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Nuclear receptors comprise a superfamily of ligand-activated transcription factors that are involved in important aspects of hepatic
physiology and pathophysiology. There are about 48 nuclear receptors in the human. These nuclear receptors are regulators of
many hepatic processes including hepatic lipid and glucose metabolism, bile acid homeostasis, drug detoxification, inflammation,
regeneration, fibrosis, and tumor formation. Some of these receptors are sensitive to the levels of molecules that control lipid
metabolism including fatty acids, oxysterols, and lipophilic molecules. These receptors direct such molecules to the transcriptional
networks and may play roles in the pathogenesis and treatment of nonalcoholic fatty liver disease. Understanding the mechanisms
underlying the involvement of nuclear receptors in the pathogenesis of nonalcoholic fatty liver disease may offer targets for the
development of new treatments for this liver disease.

1. Introduction

Liver diseases are a serious problem throughout the world. In
Mexico, since 2000, cirrhosis and other chronic liver diseases
have become among the main causes of mortality [1]. The
incidence and prevalence of liver diseases are increasing
along with changes in lifestyle and population aging, and
these diseases were responsible for 20,941 deaths in 2007 [2].

In Mexico, the incidence of metabolic syndrome is also
increasing. The metabolic syndrome has recently been asso-
ciated with nonalcoholic fatty liver disease (NAFLD), and
about 90% of patients with NAFLD have more than one fea-
ture of the metabolic syndrome [3]. The severity of NAFLD
is one factor contributing to the development of nonalco-
holic steatohepatitis (NASH), cirrhosis, and hepatocellular
carcinoma [4, 5]. The growing obesity epidemic requires
a better understanding of the genetic networks and signal
transduction pathways that regulate the pathogenesis of these
conditions. A clear definition of the mechanisms responsible
for metabolic control may provide new knowledge for the
development of new drugs, with novel mechanisms of action,
for the treatment of chronic liver diseases.

The ability of individual nuclear receptors (NRs) to reg-
ulate multiple genetic networks in different tissues and their
own ligands may represent a new class of potential drugs
targets. To elucidate the challenges involved in developing
such drugs, this paper focuses on the role of hepatic NRs in
lipid metabolism and the possible effects on the physiopa-
thology of NAFLD.

2. Nonalcoholic Fatty Liver Disease

NAFLD is defined by the accumulation of triglycerides in the
form of droplets (micro- and macrovesicles) within hepato-
cytes [6]. The mechanism involves impaired insulin regula-
tion, which affects fat and glucose metabolism (intermediary
metabolism) in the liver, skeletal muscle, and adipose tissue,
a condition known as insulin resistance. Insulin resistance
increases free fatty acids and hepatic de novo lipogenesis,
causes dysfunction in fatty acid oxidation, and alters very-
low-density lipoprotein (VLDL) triglyceride export [7].

NAFLD is associated with insulin resistance, obesity, and
a lifestyle characterized by physical inactivity and an unlim-
ited supply of high-fat foods. However, more recent studies
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Table 1: Nuclear receptors in hepatic lipid metabolism.

RXR partner Ligands Official name Role in hepatic lipid metabolism

LXRα

Oxysterols
(22(R)-hydroxycholesterol,
24(S)-hydroxycholesterol,
24(S),25-epoxycholesterol,
27-hydroxycholesterol) and fatty
acids

NR1H3

(i) Increases fatty acid synthesis, TG level, HDL level, cholesterol
secretion

(ii) Upregulation of SREBP-c
{

FAS
ACC
SCD1

(iii) Upregulation of ChREBP, Angptl3

(iv) Downregulation of ApoA-V

PPARα
Fatty acids, fibrates, statins,
eicosanoids, and leukotrienes

NR1C1
(i) Promotes fatty acid oxidation (by lipoprotein lipase activation)

(ii) Improves insulin resistance

(iii) Suppression: acyl CoA oxidase (ACO-OX), acyl CoA synthase
(ACS), enoyl-CoA hydratase, malic enzyme, HMG-CoA synthase,
mitochondrial enzymes, APOA1 and APOCIII

FXR
Bile acids, pregnadiene, and
fexaramine

NR1H4

(i) Induces lipoprotein metabolism genes/clearance represses
hepatic genes involved in the synthesis of TG

