of compound libraries the use of standardized
chemical forms is not the norm, and care should be taken when combining such libraries
for virtual screening [10]. We recommend the use of Konstanz Information Miner (KNIME)
software for standardizing the input format before filtering either from the 3D SDF or the
string SMILES representation, in an analogous way performed in the filters provided by
this article.

Many filters for compound library design are present in primary scientific literature
with some such as Lipinski’s rule-of-5 enjoying widespread recognition in the scientific
community; however, many filters for drug design do not enjoy the same recognition. To
bridge the gap between molecular filters and their accessibility to the public, we sought out
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to implement them in an open-access program that allows visual and dataflow program-
ming through a graphical user interface. We therefore collected data on molecular filters,
implemented them into existing open-access software, and compared them side by side to
benefit the reader in his/her early drug design steps [31].

2. Results

To test and demonstrate the functionality of the filters implemented and their effects
on the chemical space, we applied the filtering workflow on a general ZINC database [32].
The database was obtained by accessing the ZINC website (https://zinc.docking.org/
tranches/home/ accessed on 21 June 2021) selecting the following parameters (representa-
tion “2D”, reactivity “standard”, purchasability “in-stock”) and downloading the SMILES
wget command file. The final downloaded library consisted of 9,216,175 compounds (a
large non-specific chemical library). Using the KNIME row sampling node, 1% of the
total database was sampled and ran through all the filters implemented in KNIME. We
then calculated the average values and standard deviations (SD) of several key molecular
descriptors using the statistics KNIME node to assess the change in chemical space after
filtering (Figures 1–6). The descriptors chosen were a standard basic set most descriptive for
initial chemical space assessment; the partition coefficient as SlogP, molecular refractivity
(SMR), total polar surface area (TPSA), molecular weight (MW), No. of rotatable bonds, No.
of hydrogen bond acceptors (HBA), No. of hydrogen bond donors (HBD), No. of heavy
atoms, No. of rings, and the number of atoms C, N, O present in the compounds. We see
that filters impact the chemical space of libraries to various degrees. The more specific the
filter, the larger the portion removed, since the chemical space on which they are based is
far more defined than with general drug-like filters.
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Rule-of-3 scoring lower, since they have strict cut-off values for SlogP. The partition coefficient is used
to assess the lipophilicity of a drug and its ability to cross cell membranes. (B) The average descriptor
value with SD of SMR for the unfiltered and post filtering libraries. The clear outliers are the Ro3 and
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with the other filters having average values close to the unfiltered library. (B) The average descriptor
value with SD of the No. of HBD. We see that molecules that pass the aggregators filter have a slightly
higher value of hydrogen bond donors. What is interesting is also the fact that the Ro4 scores lower
than the average, despite having molecules that are larger and contain more N and O atoms which
are usually involved in hydrogen bonding (Figure 4). (C) The average descriptor value with SD
of the No. of HBA before and after filtering of the library. The Ro3 filter has a significantly lower
value as its aim is to find the starting fragments from which the molecule is built. This usually leaves
space for the attachment of desired functional groups to the fragment, but as a result the number of
HBA is lower. (D) The average descriptor value with SD of the No. of rings present before and after
filtering of the library. As Ro4 shifts the chemical space towards larger molecules the number of rings
increases as well. The opposite happens with Ro3 where the small molecular weight does not allow
for a large number of rings to be present.
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Figure 4. The average number of C, N, and O atoms present in the compounds. The majority of the
libraries are within the average values of the unfiltered, with Rule-of-4 having higher values since
the filter retains large molecules that are better suited for inhibiting protein–protein interactions.
Rule-of-3 scores lower as it retains smaller compounds suitable for fragment-based drug design.
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3. Discussion

