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ABSTRACT

The conditions for the measurement of linear dichro-
ism (LD) can be adjusted so as to solely reflect
the length and the flexibility of DNA. The real-time
detection of the EDTA�Fe2+-induced oxidative
cleavage of double-stranded native and synthetic
DNAs was performed using LD. The decrease in
the magnitude of the LD at 260 nm, which reflects
an increase in the flexibility and a decrease in the
length of the DNA, can be described by the sum of
two or three exponential curves in relation to the
EDTA�Fe2+ concentration. The fast component was
assigned to the cleavage of one of the double
strands, inducing an increase in the flexibility, while
the other slower component was assigned to the
cleavage of the double strand, resulting in the short-
ening of DNA. The decrease in the magnitude of
the LD of poly[d(A-T)2 ] was similar to that of
poly[d(I-C)2 ], while that of poly[d(G-C)2 ] was found
to be the slowest, indicating that the resistance of
poly[d(G-C)2 ] against the Fenton-type reagent was
the strongest. This observation suggests that the
amine group in the minor groove of the double
helix may play an important role in slowing the
EDTA�Fe2+-induced oxidative cleavage.

INTRODUCTION

Reactive oxygen species induce various kinds of damage to
DNA, including the modification of the nucleobases and
the sugar moiety resulting in the release of free DNA bases,
and the cleavage of the single- and double strands (1–6).
Damage to DNA plays an important role in many biolo-
gical processes, such as mutagenesis, carcinogenesis and
aging (7–10). In the presence of transition metal ions,
the Fenton reaction is an important pathway for provid-
ing oxygen radical species. Fe2+ ions are one such transi-
tion metal ion. Numerous studies on Fe2+-induced DNA
cleavage have been reported, which have recently

shown that, in the presence or absence of ethylenediamine
tetraacetate (EDTA), the Fe2+/H2O2 system oxidizes
20-dioxyguanosine (11) and 1,3-dimethyluracil (12)
producing various oxidation products. Fe2+-mediated
Fenton reactions have been reported to be sequence
specific (13). Perylene-EDTA�Fe2+ selectively cleaves the
telomeric G-quadruplex (14). Under Fenton-type condi-
tions in the presence of H2O2, EDTA�Fe generates
hydroxyl radicals and anions, which induce abstraction
from the sugar moiety as well as the formation of an
adduct with nucleobases (4,5). The following overall
mechanisms of the Fe�EDTA/H2O2 system have been
proposed (15):

Ascorbateþ EDTA � Fe3þ ! Oxidized ascorbate

þ EDTA � Fe2þ

EDTA � Fe2þ þH2O2 ! EDTA � Fe3þ þ �OHþOH�

In these reactions, EDTA prevents iron ions from binding
to DNA and accelerates the formation of hydroxyl radi-
cal. Ascorbate recycles Fe3+ to active Fe2+ which acts as
reducing agent.
Although agarose gel electrophoresis is a typical tech-

niques for the detection of DNA cleavage and the identi-
fication of DNA fragments by their size, the real-time
detection of the progress of a reaction and thereby, the
kinetic analysis of the reaction, is not easy. For time-based
measurements, various fluorescence techniques, including
fluorescence resonance energy transfer, have been utilized
(16–19). However, for the application of fluorescence tech-
niques, DNA has to be altered using fluorescent probes.
Linear dichroism (LD), which is defined as the difference
in the absorbance of light polarized parallel and perpen-
dicular to the sample orientation axis, has been shown to
be a viable alternative technique for the real-time detec-
tion of changes in DNA length (20–22). The magnitude
of the measured LD depends on the orientation and
optical factors (23,24). When the optical factors are kept
constant, the magnitude of the LD depends solely on the
orientation factors, including the flow rate, viscosity of
the medium, temperature, flexibility of the sample,
and the ratio of the long and short axes of the sample.
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In the case of DNA, the length is the main factor deter-
mining the magnitude of the LD. The magnitude of the
LD was reported to increase upon the linearization of a
circular DNA, brought about by the use of restriction
enzymes, due to its elongation. The further digestion
and subsequent shortening of the DNA resulted in a
decrease in the magnitude of the LD (20). A decrease in
the magnitude of the LD reflecting the shortening of the
DNA due to double strand cleavage by deoxyribonuclease
I has also been reported (22). In this case, the decrease in
the magnitude of the LD was able to be modeled as a
single exponential decay.
In this work, the real-time change in the magnitude of