(ii) Induces human PPARα

(iii) Increases hepatic expression of receptors VLDL

(iv) Reduces: hepatic lipogenesis and plasma triglyceride and
cholesterol levels

(v) Decreases expression of proteins apoC-III and Angptl3
(inhibitors of LPL)

PXR
Pregnanes, progesterone, and
glucocorticoids, LCA,
xenobiotics/drugs, rifampicin

NR1I2
(i) Induces lipogenesis by increasing expression of the fatty acid
translocase CD36, SCD-1, and long-chain free fatty acid elongase

(ii) Suppression of several genes involved in fatty acid β-oxidation
(PPARα, thiolase, carnitine palmitoyltransferase 1a (Cpt1a), and
mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2
(Hmgcs2))

CAR
Androstane metabolites, estrogens,
progesterone, and xenobiotics

NR1I3

(i) Induction of Insig-1, a protein with antilipogenic

properties

(ii) Interacts with PPARα during fasting

(iii) Suppresses lipid metabolism and lowers serum triglyceride
level by reducing SREBP-1 level

have proposed that not all individuals with NAFLD develop
insulin resistance before the presence of a fatty liver [3, 8].

NAFLD is a cluster of metabolic, histological, and molec-
ular disorders characterized by liver injury [9]. The purpose
of this paper is to describe the complex working of NRs and
their role in the hepatic accumulation of fat independent of
excessive alcohol consumption.

NRs are ligand-activated transcription factors that have a
broad range of metabolic, detoxifying, and regulatory func-
tions. NRs are sensitive to the levels of many natural and
synthetic ligands including hormones, biomolecules (lipids),
vitamins, bile acids, metabolites, drugs, and xenobiotic tox-
ins. In addition to their functions at the hepatic level, NRs
also control hepatic inflammation, regeneration, fibrosis,
and tumor formation [10]. These functions can be under-
stood through a complex transcriptional network that allows
them to maintain cellular nutrient homeostasis, to protect
against toxins by limiting their uptake and facilitating their
metabolism and excretion, and to play a role in several key
steps in inflammation and fibrosis [11].

New knowledge about the functions of NRs helps clarify
the pathogenesis and pathophysiology of a wide spectrum of
hepatic disorders (see Table 1).

3. Nuclear Receptor Structure

The NRs are characterized by a central DNA-binding do-
main, which targets the receptor to specific DNA sequences
known as hormone-response elements. The DNA-binding
domain comprises two highly conserved zinc fingers that
isolate the nuclear receptors from other DNA-binding pro-
teins. The C-terminal half of the receptor encompasses
the ligand-binding domain, which possesses the essential
property of ligand recognition and ensures both specificity
and selectivity of the physiological response [12, 13]. The
predominant role of these receptors is the transcriptional
regulation of enzymes and other proteins involved in energy
homeostasis (Figure 1(a)).

4. Action Mode of Nuclear Receptors

NRs act in three steps [14]: repression, derepression, and
transcription activation. Repression is characteristic of the
apo-NR, which recruits a corepressor complex with histone
deacetylase activity. Derepression occurs following ligand
binding, which dissociates this complex and recruits the first
coactivator complex, with histone acetyltransferase activity,
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Figure 1: (a) Schematic representation of a typical nuclear receptor. Nuclear receptors may be divided into five regions based on structural
and functional similarities (denoted A, B, C, D, E, and F). Regions C and E contain the conserved DNA-binding domains (DBDs) and ligand-
binding domains (LBDs) that are the signature of this superfamily. In addition, the constitutive transport element (CTE) is a dimerization
region within the LBD and two transactivation domains (denoted AF-1 and AF-2/τc). A second dimerization domain (not shown) exists in
the DBD and is required for heterodimerization of receptors on response elements. (b) NR function. Ligand binding to NRs triggers changes
in their conformation leading to the dissociation of corepressors and the recruitment of coactivators. After this exchange of coregulators,
RNA polymerase II is recruited and mRNA transcription is initiated. Most NRs bind to their DNA response elements in a sequence-specific
manner as dimers, functioning either as homodimers or as heterodimers with the RXR. RA: retinoic acid. Modified from [13, 94].

and causes chromatin decondensation, which is believed to
be necessary, but not sufficient, for activation of the target
gene. In the third step, transcription activation, the histone
acetyltransferase complex dissociates to cause the assembly
of a second coactivator, which can establish contact with the
basal transcriptional machinery to activate the target gene
[15] (Figure 1(b)).