The REOS (rapid elimination of swill) filter removed 32% of the compounds from
the tested ZINC database subset but left the chemical space unaffected when compared
to the original dataset, as it has no cutoffs on the investigated descriptors. This holds
true for the functional group filter for PAINS (pan-assay interference compounds) as well;
however, only 7% of compounds were removed. This is due to the fact that the filter is
not as broad and tries to remove certain problematic moieties that were not captured in
previously developed functional group filters (e.g., REOS). The aggregator filter, designed
by Irwin et al. compares similarity of a library to 12.600 known aggregators (http://advisor.
bkslab.org/rawdata/ accessed on 10 February 2022), (set to the most stringent cutoff of
“low” similarity to known aggregators) removes ~60% of the database and significantly
lowers the SlogP value, as it uses this descriptor as a cutoff to determine the aggregation
propensity. The number of rings is also lower after filtering for aggregators implicating
that the presence of rings might be involved in aggregation. However, this descriptor is not
used as a cutoff, but is indirectly correlated with the properties of aggregators. The average
value of rings for the dataset of known aggregators is 3.6 ± 1.03, which is slightly above
the average of 3.3 ± 1.2 for the general database, meaning that compounds with rings
would likely score higher in the Tanimoto coefficient comparison and get filtered out. The
Ro3 (rule of three) and Ro4 (rule of four) filters are the most stringent filters as they define
the most specific chemical space, filtering out 97% and 94% of the database, respectively.
Despite their similarity in the filtered-out percentage, they operate in opposite ways. The
Ro3 represents a strict filter designed to support “hit identification” and “fragment-based”
drug research and only accepts molecules with a molecular weight of less than 300. It
supports the paradigm that small compounds still capture the desired chemical space yet
leave a lot of space for future compound optimization towards leads. The Ro4 attempts to
capture the protein–protein interaction inhibitor chemical space and retains molecules with
molecular weight above 400, as such larger molecules are able to form multiple interactions.
Morelli et al. designed the filter with the aim of establishing guidelines for druggable
protein–protein inhibitors, since these most often break traditional property filter rules.
Beside the high MW cutoff, Ro4 retains only compounds containing multiple rings and is
often above average in the descriptor value graphs (Figures 2–4). The Veber and Egan filters
remove a small fraction of molecules with 7.9% and 10.3%, respectively, as they both apply
only two filtering rules with a mild cut-off value. The Veber filter tries to capture molecules
with good oral bioavailability properties. With just two cut-offs that focus strictly on oral
bioavailability, it filters out 8% of the dataset. Another bioavailability and membrane
permeability filter is the Egan filter which filters out 10% of the dataset. The molecules
score lower in average descriptor values across all the examined descriptors, with both the
Egan and Veber filters supporting the notion that smaller compounds are more membrane
permeable and show greater bioavailability. The Mozziconacci filter, a filter for drug-like
properties, applies five descriptor cutoff rules. All five descriptors used are different from
the classical Rule-of-5 descriptors. The Lipinski Rule-of-5 is a set of four rules (logP, MW,
and H-bond donor and acceptor cut-offs) for drug-likeness and oral bioavailability derived
from a subset of 2245 drugs. It removes a similar share of the data set as well with the
Lipinski filter removing 9% and the Mozziconacci filter 10%. Despite both being drug-like
filters placing the filters in a chain-like matter, with the Mozziconaci filter placed after
Lipinski, we filter out an additional 9% of the total dataset. This means that the drug-like
definition of both filters is very different and may be used in conjunction for strict drug-like
filtering. Despite only two descriptor rules for the passing of the blood–brain barrier, the
Van de Waterbeemd filter removes 35% of the molecules from the database, in large part
due to the small TPSA cutoff value, which is reflected in a reasonably low average TPSA
descriptor value (Figure 2).The Murcko filter, due to its specificity (determining compounds
with central nervous system (CNS) activity), filters out 71% percent of the database using
five cut-offs. Low descriptor values for TPSA and molecular weight can also be observed
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as with the Veber and Egan filters, since these molecules must be smaller in order to pass
the blood–brain barrier [33].

4. Materials and Methods

To facilitate open access use of various filters for drug design, we decided to implement
the described filters into a single unit, where researchers could access various filters or
combine them to a multi-filter to speed up their own drug development efforts. The
first step incorporated a thorough search of the literature for information on molecular
filters with the aim of defining, implementing, and sorting them as clearly as possible
for the end user. Filters described were sorted into one of the two groups; filters that
filter out based on the presence of functional groups and filters that filter out based on
physiochemical properties.

