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Abstract
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target pro-

teins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the

other hand, ubiquitination participates in the regulation of several ion channels and trans-

porters. USP18 sensitivity of transporters has, however, never been reported. The present

study thus explored, whether USP18 modifies the activity of the peptide transporters

PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin li-

gase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus
laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic

peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a

result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in

oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM)

was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 sig-

nificantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis

revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpres-

sion of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly in-

creased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular

functions include activity of the peptide transporters PEPT1 and PEPT2.

Introduction
The Ubiquitin-like specific protease 18 (USP18), a de-ubiquitin enzyme [1, 2], interacts with
interferon α (IFNα)- mediated signalling [3–13] and thus plays a decisive role in the anti-viral
[1, 8, 14–16] and antibacterial [5, 17] immune response as well as autoimmune disease [18].
USP18 is mainly located in the cytosol whereas USP18-sf, an isoform of USP18 is distributed
in both cytosol and nucleus [4]. USP18 is in part effective by modulating the transcription fac-
tors NF-κB and NFAT [19, 20]. Moreover, USP18 competitively inhibits IFN-α/β-induced
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JAK/STAT activation [13] and upregulates epidermal growth factor receptor (EGFR) expres-
sion [21]. USP18 counteracts apoptosis [11, 12, 22] and contributes to the signalling of tumori-
genesis and anti-tumor immune response [3, 8, 23–25].

Ubiquitination plays a pivotal role in the regulation of several transport processes [26, 27].
Ubiquitination controls endocytosis and turnover of transport proteins [27]. An ubiquitin li-
gase particularly important for the regulation of channels and transporters is Nedd4-2 (neuro-
nal precursor cell expressed developmentally downregulated 4–2), which down-regulates a
wide variety of transport processes [26, 28–35]. At least in theory, those transporters could be
targeted by de-ubiquitination enzymes. As a matter of fact, some transient receptor potential
(TRP) channels are regulated by the de-ubiquitinating enzyme cylindromatosis (CYLD) [36].
Surprisingly, little is known about effects of de-ubiquitinating enzymes on other transport sys-
tems. Specifically, to the best of our knowledge, a role of altered transport across the cell mem-
brane in the pleotropic effects of USP18 has never been shown.

The present study explored whether USP18 influences the activity of peptide transporters 1
(PEPT1) and 2 (PEPT2), which accomplish electrogenic cellular uptake of di- and tripeptides
[37–39] including peptide-like drugs [37, 38]. Regulators of peptide transporters include gluco-
corticoids [40], leptin [41] and growth hormone [42].

In order to test for an effect of USP18 on peptide transporters, cRNA encoding PEPT1 and
PEPT2 were injected into Xenopus laevis oocytes with or without additional injection of cRNA
encoding USP18. Subsequently, peptide transport was derived from peptide induced current.

Materials and Methods

Ethics Statement
All animal experiments were conducted according to the recommendations of the Guide for
Care and Use of Laboratory Animals of the National Institutes of Health as well as the German
law for the welfare of animals, and reviewed and approved by the respective government au-
thority of the state Baden-Württemberg (Regierungspräsidium) prior to the start of the study
(Anzeige für Organentnahme nach §6). The Xenopus oocytes were explanted from adult Xeno-
pus laevis (NASCO, Fort Atkinson, USA). The frogs were anaesthesized by a 0.1% Tricain solu-
tion. After confirmation of anaesthesia and disinfection of the skin, a small abdominal incision
was made and oocytes were removed, followed by closure of the skin by sutures. All efforts
were made to minimize animal suffering.

Constructs
Constructs encoding rabbit PEPT1 or PEPT2 [43], human USP18 [14], human USP30 [44]
and human KCNQ1/E1 or Kv7.1 [45] were used for generation of cRNA as described previous-
ly [43, 46].