Coactivators are molecules recruited by ligand-bound
activated NRs (or other DNA-binding transcription factors)
that increase gene expression. Coactivators contribute to the
transcriptional process through a diverse array of enzymatic
activities such as acetylation, methylation, ubiquitination,
and phosphorylation, or as chromatin remodelers [16].

The result is the modulation of the expression of a wide
array of physiologically important groups of genes involved
in diverse pathological processes including cancer, inherited
genetic diseases, metabolic disorders, and inflammation.

In contrast to the coactivator function, corepressors in-
teract with NRs that are not bound to the ligand and re-
press transcription. Corepressor-associated proteins such as
histone deacetylases enforce a local chromatin environment
that opposes the transcription-promoting activities of coac-
tivators [17].

5. Nuclear Receptors in the Liver

The hepatocyte is responsible for processes involved in
providing for many of the body’s metabolic needs, including
the synthesis and control of the pathways involved in the
metabolism of cholesterol, fatty acids, carbohydrates, amino
acids, serum proteins, and bile acids, and the detoxification
of drugs and xenobiotics.

The hepatocyte employs multiple levels of regulation to
perform its functions and possesses self-protective processes
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to avoid self-destruction. Some members of the NR super-
family provide hepatic mechanisms for self-regulation in he-
patocytes [18].

Gene regulation by NRs is more complex than simply
the presence of a potential DNA recognition sequence in a
promoter. Rather, it is a complex and multilayered process
that involves competition between agonists and antagonists,
heterodimerization, coregulator recruitment, and NR pro-
tein modification.

The NR family comprises 48 family members and is the
largest group of transcriptional regulators in the human.
Because some NRs participate in the control of hepatic ho-
meostasis, they may provide a new therapeutic target for the
treatment of liver diseases such as NAFLD [19].

5.1. Liver X Receptor. The transcriptional factor liver X re-
ceptor (LXR) is involved in cholesterol metabolism. The LXR
gene encodes two distinct products, LXRα and LXRβ, each
with diverse patterns of expression but similar target DNA-
binding elements and ligands. The human LXRα gene is
located on chromosome 11p11.2, and the human LXRβ gene
is located on chromosome 19q13.3. We will focus on LXRα
because of its high expression in the liver, although it is also
expressed at lower levels in the kidney, intestine, lung, fat,
adrenal, spleen, and macrophages [20, 21]. The ligands for
LXR are oxysterols. Once activated, LXR induces the expres-
sion of a cluster of genes that function in lipid metabolism;
these functions are cholesterol absorption, efflux, transport,
and excretion [22–24]. Besides its metabolic role, LXRs also
modulate immune and inflammatory responses in macro-
phages [25].

Like most other nuclear receptors, LXR forms heter-
odimers with the retinoid X receptor (RXR) within the nu-
cleus. Binding of the RXR to LXR leads to the formation of
a complex with corepressors such as silencing mediator of
retinoic acid, thyroid hormone receptor, and nuclear core-
pressor [26].

In the absence of a ligand, these corepressor interactions
are maintained and the transcriptional activity of target
genes is suppressed. Binding of a ligand to LXR causes a con-
formational change that facilitates inactivation of the core-
pressor complex and the transcription of target genes [27].

LXR is a key regulator of whole-body lipid and bile acid
metabolism [20, 28] (Figure 2). LXR regulates a cluster of
genes that participate in the transport of excess cholesterol in
the form of high-density lipoprotein (HDL) from peripheral
tissue to the liver—a process called reverse cholesterol
transport. In vivo activation of LXR with a synthetic, high-
affinity ligand increases the HDL level and net cholesterol
secretion [29]. LXR positively regulates several enzymes
involved in lipoprotein metabolism including lipoprotein
lipase (LPL), human cholesteryl ester transport protein, and
the phospholipid transfer protein [30]. LXR also regulates
the crucial bile acid enzyme CYP7A1. In rodents, this enzyme
contains an LXR response element that is upregulated in
response to excess cholesterol in the diet. The enzymatic
activation and conversion of cholesterol to bile acids is one
mechanism for handling excess dietary cholesterol [31–33].