the LD due to the oxidation of various double-stranded
native and synthetic DNAs in the presence of
EDTA�Fe2+/H2O2 is reported. It was assumed that the
oxidative cleavage results in either an increase in the flex-
ibility of the DNA when one of the strands is cleaved or its
shortening when both strands are cut. Both of these
changes will result in a decrease in the magnitude of the
LD. The effects of the various scavengers of reactive
oxygen species on the oxidative cleavage were also tested.

MATERIALS AND METHODS

DNA and other chemicals

Calf thymus DNA (hereafter, referred to as DNA) was
purchased from Worthington, NJ, and synthetic polynu-
cleotides from Amersham Biosciences, NJ. The DNA and
polynucleotides were dissolved in pH 7.0, 5mM cacodyl-
ate buffer, containing 100mM NaCl and 1mM EDTA,
with exhaustive shaking at 48C. The solution was dialyzed
several times against pH 7.0, 5mM cacodylate buffer
at 48C. The concentrations of the DNA and polynucleo-
tides were determined from their molar extinction coeffi-
cients: e260 nm=6700M�1 cm�1, e251 nm=6900M�1 cm�1,
e262 nm=6600M�1 cm�1 and e254 nm=8400M�1 cm�1 for
DNA, poly[d(I-C)2], poly[d(A-T)2] and poly[d(G-C)2],
respectively. All other chemicals were of analytical grade
and used without further purification. The cleavage of
DNA was initiated by the addition of the desired concen-
tration of EDTA�Fe2+, which was prepared indepen-
dently by the simple mixing of Na2EDTA and
(NH4)2Fe(SO4)2, to a 100 mM solution of the DNA or
polynucleotide followed by the immediate addition of
ascorbate and fresh H2O2. The dissolved O2 which was
already present in the solutions was removed by the
exhaustive bubbling of N2 gas for 30min before mixing.

LDmeasurement

The LD measurement method has been described else-
where (20,23–26). The measured LD is divided by the
isotropic absorption spectrum to give the reduced LD
(LDr), which is related to the ability of orientation, via
the following equation:

LDr ¼
LD

Aiso
¼ 1:5S 3 cos2 �i � 1

� �

where Aiso denotes the isotropic absorption spectrum and
S the orientation factor, such that S=1 or 0 for perfectly
oriented or randomly orientated samples, respectively.
The angle, �i, is the angle of the ith electric transition
moment of a given chromophore with respect to the
local DNA helix axis. The factors affecting the magnitude
of the LD were carefully controlled in order to keep them
constant value in this experiment and therefore, LDr solely
reflects the flexibility and length of the DNA. The absorp-
tion spectra of DNA in the presence or absence of various
cofactors were not altered to any great extent; therefore,
the measured LD was considered to be a direct reflection
of the flexibility and length of the DNA in this work. The
method used for the measurement of the LD was identical
to the previously reported method (20), with the exception
of the microvolume of the thermostatically controlled
Couette cell. A conventional Couette cell containing
2.5ml of the sample was used. The LD was recorded on
a Jasco J810 (Tokyo, Japan) at room temperature.

Data analysis

The time-dependent LD signal from which the baseline,
i.e. the LD magnitude of the sample at rest (zero flow),
was subtracted was averaged over at least three indepen-
dent measurements. Then the averaged time-dependent
LD magnitude was normalized by multiplying it by a
suitable number so that the maximum LD magnitude
(initial value) was equal to one. These averaged and nor-
malized data were analyzed using an Origin 7.1 program
(OriginLab Co, Northampton, MA, USA) and the results
presented in this article. The decreases in the magnitude of
the LD were analyzed by calculating the sum of the expo-
nential curves based on the assumption that every step in
the oxidative cleavage that affects the magnitude of the
LD may be of the first order.