Filters designed to exclude compounds based on the presence of functional groups
most often aim to remove compounds that are reactive toward protein targets. The most
common such functional groups are Michael acceptors, ketones, aldehydes, and suicide
inhibitors. Such compounds would likely be false HTS positives and would increase time
and money expenses spent on screening. Removing reactive functionality is based on
the premise that covalent interactions are not desired for drug design except for specific
cases [15]. Besides filtering for compounds with reactive species, functional group filters
aim to remove optically interfering components, aggregators, fluorescent compounds,
firefly luciferase inhibitors, redox cycling compounds, oxidizers, cytotoxic compounds,
compounds with quenching ability, and surfactant-like compounds, all of which would
frequently appear as false positives in the screening tests. Several filters fall under this
category, with their properties described in Table 1 [34,35]. Some filters, although classified
as functional group filters, do possess some additional property filters making them hybrid
filters. We collected all filters present in the literature and added a brief description with
the cut-off values on which the filter is based (Tables 1 and 2).

Table 1. The most common functional group filters described in the scientific literature presented in
alphabetical order.

Name/Reference Description Features/Cutoff Values

Aggregators
[36]

Tanimoto coefficient similarity search to a
database of known aggregators.

Tanimoto coefficient similarity ≥ 0.85 or SlogP > 5
(high similarity),

Tanimoto coefficient similarity ≥ 0.5 and SlogP > 3
(medium similarity),

Tanimoto coefficient similarity < 0.85 and SlogP ≤ 3
(low similarity)

Ely Lilly Rules
[37]

A set of 275 rules, developed over an 18-year
period, used to identify compounds that may
interfere with biological assays, allowing their

removal from screening sets.

Reasons for rejection of compounds: reactivity,
interference with assay measurements (fluorescence,

absorbance, quenching), instability and lack of
druggability (lacking both oxygen and nitrogen)

Muegge method
[18,38]

Bioavailability prediction rules dubbed the
Muegge method. Pharmacophore filter

developed by analyzing known drug databases,
with four functional molecular motifs

determined to be important in
drug-like molecules:

Primary, secondary, and tertiary amines are
considered pharmacophore points but not pyrrole,
indole, thiazole, isoxazole, other azoles, or diazines.
Compounds with more than one carboxylic acid are
dismissed. Compounds without a ring structure are
dismissed. Intracyclic amines that occur in the same

ring are fused and count as only one
pharmacophore point.
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Table 1. Cont.

Name/Reference Description Features/Cutoff Values

PAINS
[39]

Removal of frequent hitters (promiscuous
compounds) by identifying sub-structural

features not recognized by filters commonly
used to identify reactive compounds.

Functional groups such as rhodanines, phenolic
Mannich bases, hydroxyphenylhydrazones,

alkylidene barbiturates, alkylidene heterocycles,
1,2,3-aralkylpyrroles, activated benzofurazans,
2-amino-3-carbonylthiophenes, catechols, and

quinones do not pass the filters.

REOS 1

[3,40,41]

Seven property filters H-bond donor ≤ 5,
(similar to the PATTY H-bond acceptors ≤ 10,

rules in program developed at Merck) −2 ≤ Formal charge ≤ +2,
Number of rotatable bonds ≤ 8,
200 ≤ Molecular weight ≤ 500,

20 ≤ number of heavy atoms ≤ 50,
−2 ≤ logP ≤ 5

Functional group filters for the removal of
problematic structures dubbed REOS (rapid

elimination of swill; program developed
at Vertex).

Reactive, toxic and other undesirable moieties such
as nitro groups, preoxides, triflates, aldehydes,

acetals, etc.

1 REOS is a hybrid filter which combines a set of functional group filters with property filters. As the REOS filter
can be combined with other (property) filtering schemes, the property filtering part can be omitted and only
functional group filters employed. As implemented in KNIME, the user can also specify the maximum quantity
for each of the functional group rules, tuning the filter to the needs of the individual research scenario. REOS
moieties in the SMARTS format can be found inside the KNIME workflow “REOS substructures” node.

Table 2. The most common property filters described in the scientific literature.

Name/Reference Description Features/Cutoff Values

Egan
[42]

Set of rules designed by analyzing the data on compounds both well and poorly absorbed in humans
with multivariate statistics. Two descriptors (AlogP and PSA) were chosen for inclusion when

determining membrane permeability. Compounds that pass exhibit good bioavailability.

AlogP ≤ 5.88,

polar surface area ≤ 131.6 Å2

Fichert
[43]

Rules for structure-permeability based on a set of 41 small drug-like molecules. LogD is the main
property that determines permeability, with structures passing this filter being highly permeable in the

Cacao-2 model.

Molecular weight ≤ 500,

0 ≤ logD ≤ 3

Ghose
[44]

A set of rules for drug-likeness derived from characterizing 6304 compounds taken from the
Comprehensive Medicinal Chemistry Database.

