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The present computational study investigates the effects of an epicardial support

pressure mimicking a heart support system without direct blood contact. We chose

restrictive cardiomyopathy as a model for a diseased heart. By changing one parameter

representing the amount of fibrosis, this model allows us to investigate the impairment

in a diseased left ventricle, both during diastole and systole. The aim of the study is

to determine the temporal course and value of the support pressure that leads to a

normalization of the cardiac parameters in diseased hearts. These are quantified via the

end-diastolic pressure, end-diastolic volume, end-systolic volume, and ejection fraction.

First, the amount of fibrosis is increased to model diseased hearts at different stages.

Second, we determine the difference in the left ventricular pressure between a healthy

and diseased heart during a cardiac cycle and apply for the epicardial support as the

respective pressure difference. Third, an epicardial support pressure is applied in form

of a piecewise constant step function. The support is provided only during diastole,

only during systole, or during both phases. Finally, the support pressure is adjusted

to reach the corresponding parameters in a healthy rat. Parameter normalization is not

possible to achieve with solely diastolic or solely systolic support; for the modeled case

with 50% fibrosis, the ejection fraction can be increased by 5% with purely diastolic

support and 14% with purely systolic support. However, the ejection fraction reaches

the value of the modeled healthy left ventricle (65.6%) using a combination of diastolic

and systolic support. The end-diastolic pressure of 13.5 mmHg cannot be decreased

with purely systolic support. However, the end-diastolic pressure reaches the value of

the modeled healthy left ventricle (7.5 mmHg) with diastolic support as well as with the

combination of the diastolic and systolic support. The resulting negative diastolic support

pressure is −4.5 mmHg, and the positive systolic support pressure is 90 mmHg. We,

thereby, conclude that ventricular support during both diastole and systole is beneficial

for normalizing the left ventricular ejection fraction and the end-diastolic pressure, and

thus it is a potentially interesting therapy for cardiac insufficiency.

Keywords: cardiac assist device, cardiomyopathy, epicardial heart support, left ventricle, support

pressure, fibrosis
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1. INTRODUCTION

Cardiovascular diseases remain the leading cause of death
worldwide (1). If conservative therapy is inadequate due to the
pathological condition of the heart, there are usually only two
options remaining to treat this condition: cardiac assist devices
or heart transplantation. However, there is a chronic shortage of
donors. For example, in Germany, 320 patients received a donor
heart in 2020, while the remaining 700 patients were still on the
waiting list at the end of that year (2).While heart transplantation
is a superior option in terms of survival and functional capacity,
significant improvements in the field of cardiac assist devices
have resulted in promising solutions that close the gap between
availability and demand for donor’s hearts. Over the last decades,
various types of mechanical pumping systems, known as left
ventricular (LV) assist devices, have been developed (3). They are
used as an invasive form of therapy to directly support blood
circulation. In principle, these systems mostly work to bypass
the weakened heart. Such cardiac assist devices can relieve the
load on the heart and become either a short- to medium-term
bridge to treat cardiac insufficiency until possible transplantation
(bridge-to-transplantation) or a permanent solution (destination
therapy). Despite the rapid development of new devices and
improvements in post-surgery survival and functional capacity
nearing those of heart transplantation, there are still many
problems to solve, including bleeding, thrombosis, strokes, and
infections (3, 4).

For the most part, these problems are caused by the direct
contact of blood with the cardiac assist device. Several approaches
to avoiding direct blood contact, commonly referred to as direct
cardiac compression devices, have been proposed to overcome
such difficulties. The first bridge-to-transplantation based on a

pneumatic compression cup (5) was followed by several other

innovative approaches, e.g., (6–9). Review articles provide a
more detailed overview of available direct cardiac compression

devices (3, 10). For example, systems from AdjuCor GmbH
(8) and CorInnova Inc. (9), currently in the preclinical testing
phase, provide support during systole and are minimally invasive
implants. The common principle of these devices is that they
develop a pressure (force per area) that acts on the epicardial
surface. Theoretically, a diseased heart can be thereby supported
solely in the diastole, solely in the systole, or in both cardiac
phases. However, most direct cardiac compression devices only
work during systole. The objective of our computational study
is to investigate (1) if an application of support pressure on
the LV during both the diastolic and systolic phases is able to
normalize the ejection fraction (EF) and left ventricular end-
diastolic pressure (EDP) and (2) how much pressure is needed.
The current study does not focus on the modeling of a particular
cardiac assist device.