In addition to its ability to modulate cholesterol and bile
acid metabolism, LXR is also a key regulator of hepatic lipo-
genesis. Its lipogenic activity results from the upregulation of
the master regulator of hepatic lipogenesis sterol regulatory
element-binding protein-c (SREBP-c) and from the induc-
tion of fatty acid synthase, acyl coenzyme A carboxylase, and
stearoyl CoA desaturase 1, all leading to increased hepatic
lipid levels [34, 35], one of the etiological agents in the patho-
genesis of NAFLD. Moreover, LXR induces the carbohydrate-
response element-binding protein, ChREBP [36]. ChREBP is
a target gene of LXR and is a glucose-sensitive transcription
factor that promotes the hepatic conversion of carbohydrates
into lipids. Several important proteins might mediate the
LXR-mediated hypertriglyceridemic effect. These include
angiopoietin-like protein 3 (Angptl3) [37], a liver-secreted
protein that increases the concentrations of both plasma
triglycerides by inhibiting LPL activity in different tissues and
free fatty acids by activating lipolysis in adipocytes and/or
apoA-V. LXR activation increases Angptl3 expression and
downregulates apoA-V expression [38]. The second “hit” in
NAFLD is related to the proinflammatory molecules, whose
expression is repressed by LXR. These include inducible
nitric oxide synthase, cyclooxygenase 2, interleukin-6 (IL-6),
IL-1β, chemokine monocyte chemoattractant protein-1, and
chemokine monocyte chemoattractant protein-3 [39].

LXR-activated pathways play central roles in whole-
body lipid metabolism by regulating multiple pathways in
liver cells. Further investigation into the effects of synthetic
LXR-specific agonists and/or antagonists may provide new
therapeutic tools for the treatment of NAFLD.

5.2. Peroxisome Proliferator-Activated Receptors. NAFLD ap-
pears to be a link between insulin resistance and obesity.
Several recent studies have shown that a family of transcrip-
tion factors, named the peroxisome-proliferator-activated
receptors (PPARs), improve several of the metabolic abnor-
malities associated with insulin resistance and impaired fat
metabolism [40].

The PPARs are nuclear hormone receptors. Three iso-
types have been identified in humans: PPARα, PPARβ/δ,
and PPARγ [41]. These receptors exhibit different tissue dis-
tribution and functions and, to some extent, different ligand
specificities. PPARα is highly expressed in the liver, brown
adipose tissue, heart, skeletal muscle, kidney, and at lower
levels in other organs. PPARγ is highly expressed in adipose
tissues and is present in the colon and lymphoid organs.
PPARβ/δ is expressed ubiquitously, but its levels may vary
considerably [42, 43].

Mechanistically, the PPARs also form heterodimers with
the RXR and activate transcription by binding to a specific
DNA element, termed the peroxisome proliferator response
element (PPRE), in the regulatory region of several genes
encoding proteins that are involved in lipid metabolism
and energy balance. Binding of agonists causes a conforma-
tional change that promotes the binding to transcriptional
coactivators. Conversely, binding of antagonists induces
a conformation that favors the binding of corepressors.
Physiologically, PPAR-RXR heterodimers may bind to PPREs
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in the absence of a ligand, although the transcriptional ac-
tivation depends on the ligand-bound PPAR-RXR [44, 45].
The predominant role of these receptors is the transcriptional
regulation of enzymes and other proteins involved in energy
homeostasis, some of which are in the liver. To explain their
possible action in the development and treatment of NAFLD,
a brief description of each PPAR follows [46, 47].

In the liver, PPARα promotes fatty acid oxidation. It is
the target for the hypolipidemic fibrates, such as fenofibrate,
clofibrate, and gemfibrozil, which are used in the treatment
of hypertriglyceridemia [48].

The role of PPARα in hepatic fatty acid metabolism
is especially prominent during fasting. In fasted PPARα-
null mice, its absence is associated with pronounced hepatic
steatosis, decreased levels of plasma glucose and ketone
bodies, and elevated plasma free fatty acids levels, and
hypothermia. These severe metabolic disturbances are the
result of the decreased expression of many genes involved
in hepatic lipid metabolism. The PPARα target genes are
those for acyl CoA oxidase (ACO-OX), acyl CoA synthase
(ACS), enoyl-CoA hydratase, malic enzyme, HMG CoA
synthase, mitochondrial enzymes, liver-fatty-acid-binding
protein, and fatty acid transport protein. PPARα can also
regulate other genes such as LPL, which is involved in
the degradation of triglycerides, and APOA1 and APOCIII,
which are both downregulated by PPARα [49–55] (Figure 2).