180 ≤ molecular weight ≤ 480,
40 ≤ molecular refractivity ≤ 130,

−0.4 ≤ ClogP ≤ 5.6,
20 ≤ number of atoms ≤ 70

Lee filter
[45]

Analysis of natural products to determine potential appealing scaffolds for future drug design.
Pharmacophoric properties of natural products, trade drugs, and virtual combinatorial library were

assessed, finding key properties and several scaffolds which could work as building blocks.

MW mean ~356

LogP mean ~2.1

Lipinski
(Rule-of-5)

[13]

A set of four rules for drug-likeness and oral bioavailability derived from a subset of 2245 drugs from
the World Drug Index. The rules aim to address the ADME issues.

Molecular weight ≤ 500,
logP ≤ 5,

H-bond donors ≤ 5,
H-bond acceptors ≤ 10

Mozzicconacci
[46]

Filter developed by Mozziconacci after analyzing 15 freely available chemical libraries (2 million
compounds). Drug-likeness was examined using common chemical features and based on the

successive filters were designed to extract the drug-like subset.

Rotatable bonds ≤ 15,
number of rings ≤ 6,
oxygen atoms ≥ 1,

nitrogen atoms ≥ 1,
halogen atoms ≤ 7

Murcko filter
[33,47]

Rules for determining CNS activity, joining 7 property descriptors (Rule-of-5 with the addition of
rotatable bonds, aromatic density, and a measure for branching) and 166 fingerprint descriptors to

determine presence or absence of functional groups.

MW 200–540,
logP 0–5.2,

H-bond acceptors ≤ 4,
H-bond donor ≤ 3,
rotatable bonds ≤ 7,

branching behavior 3.4–12.2,
aromatic rings < 3

Oprea Lead-Like
[1,24]

A set of rules based on lead-like vs. drug-like comparison after examination of several commercially
available databases. The rules aim to maintain focus towards effective and orally absorbable

compounds. Beside the properties chosen based on the Rule-of-5, additional properties were chosen to
better reflect molecular complexity of a library and the rigidity of a molecule.

Molecular weight < 450,
−3.5 ≤ logP < 4.5,
−4 ≤ logD ≤ 4,

number of rings ≤ 4,
nonterminal single bonds ≤ 10,

H-bond donor ≤ 5,
H-bond acceptor ≤ 8
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Table 2. Cont.

Name/Reference Description Features/Cutoff Values

Rule-of-3
[48]

Rules designed to support “fragment-based” drug research. Hits obtained using this filter can be useful
for fragment libraries used to generate potential leads. Fragment libraries are useful for sampling

chemical diversity or targeting specific interactions.

Molecular weight ≤ 300,
logP ≤ 3,

H-bond donor ≤ 3,
H-bond acceptors ≤ 3

rotatable bonds ≤ 3

Rule-of-4
[19]

A set of rules derived from analyzing the 2P2I database that contains protein–protein interaction
inhibitors with the aim of establishing guidelines for druggable protein–protein inhibitors, since these

most often break traditional property filter rules.

Molecular weight ≥ 400,
logP ≥ 4,

number of rings ≥ 4,
H-bond acceptors ≥ 4

van de Waterbeemd
[49,50]

Physiochemical properties for estimation of blood–brain barrier crossing of compounds. Rules were
derived by examination of lipophilicity, H-bonding capacity, and molecular shape and size descriptors

of marketed CNS and CNS-inactive drugs.

Molecular weight ≤ 450,

polar surface area ≤ 90 Å2

Veber
[51]

Two rules to meet the criteria for oral bioavailability derived after studying bioavailability
measurements in rats for of over 1100 drug candidates at GlaxoSmithKline.

Rotatable bonds ≤ 10,
polar surface area ≤ 140 Å2

The other group of filters consists of classical property filters designed to bias the
chemical space of filtered libraries into a predetermined and desired direction. As stated
above, the majority of such filters aim to define and narrow the scope of the library towards
the drug-like paradigm. Property filters eliminate the extrema of undesired properties
present in the libraries [1]. The extrema are determined from distributions in databases of
desired compounds (e.g., databases of approved drugs).