In general, the functionality of a direct cardiac compression
device is mainly determined by the improvement in the pump
function of a diseased heart. In the present study, it is quantified
via the EF and EDP. However, the influence of a direct
cardiac compression device on cardiac performance is not
straightforward to compute, due to, e.g., the varying mechanical
properties of active biological cardiac tissue that is undergoing

complex deformations. The complex orthotropic tissue structure
of the healthy myocardium, which can be modeled with different
approaches (11–13), plays an important role. Furthermore, the
amount of fibrosis in the ventricular wall strongly influences
cardiac performance. Over the course of many heart diseases,
there is a remodeling process that leads to an increase in fibrosis
(14, 15). This is often independent of the triggering disease
and can occur after cardiac volumetric pressure loading or
ischemia (16). Various studies indicate a correlation between
diastolic function and the amount of myocardial fibrosis (17, 18).
Regardless of the functional impact of primary cardiomyopathy,
the fibrosis progressively limits the diastolic function of the
ventricle (19). As long as the condition can be systolically
compensated, there is no reduction in the overall myocardial
function (heart failure with preserved ejection fraction) (20).
However, if the amount of fibrosis exceeds a certain level, the
reduction in the diastolic function can no longer be systolically
compensated, and the overall myocardial function is reduced
(19). It has been shown that ventricular fibrosis inversely
correlates with the ejection fraction, both in rats (21) and humans
(17). Since the functional impairment resulting from the diastolic
dysfunction due to myocardial fibrosis is the terminal stage
of most cardiac diseases (17), a better understanding of the
role of diastolic function and its relationship with the amount
of fibrosis is important. We, therefore, calculated the effects
of increasing fibrosis on cardiac function in a computational
model of restrictive cardiomyopathy. Studies using postmortem
mechanical testing in animal models after myocardial infarction
have shown that the fibrosis leads to the stiffening of the cardiac
tissue (22–25).

To optimally support a diseased heart via a direct cardiac
compression device, two main factors play an important role:
the time evolution of the force generated by the device and
its maximum and minimum values. To date, how these factors
influence cardiac function has not been investigated in detail.
In this early research study, a computer simulation offers many
advantages. First, it saves time compared to experimental testing.
Second, there are beneficial synergies between computational
modeling and simulation and experimental testing; for example,
various parameters can be predicted that cannot be directly
measured. Third, modeling and simulation can eventually be
used to improve the adaptivity of such a system at a patient-
specific level, making it a fundamental instrument inmodern and
future medicine. So far, a few finite element-based computational
models that account for the coupling between a cardiac assist
device and the heart have been developed. The existing work
presents simulations for the ventricular pumps that are coupled
with a univentricular (26) or biventricular heart models (27) via
a cannula. A computational model for the innovative support
system from AdjuCor GmbH is presented in Hirschvogel et al.
(28). Recently, Chavanne (29) presented a simulation of a
dielectric elastomer actuator-based aortic plaster interacting with
a lumped parameter model for the heart.

The present study uses a finite element-based computer
simulation. The study models an actively contracting rat LV with
different amounts of fibrosis (30) and investigates the influence
of direct cardiac compression devices supporting the LV on
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cardiac performance during both diastolic and systolic phases.
As the current study does not focus on modeling a particular
cardiac assist device, for simplicity, the model represents a
support pressure acting on the outer surface of the modeled LV,
as depicted in Figure 2A. During diastole, a negative support
pressure is modeled to facilitate the ventricular filling, whereas
a positive support pressure in systole is applied to eventually
support the blood outflow from the LV. In particular, we
investigate whether a support pressure calculated as a difference
between the modeled ventricular pressure in a fibrotic and
healthy LV would lead to a normalization of cardiac function
parameters. Subsequently, the maximum positive systolic and
negative diastolic support pressures are optimized such that the
EF, EDP, and left ventricular end-diastolic volume (EDV) of
a control healthy rat LV are restored. In the present study, a
simplified rat LV ventricle is computationally modeled.

2. METHODS

This section describes the computational model of the
contraction of a rat LV and the associated numerical experiments.