Voltage clamp
Xenopus oocytes were prepared as previously described [47]. Where not indicated otherwise,
10 ng cRNA encoding PEPT1, 20 ng cRNA encoding PEPT2, 12 ng cRNA encoding KCNQ1/
E1 (9 ng KCNQ1 + 3 ng KCNE1), 10 ng cRNA encoding USP18 or 10 ng cRNA encoding
USP30 were injected on the same day after preparation of the oocytes [48]. The oocytes were
maintained at 17°C in ND96 solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgC12, 1.8
CaC12, 2.5 NaOH, 5 HEPES (pH 7.4), sodium pyruvate (C3H3NaO3), Gentamycin (100 mg/l),
Tetracycline (50 mg/l), Ciprofloxacin (1.6 mg/l), and Theophiline (90 mg/l). The voltage clamp
experiments were performed at room temperature 3 days after injection of cRNA encoding
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PEPT1 and USP18 or 4 days after injection of cRNA encoding PEPT2 and USP18. Two-
electrode voltage-clamp recordings were performed at a holding potential of -70 mV. The data
were filtered at 10 Hz and recorded with a Digidata A/D-D/A converter (1322 Axon Instru-
ments) and Clampex 9.2 software for data acquisition and analysis (Axon Instruments) [49].
The control superfusate (ND96) contained (in mM): 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 2.5
NaOH and 5 HEPES, pH 7.4. [50]. Glycine-glycine was added to the solutions at a concentra-
tion of 2 mM, unless otherwise stated [51]. The flow rate of the superfusion was approx. 20 ml/
min, and a complete exchange of the bath solution was reached within about 10 s [52]. The
peptide induced current was in preliminary experiments 2.5 ± 0.9 nA (n = 9) 3 days and
13.1 ± 1.5 nA (n = 16) 4 days after injection of 20 ng cRNA encoding PEPT2. The peptide in-
duced current was in preliminary experiments 3.9 ± 1.3 nA (n = 8) and 12.3 ± 1.9 nA (n = 16)
4 days after injection of 10 ng or 20 ng, respectively, cRNA encoding PEPT2.

Detection of PEPT2-HA cell surface expression by chemiluminescence
To determine PEPT2-HA cell surface expression by chemiluminescence [53], defolliculated oo-
cytes were first injected with 20 ng cRNA encoding either PEPT2-HA and/or 10 ng cRNA en-
coding USP18. After 4 days of incubation, oocytes were blocked with 1% BSA in ND96
solution for 20 minutes and then incubated with anti-HA-HRP antibody (diluted 1:1000, Mil-
tenyi Biotec, Germany). Next, oocytes were washed three times 10 minutes each with 1% BSA
in ND96 solution followed by three times 10 minutes each in ND96 solution. Individual oo-
cytes were placed in 96 well plates with 20 μl of SuperSignal ELISA Femto Maximum Sensitivi-
ty Substrate (Pierce, Rockford, IL, USA), and chemiluminescence of single occytes was
quantified in a luminometer (Walter Wallac 2 plate reader, Perkin Elmer, Juegesheim, Ger-
many) by integrating the signal over a period of 1 s. Results display normalized relative
light units.

Statistical analysis
Data are provided as means ± SEM, n represents the number of oocytes investigated. All volt-
age clamp experiments were repeated with at least 3 batches of oocytes; in all repetitions quali-
tatively similar data were obtained. Data were tested for significance using ANOVA (Tukey
test or Kruskal-Wallis test) or t-test, as appropriate. Results with p< 0.05 were considered
statistically significant.

Results
In order to test for an effect of USP18 on the activity of the peptide transporters, the peptide
transporters PEPT1 or PEPT2 were expressed in Xenopus laevis oocytes with or without addi-
tional expression of USP18. The inward current observed following addition of the dipeptide
glycine-glycine (2 mM) to the bath solution (Igly-gly) was taken as a measure of
peptide transport.