LDðtÞ ¼
X
i

ai exp
�t

�i

� �

From this analysis, the reaction time, �i, rather than the
conventional rate constants, was obtained. Information
on the reaction time should be sufficient to compare
each step of the multiple processes. In this analysis the
cleavage of the double-stranded DNA was assumed to
include both single- and double- strand cleavages which
are all first order in their kinetic nature. The former clea-
vage is expected to increase the flexibility of the DNA and
the latter to shorten the DNA or polynucleotide: both will
result in a decreased in the LD magnitude.

RESULTS

Effect of the EDTA�Fe2+ concentration on the
time-dependent LDmagnitude of DNA

On the addition of EDTA�Fe2+/H2O2, the magnitude of
the LD started to decrease. Figure 1 shows the time-
dependent decrease in the magnitude of the LD of DNA
at 260 nm in the presence of various concentrations of
EDTA�Fe2+. The LD spectrum of DNA at the time of
mixing and 250min after mixing are compared in the inset.
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As shown in the inset, the LD spectrum at the time of
mixing was negative, with its shape being symmetrical to
that of the absorption spectrum, as would be expected
from a flow-oriented LD system. The absorption spectra
of DNA in the presence and absence of EDTA�Fe2+/
H2O2/ascobate, at the time of mixing and 250min later,
were similar to each other when the absorption spectrum
of EDTA�Fe2+/H2O2/ascobate was subtracted from that
of the DNA-EDTA�Fe2+/H2O2/ascobate (data not
shown): therefore, the LD can be directly interpreted as
LDr. The decrease in the LD consists of an initial fast
component, followed by other slower components. The
fast component is dominant at a low EDTA�Fe2+ concen-
tration, while the slow components become more impor-
tant at higher EDTA�Fe2+ concentrations.

The decrease in the LD was unable to be fitted to simple
first or second order kinetics and consisted of the sum of
various exponential decays. An example of the decay
curve analysis for 100 mM DNA in the presence of
100 mM EDTA�Fe2+, 10mM H2O2 and 50 mM ascorbate
is shown in Figure 2. The goodness of fit was evaluated
using both the residuals and linear regressions. As seen
from the residuals, the decay curve in this particular
case consisted of three exponential components:
1.40� 0.015min (a1=0.54), 17.5� 2.79min (a2=0.10)
and 158.3� 65.5min (a3=0.35), where the a’s are the rela-
tive amplitudes. The error for the two short components
which are assumed to reflect the single- and double-
stranded breakage were 1.1 and 15.9%, respectively. The
analysis of the other sets of data resulted in a similar error
range and will not be mentioned further. The reaction,
particularly at the low EDTA�Fe2+ concentrations, was
completed within 100min and the fits were performed to
100min. Although a small decrease in LD magnitude after
100min was observed, especially, at the high EDTA�Fe2+

concentrations, the fits were also performed to 100min

for the sake of consistency in the data analysis. The
results for the other EDTA�Fe2+ concentrations are sum-
marized in Table 1. As shown in Table 1, the decrease in
the magnitude of the LD at low EDTA�Fe2+ concentra-
tions can be described by two exponential decays, while
three components were required at higher EDTA�Fe2+

concentrations. The shortest component, �1, whose con-
tribution, i.e. both the shortening of the decay time and
decrease in the relative amplitude, became smaller with
increasing EDTA�Fe2+ concentration, was dominant at
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Figure 2. An example of the curve analysis for DNA in the presence
of [EDTA�Fe2+]=100 mM, [H2O2]=10mM, [Ascorbate]=50 mM. The
measured data are represented by the dotted curve, and the best fitting
three component exponential decay by the solid curve. In the lower
panels, the resulting residuals from the one, two and three component
(from top) analyses are shown.
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Figure 1. The effects of the EDTA�Fe2+ concentration on the
time-dependent decrease in the magnitude of the LD of DNA at
260 nm. [H2O2]=10mM, [Ascorbate]=50 mM. Curve numbers 1
through 5, [EDTA�Fe2+]=5, 10, 50, 100 and 200 mM, respectively.
[DNA]=100 mM. Insertion: LD spectra of DNA at the time of
mixing (solid curve) and 250min after mixing (dashed curve) with
10 mM EDTA�Fe2+.