2.1. Modeling
2.1.1. Balance Equations and Support Pressure

Boundary Conditions
The field equation governing the state of the material point X ∈

�0 at time t, t ∈ [t0, tf ] (t0 and tf are the initial and final times,
respectively) can be formulated. The mechanical field equation
is the balance of linear momentum together with the boundary
conditions on the boundaries Ŵϕ , Ŵ1, and Ŵ2:

0 = Div[F · S]+ Fϕ in �0, (1)

ϕ(X, t) = ϕ̄ in Ŵϕ , T(X, t) = −piJF
−TN in Ŵi, i ∈ {1, 2}

(2)

where F is the deformation gradient with its determinant
J = det F, S is the second Piola Kirchhoff stress (PK2), Fϕ

is the external mechanical body force, ϕ is the displacement
with prescribed value ϕ̄ on the boundary Ŵϕ , T is the surface
traction vector in the reference configuration, N is the outer unit
normal in the reference configuration and pi are the prescribed
values of the pressures acting on the boundaries Ŵi, i ∈ {1, 2}.
The pressure p1 in the LV, obtained from the three-element
Windkessel model (representing the interaction between the LV,
aorta, and peripheral arteries), serves as a Neumann boundary
condition on the endocardial surface Ŵ1 whereas the support
pressure p2 serves as a Neumann boundary condition on the
epicardial surface Ŵ2. The basis of the LV (Ŵϕ) is fixed in the
longitudinal direction; additionally, the nodes on the outer basis
are fixed in all directions (31).

2.1.2. Constitutive Equations
In the present study, the total PK2 is additively decomposed into
the passive part Spas and the active part Sact (31–35), namely

S = Spas + Sact . (3)

Based on Martonová et al. (23), we model the LV as a mixture of
the intact myocardium and fibrotic scar structure. The amount
of fibrosis, fib, serves as a scaling factor. Furthermore, we assume
that only the intact muscle tissue is able to contract (30, 36), and
therefore the active part of the stress tensor is as well-scaled by
the amount of fibrosis. The resulting PK2 reads as

S = fib Sspas + (1− fib)( Smpas + Smact), (4)

where the superscripts s and m correspond to the scar and intact
myocardium and the subscripts pas and act to the passive and
active parts of the PK2, respectively. In particular, by setting
fib = 0, only the intact cardiac tissue is modeled. As proposed
in Martonová et al. (23) for the passive part, the scar structure
is modeled as a transversely isotropic material and the intact
myocardium as an orthotropic material, according to Holzapfel
and Ogden (37). The active contraction of the intact myocardium
is modeled following the simple time-dependent approach from
Pfaller et al. (38):

Sact(t, f 0, n0) = T(t)(f 0 ⊗ f 0 + νn0 ⊗ n0). (5)

The temporal evolution of the active tension T depicted in
Figure 1 is obtained by using the parameters shown in Table A1.
For the equations describing T(t), we refer to the Appendix or
the original study (38).

Based on the experimental evidence (39) and our previous
study (30), in addition to the contraction in the fiber direction
f 0, reduced active stress along the cross-fiber direction n0
is added and scaled by ν in Equation (5). We note that
the electromechanical coupling is omitted in this study as it
would introduce further complexity and variability. However,
the model can be coupled with a model for electrical
excitation (38). The constitutive model is applied to the generic
ellipsoidal rat LV based on the data from echocardiography.
For more details regarding the geometry, fiber orientation,
compressibility, and the Windkessel model serving as a
boundary condition in Equation (1), we refer to previous study
(35).

2.1.3. Diastolic Filling
The blood flow I between the left atrium and LV is given as

I =
1p

Rv1
, (6)

where 1p is the pressure difference between the left atrium
and LV, and Rv1 is the resistance of the atrioventricular valve.
The pressure in the atrium pa is modeled according to the
following equation:

pa(t) =











(1+ fib)pa1 if t ≤ ta

(1+ fib)(pa1 + pa2 sin(t − ta)) if ta < t ≤ ted

(1+ fib)pa1 if t > ted

(7)

where pa1 and pa2 are the minimum and maximum atrial
pressures, and ta, ted model the onset of the atrial and ventricular
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contraction, respectively. The resulting curve is shown in
Figure 1. We note that the atrial pressure is as well-scaled
by the amount of fibrosis, allowing us to model the higher
EDP observed in rats with different amounts of fibrosis after
myocardial infarction (40). To avoid an unlimited blood inflow
from the atrium to the LV, the maximal EDV is restricted to that
of the control rat.

2.2. Numerical Experiments
In the following, p(t) defines the support pressure acting on
the epicardial surface of the LV. Three numerical experiments
are performed.