Igly-gly was negligible in water-injected Xenopus laevis oocytes (Fig 1A and 1B). Similarly, in-
jection of cRNA encoding USP18 alone (Fig 1A and 1B) did not yield appreciable Igly-gly. Ac-
cordingly, neither in the presence nor in the absence of USP18, Xenopus laevis oocytes
expressed sizable endogenous electrogenic glycine-glycine transport. In contrast, addition of
glycine-glycine to the bath resulted in the appearance of Igly-gly in Xenopus laevis oocytes in-
jected with cRNA encoding PEPT1. Igly-gly increased with increasing amounts of cRNA injected
(Fig 1C and 1D). The additional injection of cRNA encoding wild type USP18 significantly in-
creased Igly-gly in PEPT1 expressing Xenopus oocytes (Fig 1A and 1B).
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Fig 1. Coexpression of USP18 increases electrogenic peptide transport in PEPT1-expressing Xenopus laevis oocytes. A: Representative original
tracings showing Igly-gly in Xenopus laevis oocytes injected with water (a), expressing USP18 alone (b) or expressing PEPT1 without (c) or with additional
coexpression of wild type USP18 (d). B: Arithmetic means ± SEM (n = 12–18) of Igly-gly in Xenopus laevis oocytes injected with water (striped bar), or
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In order to test whether USP18 was effective by modifying maximal transport rate and/or
affinity of PEPT1, the oocytes were exposed to glycine-glycine concentrations ranging from
10 μM to 5 mM. As shown in Fig 2 an increase of the bath peptide concentration was followed
by an increase of Igly-gly in both, Xenopus oocytes expressing PEPT1 alone and Xenopus oocytes
expressing PEPT1 and USP18. The increase of Igly-gly was, however, larger in Xenopus laevis oo-
cytes expressing PEPT1 with USP18 than in Xenopus laevis oocytes expressing PEPT1 alone.
Kinetic analysis yielded apparent maximal currents, which were significantly (p<0.05) higher
in Xenopus laevis oocytes expressing both, PEPT1 and USP18 (47.7 ± 5.5 nA, n = 11–12) than
in Xenopus laevis oocytes expressing PEPT1 alone (32.5 ± 3.3 nA, n = 11–12). The glycine-
glycine concentrations required for half maximal current (KM) were not significantly different
between Xenopus laevis oocytes expressing PEPT1 alone (1297 ± 379 μM, n = 11–12) and in
Xenopus laevis oocytes expressing PEPT1 together with USP18 (1038 ± 160 μM, n = 11–12).
Thus, USP18 did not significantly modify the affinity of PEPT1.

expressing USP18 alone (grey bar) or expressing PEPT1 without (white bar) or with (black bar) USP18.C:Representative original tracings showing glycine-
glycine (2 mM)—induced current (Igly-gly) in Xenopus laevis oocytes injected with (a) 10 ng, (b) 15ng, or (c) 20ng cRNA encoding PEPT1.D: Arithmetic
means ± SEM (n = 9–10) of Igly-gly in Xenopus laevis oocytes injected with 10 ng (striped bar) or 15 ng (grey bar) or 20 ng (black bar) cRNA encoding PEPT1.
*** (p<0.001) indicates statistically significant difference from the absence of USP18.

doi:10.1371/journal.pone.0129365.g001

Fig 2. Coexpression of USP18 increases maximal electrogenic peptide transport in
PEPT1-expressing Xenopus laevis oocytes. Arithmetic means ± SEM (n = 11–12) of Igly-gly as a function of
glycine-glycine concentration in Xenopus laevis oocytes expressing PEPT1 without (black squares), or with
(black circles) additional coexpression of wild type USP18. *(p<0.05) indicates statistically significant
difference from the absence of USP18.

doi:10.1371/journal.pone.0129365.g002
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Additional experiments addressed the sensitivity of Igly-gly to the ubiquitin ligase Nedd4-2.
To this end, PEPT1 or PEPT1 + USP18 were expressed without and with additional expression
of Nedd4-2. As illustrated in Fig 3, coexpression of Nedd4-2 significantly (p<0.05) decreased
Igly-gly in both, PEPT1 and USP18 expressing Xenopus laevis oocytes and in Xenopus laevis oo-
cytes expressing PEPT1 without USP18.