Table 1. Summary of the EDTA�Fe2+ concentration dependent decay

components in the magnitude of LD. [H2O2]=10mM,

[Ascorbate]=50 mM

[EDTA�Fe2+], mM Decay component (min) and amplitudes

5 a1=0.94 a2=0.06
�1=5.9 �2=39.4

10 a1=0.90 a2=0.10
�1=4.4 �2=26.8

50 a1=0.67 a2=0.20 a3=0.13
�1=2.1 �2=17.5 �3=83.9

100 a1=0.54 a2=0.10 a3=0.35
�1=1.4 �2=17.1 �3=158.0

200 a1=0.20 a2=0.20 a3=0.60
�1=0.6 �2=7.3 �3=110.3
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low EDTA�Fe2+ concentrations. The longer component,
�2, also shortened at low EDTA�Fe2+ concentrations with
increases in the EDTA�Fe2+ concentrations. At high
EDTA�Fe2+ concentrations, the slowest decay compo-
nent, �3, appeared. All of these results show the hetero-
geneity of the system. Considering that the magnitude of
the LD reflects only the flexibility and length of the DNA
system, this heterogeneity is not surprising.

EDTA�Fe2+-induced decrease in LDmagnitude
of synthetic polynucleotide

The time-dependent decreases in the magnitude of
poly[d(A-T)2], poly[d(G-C)2] and poly[d(I-C)2] LD are
depicted in Figure 3, with the analytical results summar-
ized in Table 2. The decrease in the magnitude of the LD
of poly[d(A-T)2] can be described by the sum of two expo-
nential decays at EDTA�Fe2+ concentrations of both 10
and 200 mM (Figure 3, panel (a)). In the case of 10 mM
EDTA�Fe2+, the fast component (8.3min), �1, was domi-
nant with the long decay, �2, appearing at 59.2min. In the
case of 200 mM EDTA�Fe2+, the decay times, �1 and �2,
were 4.0 and 84.5min (Table 2), respectively, and the
amplitude of �2 was larger, which was in contrast to the

case with DNA. The results obtained with poly[d(I-C)2] at
both EDTA�Fe2+ concentrations were similar to those
obtained with poly[d(A-T)2] (Figure 3, panel (c)), which
exhibited two exponential components. However, the
decreasing profile of poly[d(G-C)2] contrasted those of
poly[d(A-T)2] and poly[d(I-C)2]. Although, in the presence
of 10 mM EDTA�Fe2+, the decreasing magnitude of the
LD of poly[d(G-C)2] can be described by two exponential
curves with decay times of 8.5 and 113.9min (Figure 3,
panel (b) and Table 2), a single decay time of 110.2min
was observed at a high EDTA�Fe2+ concentration. It is
worth noting that even 250min after mixing, the magni-
tude of the LD did not reach zero at either EDTA�Fe2+

concentrations. This observation suggests that the amine
group in the minor groove inhibited at least one of the
processes involved in the EDTA�Fe2+-induced DNA clea-
vage. Removal of the amine group resulted in the appear-
ance of an extra decay component, as in the case of
poly[d(A-T)2] and poly[d(I-C)2]. The overall shape of the
decay profile of poly[d(I-C)2] became similar to that of
poly[d(A-T)2], as shown above.