Whereas PPARα controls lipid catabolism and home-
ostasis in the liver, PPARγ promotes the storage of lipids in
adipose tissues and plays a pivotal role in adipocyte differ-
entiation. It is a target of the insulin-sensitizing thiazolidine-
diones. Despite its relatively low expression levels in healthy
liver, PPARγ is critical for the development of NAFLD [56].

In the liver, PPARβ/δ is protective against liver toxicity
induced by environmental chemicals, possibly by downreg-
ulating the expression of proinflammatory genes. PPARβ/δ
regulates glucose utilization and lipoprotein metabolism
by promoting reverse cholesterol transport [57–60]. PPARs
appear to be targets for the treatment of metabolic disorders.
PPARα and PPARγ are already therapeutic targets for the
treatment of hypertriglyceridemia and insulin resistance,
respectively, disorders that relate directly to the progress of
NAFLD. The discovery of more pathways may provide new
treatments for hepatopathies.

5.3. Farnesoid X Receptor. The farnesoid X receptor (FXR), a
member of the NR superfamily, has a typical NR structure
and contains a hydrophobic pocket that accommodates
lipophilic molecules such as bile acids [61]. Its gene is located
on chromosome 12, and it is expressed predominantly in the
liver, gut, kidneys, and adrenals and at lower levels in white
adipose tissue [62, 63]. The FXR binds to specific response
elements as a heterodimer with the RXR, although it has also
been reported to bind DNA as a monomer [28, 64]. The
main physiological role of the FXR is to act as a bile acid
sensor in the enterohepatic tissues. FXR activation regulates
the expression of various transport proteins and biosynthetic
enzymes crucial to the physiological maintenance of bile
acids and lipid and carbohydrate metabolism.

Bile acids bind to and activate this NR. The order of
potency of FXR binding to bile acids is chenodeoxycholic
acid > lithocholic acid = deoxycholic acid > cholic acid
[65, 66].

In addition to their well-established roles in bile acid
metabolism, recent data have demonstrated that activation of
the FXR is also implicated in lipid metabolism. Activation of
the FXR reduces both hepatic lipogenesis and plasma triglyc-
eride and cholesterol levels, induces the genes implicated
in lipoprotein metabolism/clearance, and represses hepatic
genes involved in the synthesis of triglycerides [67]. The
FXR promotes reverse transport of cholesterol by increasing
hepatic uptake of HDL cholesterol via two independent
mechanisms. The first is FXR-mediated suppression of
hepatic lipase expression [68]. Hepatic lipase reduces HDL
particle size by hydrolyzing its triglycerides and phospho-
lipids in hepatic sinusoids, which facilitates hepatic uptake of
HDL cholesterol. The second mechanism is the induction by
the FXR of the expression of the gene for scavenger receptor
B1, the HDL uptake transporter in the liver [69].

Activation of the FXR also increases the hepatic expres-
sion of receptors such as VLDL receptor and syndecan-1,
which are involved in lipoprotein clearance, and increases
the expression of ApoC-II, which coactivates lipoprotein li-
pase (LPL). FXR activation also decreases the expression of
proteins such as ApoC-III and Angptl3 [70] that normally
function as inhibitors of LPL. Finally, the FXR induces
human PPARα [71], an NR that functions to promote fatty
acid β-oxidation. Taken together, these data suggest that FXR
activation lowers plasma triglyceride levels via both repress-
ing SREBP1-c and triglyceride secretion and increasing the
clearance of triglyceride-rich lipoproteins from the blood
(Figure 2).

In carbohydrate metabolism, activation of the hepatic
FXR regulates gluconeogenesis, glycogen synthesis, and in-
sulin sensitivity [72]. The bile acid sensor FXR also has anti-
inflammatory properties in the liver and intestine, mainly
by interacting with NF-κB signaling. FXR agonists might
therefore represent useful agents to reduce inflammation in
cells with high FXR expression levels, such as hepatocytes,
and to prevent or delay cirrhosis and cancer development in
inflammation-driven liver diseases.

These data suggest that FXR activation by its ligands
would reduce hepatic steatosis and that such activation may
have a beneficial role in NAFLD by decreasing hepatic de novo
lipogenesis, which constitutes the first “hit” of the disease.
Inflammatory processes lead to the development of hepatitis
and subsequent liver fibrosis. The hepatic FXR appears to be
downregulated during the acute-phase response in rodents in
a manner similar to that seen for other NRs such as PPARα
and the LXR [73].