First, the amount of fibrosis is varied from 0% to 60% in
order to compare the cardiac performance represented by the
EF in the fibrotic rat LV at different fibrosis stages without a
support pressure.

Second, a support pressure is applied in order to increase
the diastolic and systolic performance of the diseased LV at
different fibrosis stages. The support pressure is computed as a
difference between the left ventricular pressure in the control

FIGURE 1 | Temporal evolution of the time-dependent atrial pressure and the

active fiber tension.

and diseased LV at each time point during the cardiac cycle
(Figure 2B), namely

p(t) = p0LV (t)− p
fib
LV (t), (8)

where p0LV is the pressure in the control LV (fib = 0), and p
fib
LV is

the left ventricular pressure in a fibrotic LV for different amounts
of fibrosis. In these examples, we consider fib ∈ {0.1, 0.3, 0.5}.

Third, the support pressure displayed in Figure 2C and
obeying the following equation is applied on exemplary fibrotic
LVs, namely fib ∈ {0.3, 0.5}.

p(t) =































pmin if t ≤ ted

pmin +
pmax−pmin

t1
(t − ted) if ted < t ≤ ted + t1

pmax if ted + t1 ≤ t ≤ tes

pmax −
pmax−pmin

t1
(t − tes) if tes < t ≤ tes + t1

pmin if t > tes + t1

(9)

As mentioned in the Introduction, three possibilities for
supporting a weakened heart can be distinguished: pure diastolic,
pure systolic, and combined diastolic and systolic support. For
the first possibility, we aim to regain EDP∗ and EDV∗ of the
healthy control LV (within given tolerances tol1, tol2). For the
second and third possibilities, we additionally aim to nearly reach
ESV∗ of the healthy control LV. Note that EDP and EDV depend
on the value of pmin only, i.e., EDP(pmin), EDV(pmin), while ESV
depends on both values pmin and pmax, i.e., ESV(pmin, pmax).
We started with the determination of the optimal negative
support pressure during the diastole pmin = p∗min in Equation
(9). In a second step, only systolic support is considered, i.e.,
pmin in Equation (9) is set to zero, and the maximal positive
support pressure pmax = p∗max−sys is determined. In the last
step, a combination of diastolic and systolic support is assumed.
Therefore, p∗min from the first step is fixed, and the optimal
systolic support pmax = p∗max is to be found. We note that
p∗max−sys 6= p∗max hold in general, as the end-diastolic states
are different in both cases. For these three steps, the following
algorithm is performed:

1. Diastolic support: Find p∗min so that
|EDV(p∗min) − EDV∗| ≤ tol1 and |EDP(p∗min) − EDP∗| ≤ tol2
are fulfilled

FIGURE 2 | (A) Discretized model of the rat LV with applied support pressure p(t) on the epicardial surface. (B) Time-dependent support pressure according to

Equation (8) for fib ∈ {0.1, 0.3, 0.5}. (C) Time-dependent support pressure according to Equation (9).
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2. Systolic support: Set pmin = 0 kPa and find p∗max−sys so that
|ESV(0 kPa, p∗max−sys)− ESV∗| ≤ tol1 is fulfilled

3. Diastolic and systolic support: Set pmin = p∗min and find p∗max

so that
|ESV(p∗min, p

∗
max)− ESV∗| ≤ tol1 is fulfilled

where the optimal support pressure p∗(t) from Equation (9) is
determined via the negative diastolic support pressure p∗min and
positive systolic support pressures p∗max−sys, p

∗
max, for the purely

systolic support and systolic support combined with diastolic
support, respectively.

3. RESULTS

Different quantities characterizing the cardiac performance
are plotted for all simulations introduced in Section 2.2,
including pressure volume loop, EF, EDV, ESV, EDP, and
averaged end-diastolic hydrostatic stress over the domain, that is

σH = 1
nel

∑nel
i=1

∑3
j=1

σ i
jj

3 , where σ i
jj (j = 1, 2, 3) are the diagonal

components of the Cauchy stress in the i-th finite element
and nel = 22846 is the total number of the tetrahedral finite
elements in the computational domain representing the LV; refer
to Figure 2A. We note that EDP is the fluid pressure inside the
cavity of the modeled LV, whereas the end-diastolic hydrostatic
stress, computed according to the above formula, depends on
the myocardial tissue structure and its volume change during the
deformation (41). The latter can be interpreted as a measure of
the force that drives fluid out of the myocardium and into the
surrounding tissues. Positive hydrostatic stress means that the
tissue is under extension and there is an increase in its volume
(fluid flows into the myocardium), whereas negative hydrostatic
stress implies that the myocardial tissue is compressed (fluid
flows out of the myocardium).