Effect of oxygen species scavengers

The effect of various oxygen species scavengers (27–31)
were tested in this work. Tiron and sodium azide, which
are super oxide radical (�O�

2 ) and singlet oxygen (1O2)
scavengers, respectively, caused a large reduction in the
efficiency with which the LD was decreased (Figure 4).
In the presence of Tiron and sodium azide, the decay in
the magnitude of the LD was fitted to two exponentials
(Figure 4 and Table 3). The short component, �1,
appeared at 3.3min in the presence of both Tiron and
sodium azide, which may be explained by the disappear-
ance of the shortest component (�1=0.6min) in the
absence of the scavengers. The long component of the
decay times, which corresponds to �3 in the absence of
scavengers, was increased to 162.2 and 157.4min in the
presence of Tiron and sodium azide, respectively. The
magnitude of the LD decreased to slightly above 60% in
both cases, as compared with that in the absence of the
scavengers. The presence of catalase, which is a hydrogen
peroxide (H2O2) scavenger, was not as efficient at inhibit-
ing the oxidative cleavage as the above two scavengers,
suggesting that the role of hydrogen peroxide is not as
important in the oxidative cleavage of double-stranded
DNA. The addition of formic acid, a hydroxyl radical
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Figure 3. The effect of the EDTA�Fe2+ concentration on the time-
dependent decrease in the magnitude of the LD of the synthetic poly-
nucleotides at 260 nm. [EDTA�Fe2+]=10 mM (solid curve) and 200mM
(dotted curve), [H2O2]=10mM and [Ascorbate]=50 mM. Panel (a):
poly[d(A-T)2]; panel (b): poly[d(G-C)2]; panel (c): poly[d(I-C)2].

Table 2. Decay of the LD signal at 260 nm of the synthetic polynucleo-

tides at two representative EDTA�Fe2+ concentrations, 10 mM and

200mM. [H2O2]=10mM, [Ascorbate]=50 mM

Polynucleotide [EDTA�Fe2+]=10mM [EDTA�Fe2+]=200 mM

DNA a1=0.90 a2=0.10 a1=0.20 a2=0.20 a3=0.60
�1=4.4 �2=26.8 �1=0.6 �2=7.3 �3=110.3

Poly[d(A-T)2] a1=0.84 a2=0.16 a1=0.18 a2=0.82
�1=8.3 �2=59.2 �1=4.0 �2=84.5

Poly[d(I-C)2] a1=0.84 a2=0.16 a1=0.26 a2=0.74
�1=10.2 �2=42.0 �1=4.2 �2=80.7

Poly[d(G-C)2] a1=0.66 a2=0.34 a1=1.00
�1=8.5 �2=113.9 �1=110.2
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(�OH) scavenger, to the DNA-EDTA�Fe2+–H2O2 mixture
resulted in the complete loss of the LD signal (Figure 4,
curve b) both in the absence and presence of EDTA�Fe2+

and H2O2 (Figure 5). There are two possible reasons for
the disappearance of the LD spectrum: the aggregation of
the DNA or excess absorbance. Because the absorption
spectrum of DNA was similar to that of the DNA–
formic acid mixture with the formic acid component sub-
tracted, the aggregation of the DNA could be the reason
for the disappearance of the LD signal (data not shown).
Therefore, the role of hydroxyl radicals in the oxidative
cleavage of DNA could not be investigated using the LD
system. The effects of the scavengers on the cleavage of
poly[d(A-T)2] are depicted in Figure 6. In the presence of
catalase, the time-dependent change in the LD magnitude
was similar to that in its absence (Figure 6, panel (b)),
suggesting that H2O2 does not play any role in the oxida-
tive cleavage of double-stranded DNA. Conversely, the
presence of Tiron caused the disappearance of the short
component (Figure 6, panel (a)), with a single component
decay profile being observed at 201.4min. Sodium
azide inhibited the overall oxidative cleavage reaction