5.4. The Pregnant X Receptor and Constitutive Androstane
Receptor. The pregnane X receptor (PXR) and constitutive
androstane receptor (CAR) share some common ligands and
have an overlapping target gene pattern. The CAR gene is
the product of the NR1I3 gene located on chromosome 1,
locus 1q23, whereas hPXR is the product of the NR1I2 gene,
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Figure 2: NRs as central regulators of hepatic lipid metabolism. Oxysterols activate the LXR, whereas bile acids (BA) stimulate
SHP expression through the FXR (not shown). The LXR activates SREBP-1c and induces de novo fatty acid (FA) synthesis and
hypertriglyceridemia by activating FAS, ACC, SCD1, and ChREBP (a glucose-sensitive transcription factor that promotes the hepatic
conversion of carbohydrates into lipids). Several important proteins that could mediate the LXR-mediated hypertriglyceridemic effect are
regulated. One protein is angiopoietin-like protein 3 (Angptl3), a liver-secreted protein that increases both plasma triglyceride level by
inhibiting LPL activity in different tissues and free fatty acid level by activating lipolysis in adipocytes. LXR activation increases the expression
of Angptl3 and LPL and downregulates apoA-V expression. Activation of the FXR leads to the repression of hepatic lipogenesis by reducing
the expression of SREBP-1c. By increasing the expression of PPARα, the FXR also promotes FFA catabolism via β-oxidation, which induces
ACO-OX, ACS, ECA, HMG-CoAS, FAB1, and FATP. By repressing the expression of MTP, an enzyme that controls VLDL assembly, the FXR
reduces VLDL production. Activation of the FXR increases TG clearance by promoting LPL activity, via induction of ApoC-II and B1R.
Activation of the FXR also reduces TG clearance by decreasing the expression of ApoC-III and Angptl3, two LPL inhibitors. PPARα can be
activated by FXR and fibrates (not shown). PPAR activation leads to β-oxidation, which induces ACO-Ox, ACS, ECA, HMG-CoAS, FAB1,
and FATP. Others genes are regulated. For example, LPL, which is involved in the degradation of TG, is activated, and APOA1 and APOCIII
are both downregulated. The activation pathways are shown by green arrows, inhibitory pathways by red lines, and inhibited activation
pathways by broken green arrows. Angptl3: angiopoietin-like protein 3; ACC: acetyl-CoA carboxylase; Apo: apolipoprotein; ChREBP:
carbohydrate response element-binding protein; FAS: fatty acid synthase; FATP: fatty acid transport protein; FXR: farnesoid X receptor; LPL:
lipoprotein lipase; LXR: liver X receptor; MTP: microsomal triglyceride transfer protein; PPAR: peroxisome proliferator-activated receptor;
SCD1: stearoyl-coenzyme A desaturase 1; SREBP-1c: sterol regulatory element-binding protein-1c; TG: triglyceride. Arrows and stop bars
indicate positive regulation or activation and negative regulation or repression, respectively.

which is located on chromosome 3, locus 3q12–q13.3 [74–
76]. Like most other NRs, the PXR and CAR have an N-
terminal DNA-binding domain and a C-terminal ligand-
binding domain. PXR and CAR regulate gene expression by
forming heterodimers with the RXR.

The PXR is located in the nucleus and has a low basal
activity and is highly activated upon ligand binding [77,
78]. By contrast, in the noninduced state, the CAR resides
in the cytoplasm. Compounds that activate the CAR and
PXR are structurally very diverse; most are small and are
highly lipophilic [79]. The PXR is activated by pregnanes,
progesterone, and glucocorticoids [80, 81], whereas the CAR
is affected both positively and negatively by androstane
metabolites, estrogens, and progesterone [82, 83]. For this
reason, in addition to functioning as xenobiotic receptors,
the PXR and CAR are thought to be endobiotic receptors that
influence physiology and diseases [84, 85].

For example, several studies have shown that the PXR
induces lipogenesis in a SREBP-independent manner. Lipid

accumulation and marked hepatic steatosis in PXR-trans-
genic mice are associated with increased expression of the
fatty acid translocase CD36 (also called FAT) and several
accessory lipogenic enzymes, such as SCD-1 and long-chain
free fatty acid elongase. CD36, a multiligand scavenger
receptor present on the surface of a number of cell types,
may contribute to hepatic steatosis by facilitating the high-
affinity uptake of fatty acids from the circulation [86]. The
CD36 level in the liver correlates with hepatic triglyceride
storage and secretion, suggesting that CD36 plays a causative
role in the pathogenesis of hepatic steatosis [87]. PXR may
also promote hepatic steatosis by increasing the expression
of CD36 directly or indirectly through the PXR-mediated
activation of PPARγ [86].