3.1. Different Amounts of Fibrosis Without
Support
Figure 3 shows the simulation results for scenarios with different
amounts of fibrosis without any support pressure. Clearly, by
increasing the amount of fibrosis, EF and EDV decrease, whereas
ESV and EDP increase. For example, EF and EDP in the healthy
model are 65.6% and 1 kPa (7.5 mmHg), respectively. These
are close to the experimentally reported values in rats, which
are slightly above the normal values in humans (35, 42, 43). By
increasing the amount of fibrosis to 30% and 50%, EF reduces to
56.1% and 46.1%, whereas EDP increases to 1.6 kPa (12 mmHg)
and 1.8 kPa (13.5 mmHg), respectively; refer to Figures 3B,E.

3.2. Support Pressure as the Difference
With Respect to the Control Rat (fib = 0)
In Figure 4, changes in the cardiac function parameters are
displayed for the rats with 10%, 30%, and 50% fibrosis in the LV.
By applying a support pressure, computed according to Equation
(8) and displayed in Figure 2B, EF, EDV, EDP, and end-diastolic
hydrostatic pressure are at least partially improved, refer to
Figures 4B,C,E,F, respectively. ESV remains nearly unchanged,
refer to Figure 4D.

3.3. Constant Minimal and Maximal
Support Pressure
Figures 5, 6 illustrate how the stepwise increase in the negative
diastolic and positive systolic support pressure influences cardiac
performance. The support pressure is increased until the EDP,
EDV, and ESV of the control rat are reached up to tolerance.
The resulting optimal values of the support pressure are
p∗min = −0.5 kPa (3.8 mmHg) and p∗max = 6 kPa (45 mmHg)
for fib = 0.3 and p∗min = −0.6 kPa (4.5 mmHg), p∗max = 12
kPa (90 mmHg) for fib = 0.5. For example, for the modeled case
with 50% fibrosis in comparison with the control LV, the EF can
be increased by 5% with only diastolic support, increased by 14%
with only systolic support, and completely reach the value of the
modeled control LV (65.6%) with the combination of the diastolic
and systolic support. The end-diastolic pressure of 1.8 kPa (13.5
mmHg) cannot be decreased with only systolic support and
can completely reach the value of the modeled control LV
(7.5 mmHg) with only diastolic support as well as with the
combination of the diastolic and systolic support. By increasing
the value of the diastolic support, the end-diastolic hydrostatic
stress becomes positive. This means that the myocardial tissue
is extended and volumetric increase (possibly via a fluid inflow)
is present.

4. DISCUSSION

The simulation results show that, with an increased amount
of fibrosis, the cardiac performance is reduced; specifically, a
reduction in EF is accompanied by increases in ESV and EDP, as
shown in Figures 3B,D,E. These results mirror the experimental
studies in rats after myocardial infarction, where the infarct size
was determined as the percentage of the fibrotic scar in the LV
(21, 40). As depicted in Figure 3C, for an amount of fibrosis
of 20%, EDV decreases by 11%. With a further increase in the
amount of fibrosis, EDV remains nearly constant due to the
combination of the stiffer myocardium and a higher EDP, as
shown in Figure 3E.

It is worth noting that the alterations in EDP and EDV
are caused solely by changes in the passive material properties,
whereas the value of ESV is influenced by both the change in
the stiffness as well as the reduced maximum active tension, i.e.,
contractility, which is in Equation (5) scaled by the amount of
fibrosis. The absolute value of the hydrostatic stress depicted in
Figure 3F increases nearly linearly with the amount of fibrosis.
Its negative value represents a mechanical compression in the
cardiac tissue modeled as a continuum. Theoretically, a high
negative hydrostatic stress together with a high EDP might lead
to compression and the closure of arterioles supplying the heart
and then eventually to an under-perfusion. A more elaborate
computational model accounting for the heart perfusion is
needed to interpret the results quantitatively.