(Figure 6, panel (c)), suggesting the importance of singlet
oxygen (1O2) in the cleavage reaction. In the case of
poly[d(G-C)2], the signal to noise ratio in the presence
of scavengers was too low to deduce reliable data. The
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Figure 6. Time-dependent decrease in the magnitude of the LD of
poly[d(A-T)2] at 260 nm in the presence of various oxygen radical spe-
cies scavengers. [EDTA�Fe2+]=200mM, [H2O2]=10mM and
[Ascorbate]=50 mM. Panel (a): in the presence of Tiron (1mM);
panel (b): catalase (0.125 unit/ml); and panel (c): sodium azide (5mM).
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Figure 4. Time-dependent decrease in the magnitude of the LD of
DNA at 260 nm in the presence of various oxygen radical
species scavengers. [EDTA�Fe2+]=200mM, [H2O2]=10mM and
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Figure 5. The LD spectra of DNA in the presence of formic acid at the
time of mixing. Curve a: DNA (solid); curve b: DNA+200 mM
EDTA�Fe2+, 10mM H2O2 and 50 mM ascorbate (dashed); curve c:
DNA+50mM formic acid (dotted) and curve d: DNA+
EDTA�Fe2++H2O2+ascorbate+formic acid.

Table 3. The effects of various reactive oxygen species scavengers.

[EDTA�Fe2+]=200 mM, [H2O2]=10mM, [Ascorbate]=50 mM.

[Tiron]=1mM, [sodium azide]=5mM, and [catalase]=0.125 unit/ml

Scavengers Decay component (min) and amplitudes

No scavenger a1=0.20 a2=0.20 a3=0.60
�1=0.6 �2=7.3 �3=110.3

Tiron a1=0.11 a2=0.89
�1=3.3 �2=162.2

Sodium azide a1=0.31 a2=0.69
�1=3.3 �2=157.4

Catalase a1=0.19 a2=0.81
�1=3.0 �2=80.9
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bad signal was due at least partially to the short length of
poly[d(G-C)2].

DISCUSSION

Factors that affect the LDmagnitude during cleavage

The factors determining the magnitude of the LD of DNA
in the flow-oriented system adopted in this work are the
orientation and optical factors (23–26). The optical fac-
tors, which are related to the properties of the chromo-
phore and angle of the electric transition moment of the
given chromophore with respect to the flow direction,
were assumed to be constant throughout the entire pro-
cess. This assumption of the constancy of the optical fac-
tors was based on the similar absorption spectra of DNA
observed both before and after its cleavage (data not
shown), suggesting that the oxidation of a nucleobase,
i.e. the alteration of the chromophore property, under
the conditions adopted was not significant. Before and
during the cleavage process, the double-stranded DNA
contributes to the LD signal: the single-stranded DNA
will not orient and; therefore, would not be expected to
contribute to the LD signal. Hence, the angle between the
nucleobase of the double-stranded DNA and the flow
direction will remain constant, and therefore not contrib-
ute to the change in the magnitude of the LD. Therefore,
it is solely the ability of orientation of the DNA that
governs the magnitude of the LD in the set-up adopted
in this work with a constant solvent, temperature and flow
rate during the measurement. The ability of orientation of
the DNA in the flow may be affected by two factors: the
flexibility/rigidity and the length of the DNA. Cleaving
one of the strands of the double helical DNA increases
its flexibility, which induces bending or kinking at the
cleaved site, causing a reduction in the magnitude of
the LD. Cleavage at both strands results in a shortening
of the DNA which also reduces the magnitude of the LD.

Cleavage of double-stranded DNA and synthetic
polynucleotides

As previously mentioned, it is conceivable that the cleav-
age observed under our conditions occurred due to the
oxidation of the sugar moiety rather than the modification
of nucleobase, as the absorption spectra before and after
cleavage were similar. It should also be noted that a zero
LD signal does not necessarily indicate the complete
cleavage of the DNA to nucleotides: even if the DNA
remains double stranded, it is possible to result in a zero
LD signal when the DNA is very short. Indeed, DNA
below 400 base pairs did not produce any LD signal
under similar conditions (data not shown).
The cleavage of the DNA at low EDTA�Fe2+/H2O2