A separate series of experiments explored the effect of USP30, another member of deubiqui-
tinating protease family of enzymes, on the peptide transporter PEPT1. In Xenopus oocytes

Fig 3. Coexpression of Nedd4-2 decreases electrogenic peptide transport in PEPT1-expressing Xenopus laevis oocytes. A: Representative original
tracings showing Igly-gly in Xenopus laevis oocytes injected with water (a), expressing PEPT1 alone (b) or with USP18 (c), Nedd4-2 (d), or with USP18 and
Nedd4-2 (e). B: Arithmetic means ± SEM (n = 13–15) of Igly-gly in Xenopus laevis oocytes injected with water (striped bar) or expressing PEPT1 without (white
bar) or with USP18 (black bar), with Nedd4-2 (light grey bar), or with USP18 and Nedd4-2 (dark grey bar). *(p<0.05) indicates statistically significant
difference from oocytes expressing PEPT1 alone.

doi:10.1371/journal.pone.0129365.g003
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expressing PEPT1, the addition of glycine-glycine to the bath was again followed by the appear-
ance of Igly-gly, which was significantly (p<0.01) enhanced by additional injection of cRNA en-
coding USP30 (Fig 4).

In order to test whether the effect of USP18 on Igly-gly required transcription, experiments
were performed in the presence of actinomycin D (50 nM, added 72 hours prior to the experi-
ment). Inhibition of transcription by incubation (72 hours) with actinomycin D (50 nM) did
not significantly modify Igly-gly in presence or absence of USP18 (Fig 5).

A further series of experiments explored the putative effects of USP18 on the peptide trans-
porter isoform PEPT2. Similar to what has been observed in Xenopus oocytes expressing
PEPT1, in Xenopus oocytes expressing PEPT2 addition of glycine-glycine to the bath was

Fig 4. Coexpression of USP30 increases electrogenic peptide transport in PEPT1-expressing Xenopus laevis oocytes. A: Representative original
tracings showing Igly-gly in Xenopus laevis oocytes injected with water (a), expressing USP30 alone (b) or expressing PEPT1 without (c) or with additional
coexpression of wild type USP30 (d). B: Arithmetic means ± SEM (n = 14–16) of Igly-gly in Xenopus laevis oocytes injected with water (striped bar), or
expressing USP30 alone (grey bar) or expressing PEPT1 without (white bar) or with (black bar) USP30. ** (p<0.01) indicates statistically significant
difference from the absence of USP30.

doi:10.1371/journal.pone.0129365.g004
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followed by the appearance of Igly-gly (5.4 ± 1.3 nA), which was significantly (p<0.05) enhanced
by additional injection of cRNA encoding USP18 (10.2 ± 1.6 nA) (Fig 6).

Chemiluminescence was employed to quantify PEPT2 protein abundance in the cell mem-
brane. The protein abundance in the oocytes was, however, similar in oocytes co-expressing
PEPT2-HA with USP18 (1.04 ± 0.05 relative light units, n = 113) and in oocytes expressing
PEPT2-HA alone (1.00 ± 0.03 relative light units, n = 116).

A further series of experiments explored, whether the voltage gated K+ channel KCNQ1/E1
was sensitive to USP18. As a result, the current at +80mV was negligible in Xenopus laevis oo-
cytes injected with water (1.2 ± 2.2 nA, n = 139) and was similarly high in Xenopus laevis oo-
cytes injected with KCNQ1/E1 alone (190.3 ± 17.5 nA, n = 19) and in Xenopus laevis oocytes
injected KCNQ1/E1 and USP18 (180.1 ± 10.7 nA, n = 19).