After a careful analysis of the primary filter literature and the implementation of
filters in existing bioinformatics software packages, KNIME was chosen as an open and
accessible platform for the implementation of examined filters. Its intuitive workflow
design, supported by a graphical interface, and its ability for large scale HTVS with the
KNIME server makes it perfect for the integration in the established drug design workflows
of users, be it ligand or structure-based drug design. KNIME allows users to create visual
data flows, or pipelines, where data traverse multiple user-selected nodes. These nodes
represent an essential part of KNIME, with each node possessing unique data processing
capabilities, where the input and output of each node can transparently be analyzed
(Figure 7) [14].
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The workflows were created using KNIME version 4.2.3 (available at http://knime.org
accessed on 17 November 2020). Additional expansion nodes from RDKit, MOE extensions,
and Vernalis KNIME were used for the final version of the workflow alongside the default
KNIME nodes. All the mentioned nodes are distributed as KNIME community extensions
accessible to everyone in their full functionality. All nodes and workflows are open and
editable by the user if he/she wishes to change certain parameters or develop novel
filters. Experienced users can expand the meta nodes and delete redundant steps in the
process (e.g., duplicate generation of the canonical SMILES in the linked workflow) when
combining several filters for their drug design, which would result in even faster workflows
(Figure 8). The node output can be edited to produce various outputs ranging from text
and table formats to chemical library formats suitable for further drug design.
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We implemented 11 filters (REOS, PAINS, Aggregators, Rule-of-5, Rule-of-4, Rule-of-3,
Veber filter, Mozziconacci filter, Egan filter, Van de Waterbeemd filter, Murcko filter) into our
multi-filter KNIME workflow accessible at public repository (https://gitlab.com/Jukic/
knime_medchem_filters/ accessed on 15 January 2022). The PAINS and REOS filter are both
based on the RDKit substructure counter and compare the substructures present in the input
database with a list of problematic functional groups. A rule-based row filter removes the
hits from the database. The aggregation propensity detection filter, called the “aggregator
filter”, evaluates the aggregation propensity based on the similarity calculated by Tanimoto
coefficients of given molecules to a database containing known aggregators [15]. The user
can personally control how strict the filter is with the low, medium, and high propensity
filters provided. The remaining filters are knowledge-based rule-based filters that, when
expanded, can often be modified by the user to suit his or her own needs. The filters are
simple property counting filters that firstly calculate descriptor values using the RDKit
Descriptor calculator node or the molecule properties (Mozziconacci) and then employ
the rule-based row filters. The exception being the Rule-of-5 which allows one rule break,
to incorporate the filter consisting of rule engines that assign the value of 1 for each rule
break, with the math formula summing up all the values and the final rule-based row filter
comparing the value to see. The impact of strict cut-offs that define specific chemical spaces
and milder filters such as the Lipinski’s Rule-of-5 which allow a rule break can be seen in
Figures 5 and 6.

5. Conclusions

After analyzing and implementing several molecular medicinal chemistry filters and
testing the created workflows, we conclude that compound filters are essential for modern
computer aided drug design (CADD). They provide the researcher with a simple, fast,
and robust way to enrich the chemical space and to reduce the time associated with post-
filtering methods. They are also easy to use and can be customized to particular preferences
of the studied chemical space. However, the user must be aware of the properties used for
filtering, as some, such as REOS and PAINS, were not designed with covalent chemistry
in mind. In such cases, it is better to flag the compounds for a later evaluation. We firmly
believe that this article provides medicinal chemistry community with a handful of useful

http://knime.org
https://gitlab.com/Jukic/knime_medchem_filters/
https://gitlab.com/Jukic/knime_medchem_filters/
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workflows for novel drug design, identification, and HTVS, as well as with a good initial
overview of compound filtering in drug discovery.
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Abbreviations

CC combinatorial chemistry
HTS high-throughput screening
VS virtual screening
HTVS high-throughput virtual screening
ADME absorption, distribution, metabolism, and excretion
MW molecular weight
Ro4 Rule-of-4
Ro5 Rule-of-5
Ro3 Rule-of-3
SDF structure-data file format
MOL MDL Molfile
SMILES simplified molecular input line entry specification format
SMARTS SMILES arbitrary target specification
KNIME Konstanz Information Miner
SD standard deviations
SMR molecular refractivity
TPSA total polar surface area
MW molecular weight
HBA No. of hydrogen bond acceptors
HBD No. of hydrogen bond donors
REOS rapid elimination of swill
PAINS pan-assay interference compounds
CNS central nervous system
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