Considering the support pressure resulting from the
difference between the ventricular pressure in a healthy and
diseased LV, Figure 4C shows that the support pressure is
sufficient for reaching the control EDV. We note that the
maximum possible EDV was limited to that of the healthy
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FIGURE 3 | (A) Pressure-volume loops, (B) ejection fraction (EF), (C) EDV, (D) ESV, (E) EDP, and (F) end-diastolic hydrostatic stress for models with different amounts

of fibrosis fib displayed on the horizontal axis. No support pressure is applied.

rat. Therefore, even if the negative support pressure is higher
than necessary, a normalization of the EDV is accompanied
by a reduction in the EDP as depicted in Figures 4C,E. Due
to the reduction in the EDP and enlargement of the LV,
the hydrostatic stress becomes positive for all three fibrosis
stages. This means that the tissue is under tension and better
perfusion is expected. However, the observed decrease in ESV

(Figure 4D) is marginal and only sufficient for the case fib = 0.1.
Therefore, higher systolic support pressure is needed in order
to reduce the ESV and eventually increase the EF, which is
significantly below that of the control rat for higher amounts
of fibrosis. For example, the resulting EFs are 61.1%, 55.2%
for fib = 0.3, 0.5, respectively, compared to the control rat
with EF= 65.6%.
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FIGURE 4 | (A) Pressure-volume loops, (B) EF, (C) EDV, (D) ESV, (E) EDP, and (F) end-diastolic hydrostatic stress for models with different amounts of fibrosis fib
displayed on the horizontal axis. No support pressure is applied for models marked with the corresponding amount of fibrosis fib and displayed in opaque colors,

whereas support pressure according to the function shown in Figure 2B, is applied for models with the suffix D displayed in transparent colors.

In the numerical test, that applied a constant minimum
and maximum support pressure during the diastole and systole,
respectively, the algorithm described in Section 2.2 is exemplarily
performed for two fibrosis stages, namely fib = 0.3, 0.5. We
started with supporting only the diastolic phase such that the
negative value of the support pressure is increased until the
desired EDV and EDP are reached up to a given tolerance. The

EF can be increased by approximately 5% for both fibrosis stages,
resulting in EF= 60.7%, 53.3% for fib = 0.3, 0.5, respectively.
Even for the case with 50% fibrotic tissue, a relatively small
support pressure of −0.6 kPa (−5.3 mmHg) is sufficient for
regaining the desired EDV and EDP. Furthermore, as depicted
in Figure 7, the compressive hydrostatic stress in the stiff fibrotic
myocardium can be reduced and even changed into positive
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FIGURE 5 | Ejection fraction, EDP, EDV, and ESV for different combinations of the minimal pmin and maximal pmax values of the support pressure (SP) applied to the

epicardial surface of the model with fib = 0.3. DIA, diastolic support (blue); SYS, systolic support (red); DIA and SYS, combined support (green); C, control rat LV (light

green); N, rat LV with fib = 0.3 without any support (blue-green).

FIGURE 6 | Ejection fraction, EDP, EDV, and ESV for different combinations of the minimal pmin and maximal pmax values of the support pressure (SP) applied to the

epicardial surface of the model with fib = 0.5. DIA, diastolic support (blue); SYS, systolic support (red); DIA and SYS, combined support (green); C, control rat LV (light

green); N, rat LV with fib = 0.5 without any support (pink).

hydrostatic stress. We believe that this phenomenon could
improve myocardial perfusion. However, as discussed above,
this is currently only speculative and needs to be investigated.
When only the systolic phase is supported, significantly higher
positive support pressures are needed to normalize the systolic
function, 6 kPa (45 mmHg) and 12 kPa (90 mmHg) for
fib = 0.3, 0.5, respectively. Nevertheless, in this case, the

desired EF of the control rat (65.6%) is not reached due to
insufficient diastolic filling caused by the stiff fibrotic tissue.
When using only the systolic support, a further increase in
the support pressure would theoretically lead to the desired
EF. However, the EDP would remain elevated, which has been
identified as a potential predictor of heart failure (44–46).
Whether solely the reduction in EDP would eventually lower
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FIGURE 7 | End-diastolic hydrostatic stress for different support pressures

(SPs) applied to the rat LV with fib = 0.5. DIA, diastolic support; C, control rat

LV; N, rat LV with fib = 0.5 without any support.

the risk needs to be investigated further. The best option for
normalizing EF and EDP turns out to be a combination of both,
diastolic and systolic support. As demonstrated in Figures 5,
6, complete normalization of the functional parameters
can be reached.