concentrations can be described as a combination of two
exponentials. It is logical to assign the fast component to
single strand cleavage and the slow component to double
strand breakage. As expected, the reaction times of both
processes became faster with increasing EDTA�Fe2+ con-
centration. However, at high EDTA�Fe2+ concentrations,
a very slow component appeared. It is not clear at this
stage whether the apparent slow reaction reflects a slow

down of the single or double strand breakage, or a totally
new cleavage mechanism. The appearance of the long
component was obviously related to the presence of
excess EDTA�Fe2+; therefore, it is possible that
EDTA�Fe2+ binds to DNA, inhibiting the action of reac-
tive oxygen species. The cleavage of the synthetic poly-
nucleotides; namely, poly[d(A-T)2], poly[d(I-C)2] and
poly[(G-C)2] at a low EDTA�Fe2+ concentration can be
described by a fast single strand cleavage and double
strand breakage mechanism, similarly to that of DNA.
The reaction times of both stages generally became
longer than those of DNA. Although the reason for this
is unclear, the differences in the base sequences may play
some role. DNA has 16 variations of its base arrangement
within two base pairs, which are linked by a sugar moiety,
while the synthetic polynucleotides have only two varia-
tions: for instance, only the 50GC30 ! 50CG30 or
50CG30 ! 50GC30 block exists in poly[d(G-C)2]. In the pre-
sence of excess EDTA�Fe2+, both poly[d(A-T)2] and
poly[d(I-C)2] exhibited two exponentials, probably due
to their simple sequences, which is in contrast to that
observed with DNA. The amplitude of the slow compo-
nent became larger and the LD signal never reached zero
in the presence of excess EDTA�Fe2+. When an amine
group was present in the minor groove, as seen in the
case of poly[d(G-C)2], the fast reaction was suppressed,
suggesting that the presence of EDTA�Fe2+ and amine
group in the minor groove is related to the inhibition of
DNA cleavage. More explicitly, EDTA�Fe2+ may bind at
the amine group in the minor groove thereby, suppressing
the action of the reactive oxygen species. It is worth noting
that the LD signal of poly[d(G-C)2] never reached zero,
which was in contrast with both poly[d(A-T)2] and
poly[d(I-C)2], also reflecting the inhibition of the amine
group at the minor groove.

Role of scavengers

Under Fenton-type conditions with H2O2, hydroxyl radi-
cals play an important role in the strand scission process
(32). However, investigating the effect of a hydroxyl radi-
cal scavenger, formic acid, was not possible using our LD
apparatus, because the aggregation of the DNA was
induced, resulting in the disappearance of the LD signal
of the DNA (Figures 4 and 5). In the case of both DNA
and poly[d(A-T)2], the presence of either Tiron or sodium
azide caused a significant reduction in the reaction rate
(longer reaction time), but the LD signal never reached
zero. This observation suggests that both super oxide
radicals and singlet oxygen contribute to the cleavage
reaction, particularly in the double strand breakage step
in addition to the hydroxyl radical and anion, those are
produced by the Fenton-type mechanism. The precise role
of these oxygen species is not clear at this stage.
Conversely, the addition of catalase had little effect on
the decrease in the LD signal, suggesting that H2O2 does
not play a significant role in the strand cleavage reaction.
Alternatively, the amount of H2O2 (10mM) may be too
large for its action to be suppressed by 0.125 mg/ml cata-
lase. As shown in Figures 5 and 6, the presence of scaven-
gers caused the disappearance of the very fast component,

e85 Nucleic Acids Research, 2008, Vol. 36, No. 14 PAGE 6 OF 7



which was assigned to the cleavage of one of the strands in
the double helix.

CONCLUSION

The LD technique was shown to be useful for the investi-
gation of DNA cleavage under Fenton-type conditions.
The resistance against cleavage of the sugar moiety by
reactive oxygen species was found to be stronger for
poly[d(G-C)2] than for the other base pair combinations
probably due to the amine group in the minor groove.
Both super oxide radical and singlet oxygen play impor-
tant roles in the cleavage of DNA by EDTA�Fe2+/H2O2

in addition to the hydroxyl radical and anion.
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