Interestingly, an independent study showed that hepatic
triglyceride level decreases temporarily after short-term (10-
hour) activation of the PXR [88]. PXR activation is also
associated with upregulation of PPARγ, a positive regulator
of CD36 and a master regulator of adipogenesis [89]. PXR
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of lipogenic genes. Insig proteins bind and trap SCAP, retaining it in the ER and preventing it from escorting SREBPs to the site of proteolytic
activation in the Golgi complex (not shown). SREBPs are cleaved by two proteases in the Golgi complex, and the bHLH-Zip domain of
SREBPs transfers from the membrane to the nucleus to bind the sterol response elements in the promoter region of the target genes (not
shown). CAR inhibits fatty acid β-oxidation. CAR competes with PPARα for its binding site in the 3-hydroxyacyl CoA dehydrogenase
gene promoter. Activation of CAR also decreases the expression of Cpt1, a rate-limiting enzyme of β-oxidation. Arrows and stop bars
indicate positive regulation or activation and negative regulation or repression, respectively. Cpt1a: carnitine palmitoyltransferase 1a; FAE:
long-chain free fatty acid elongase; FoxA2: forkhead box factor A2; Hmgcs2: mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2;
PPAR: peroxisome proliferator-activated receptor; SCAP: SREBP cleavage-activating protein; SCD1: stearoyl CoA desaturase 1; SREBP: sterol
regulatory-element binding protein.

activation is also associated with suppression of several
genes involved in fatty acid β-oxidation, such as PPARα
and thiolase [90]. A study by Nakamura and colleagues
showed that PXR represses β-oxidation-related genes such
as carnitine palmitoyltransferase 1a (Cpt1a) and mitochon-
drial 3-hydroxy-3-methylglutaryl CoA synthase 2 (Hmgcs2)
through crosstalk with the insulin-responsive forkhead box
factor A2 (FoxA2) (Figure 3).

Activation of the CAR might suppress lipid metabolism
and lower serum triglyceride levels by reducing the level of
SREBP-1, a master regulator of lipid metabolism. The inhib-
itory effects of the CAR on lipid metabolism might also be
attributed to induction of Insig-1, a protein with antilipo-
genic properties [88].

The CAR interacts with PPARα during fasting and has
been reported to interfere with fatty acid metabolism by
binding to DNA elements overlapping with the PPARα-
binding site in the promoter region of 3-hydroxyacyl CoA
dehydrogenase, an important enzyme in peroxisomal fatty
acid β-oxidation [91] (Figure 3).

Finally, other studies indicate that the CAR might be
involved in the pathogenesis of NASH [92] by regulating
the response of serum triglyceride level to metabolic stress

[93]. The overlap of the activation of endogenous lipids by
the CAR and PXR suggests a functional connection between
these receptors in liver physiology. This knowledge might
be useful in the development of new treatments to limit or
prevent the pathogenesis of NAFLD by developing agonists
or antagonists to prevent or lessen lipid accumulation within
the liver parenchyma.

6. Conclusion

NAFLD encompasses a spectrum of conditions characterized
histologically by hepatic steatosis ranging from simple fatty
liver to NASH cirrhosis and HCC [4].

NRs control fatty acid transport from peripheral adipose
tissue to the liver and regulate several critical metabolic
steps involved in the pathogenesis of NAFLD, including fat
storage, export, uptake, oxidation, and lipolysis [94]. The
discovery that many ligands activate the whole family of
NRs (FXR, LXR, PPARs, PXR, and CAR) and their possible
interconnected mechanisms that control lipid metabolism
suggests the possibility of developing novel therapies for the
treatment of NAFLD. The LXR and PXR regulate several
metabolically relevant pathways and clusters of genes that
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lead to hepatic lipogenesis and might be directly related to
the pathogenesis of liver diseases. The FXR, PPARα, and
CAR are activated by ligands to orchestrate a broad range of
lipolytic activities. These might become future candidates for
drugs designed to target metabolic liver disorders.
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