The present study aimed to explore the potential usefulness
of diastolic support during the cardiac cycle of a rat LV suffering
from restrictive cardiac disease. A simple computational model
based on an investigation of mechanical support acting on
the outer surface of the LV was chosen. However, there are
some limitations and possibilities for future model development.
First, the present study investigated the rat heart model and,
to date, is not clinically applicable. However, as pointed out in
the Introduction, some innovative approaches have investigated
possible direct compression assist devices for clinical use in
humans. Second, since it is difficult to develop a model that
accounts for all influencing factors causing heart insufficiency,
we initially chose a model in which we can change both the
diastolic and the systolic function of a ventricle by changing
one parameter, namely the amount of fibrosis. Besides this,
various other factors must be considered in the future to
more realistically mimic the remodeling process. These include
the effects of geometric changes (in particular those due
to ventricular dilatation or hypertrophy), the fact that most
failing hearts are rather dilated than restrictive (especially in
Paediatrics), the fact that myocardial infarction and ischaemic
heart disease are only one among multiple causes of heart
failure, the influence of arrhythmias and synchronization, the
ever-changing metabolic needs, the fluid status of the patient
impacting the preload of the heart, and much more. Third,
for a better understanding of the interaction between the
heart and a direct cardiac compression device, instead of
the prescribed support pressure, a complete direct cardiac
compression device should be modeled. Here, one possibility
would be to use mechano-active materials, such as biocompatible
dielectric elastomer actuators (47) that compress and expand
when a voltage is applied. Their relatively large (more than 40%)
expandability would be beneficial for generating the support
pressure needed during the diastole (48). Fourth, in future
development, electromechanical coupling and in particular

electromechanical feedback would possibly play a role with
respect to the interaction of the heart and the direct cardiac
compression device.

5. CONCLUSION

A computational model for different amounts of fibrosis in
the rat LV is presented. Based on this model, we investigate
how a support pressure acting on the outer surface of the
diseased LV influences the cardiac performance quantified
via the EF, EDP, and ESV, as well as the hydrostatic stress
in the cardiac tissue. We conclude that a negative support
pressure during diastole combined with a positive support
pressure during systole can normalize the modeled diastolic
and systolic function of the rat LV at different fibrosis stages.
Although not investigated in this study, it is tempting to
assume that the negative diastolic support pressure could
potentially improve cardiac perfusion. Furthermore, we adjusted
the value of the support pressure so that functional parameters
of the healthy rat LV are restored. We conclude that
cardiac assist devices without direct blood contact and with a
simultaneous diastolic and systolic support functionality present
a potentially interesting therapy for heart failure in restrictive
LV physiology, as that is resulting from myocardial scars after
ischaemic insults.
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APPENDIX

Simulation Parameters

TABLE A1 | Material parameters used in the numerical examples.

Active stress ted = 60 ms, tps = 120 ms, αmin = −0.1ms−1,

αmax = 0.1ms−1, γ = 25 ms, Tmax=70 kPa,

Passive stress a = 1.665 kPa, b = 1.237 (-), af = 7.822 kPa, bf = 0.008

(-), as = 0.0 kPa,

bs = 0.0 (-), afs = 1.342 kPa, bfs = 9.178 (-)

Windkessel model Rp = 15 kPa µL−1ms, Rv1 =0.1 kPa µL −1ms,

Rv2 =0.067 kPa µL−1ms,

C = 40 µL kPa −1 ms−1, ta = 40 ms

Support pressure tes = 150 ms, t1 = 10 ms, tol1 = 1 µL, tol2 = 0.1 kPa

Active Tension
Based on the study by Pfaller et al. (38), the evolution of the active
tension T reads as

Ṫ(t) = −|a(t)|T(t)+ Tmax|a(t)|+

with activation function a, the maximum value of the active
stress T, and the function |a(t)|+ = max(a(t); 0). The activation
function a(t) is modeled by

a(t) = αmax · f (t)+ αmin · (1− f (t))

with maximum and minimum activation rates αmax and αmin,
respectively, and functions

f (t) = S+(t − ted)1S−(t − tps),

S±(1t) =
1

2
(1± tanh(

1t

γ
))

with steepness γ and descending and ascending sigmoid
functions S+ and S−, respectively. The indicator function f ∈

(0, 1) indicates systole. The times ted and tps model the end-
diastolic and the peak-systolic times, respectively.
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