Discussion
The present study reveals a completely novel function of the de-ubiquitin enzyme USP18, i.e.
the up-regulation of the peptide transporter isoforms, PEPT1 and PEPT2. The effect was mim-
icked by USP30 and may thus be a hitherto unknown function of several USP isoforms.

It is tempting to speculate that USP18 is effective by reversing the ubiquitination and subse-
quent degradation of the carrier protein. Accordingly, USP18 apparently enhances the maxi-
mal transport rate. A role of ubiquitination in the regulation of peptide transporters is further
suggested by the experiments with Nedd4-2. Coexpression of the ubiquitin ligase Nedd4-2

Fig 5. Effect of USP18 on PEPT1 in absence and presence of Actinomycin D. Arithmetic means ± SEM (n = 15–16) of Igly-gly in Xenopus oocytes injected
PEPT1 without (white bar) or with (black bar) wild type USP18 in the absence (left bars) and presence (right bars) of 50 nM Actinomycin D 72 hours prior to
measurement. *(p<0.05) indicates statistically significant difference from the absence of USP18.

doi:10.1371/journal.pone.0129365.g005
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tended to down-regulate the peptide transporter PEPT1. Comparison of the currents in Xeno-
pus laevis oocytes expressing PEPT1 and USP18 with Xenopus laevis oocytes expressing
PEPT1, USP18 and Nedd4-2 suggest that the effect of USP18 might be overridden by the effect
of Nedd4-2. It must be kept in mind, though, that the effect of USP18 may be unrelated to that
of Nedd4-2.

USP18 did not appreciably modify the protein PEPT2 protein abundance in the cell mem-
brane. It cannot be excluded that USP18 is effective by mechanisms other than the de-ubiqui-
nation of the carrier protein. The effect of USP18 on peptide transport apparently does not
require transcription. In theory, USP18 could modify peptide transporters by modifying the ac-
tivity of proteins regulating peptide transporters. Signalling involved in the regulation of pep-
tide transporters include phosphoinositide (PI) 3 kinase [54], phosphoinositide dependent

Fig 6. Coexpression of USP18 increases electrogenic peptide transport in PEPT2-expressing Xenopus laevis oocytes. A: Representative original
tracings showing Igly-gly in Xenopus laevis oocytes injected with water (a) or expressing USP18 alone (b) or expressing PEPT2 without (c) or with additional
coexpression of wild type USP18 (d). B: Arithmetic means ± SEM (n = 8–9) of Igly-gly in Xenopus oocytes injected with water (striped bar), expressing USP18
alone (grey bar), or expressing PEPT2 without (white bar) or with (black bar) wild type USP18. **(p<0.01) indicates statistically significant difference from the
absence of USP18.

doi:10.1371/journal.pone.0129365.g006
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kinase PDK1 [54], serum & glucocorticoid inducible kinase SGK1 [55] and AMP activated ki-
nase [56].

The peptide transporters PEPT1 and PEPT2 accomplish the cellular uptake of di- and tri-
peptides [37–39] and several drugs [37, 56–58] including beta-lactam antibiotics, angiotensin-
converting enzyme inhibitors, antiviral drugs, and anti-cancer agents [38, 59–63]. The carriers
are expressed in a variety of cells including proximal renal tubules [64], enterocytes [38, 61],
cancer cells [65, 66], and immune cells, such as macrophages [67–69]. The in vivo relevance of
USP18 in the regulation of peptide transport remains, however, to be shown. It would be par-
ticularly interesting to learn, whether or not USP18 sensitivity of cellular peptide transport is
relevant for antiviral and antibacterial activity of USP18.

In conclusion, USP18 has the potency to enhance the activity of the peptide transporters
PEPT1 and PEPT2. Further experiments are needed to define the in vivo significance of USP18
sensitive peptide transport.
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