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Abstract 

Background: 

Pancreatic cancer is a devastating disease with more than 60,000 new cases each year and 

less than 10 percent 5-year overall survival. Radiation therapy (RT) is an effective treatment for 

Locally advanced pancreatic cancer (LAPC). The current clinical RT workflow, however, is 

lengthy and involves separate image acquisition for diagnostic CT (dCT) and planning CT (pCT) 

which imposes a huge burden on patients and their caretakers. Moreover, studies have shown a 

reduction in mortality rate from expeditious radiotherapy treatment course. Although, in theory, 

dCT can be used for RT planning, the differences in the image acquisition setup and patient’s 

body demand a new scan to be acquired.  

Purpose: 

To address this issue, we are presenting deepPERFECT: deep learning-based Planning 

External-beam Radiotherapy Free from Explicit simCT, that adapts the shape of the patient 

body on dCT to the treatment delivery setup. Our method expedites the treatment course by 

allowing the design of the initial RT planning before the pCT acquisition. Thus, the physicians 

can evaluate the potential RT prognosis ahead of time, verify the plan on the treatment day-one 

CT and apply any online adaptation if needed. 

Methods: 

We used the data from 25 pancreatic cancer patients undergone stereotactic body radiation 

therapy. Each patient had a pair of dCT and pCT as part of their treatment course. The model 

was trained on 15 cases and tested on the remaining ten cases. We evaluated the performance 

of four different deep-learning architectures for this task. The synthesized CT (sCT) and regions 

of interest (ROIs) were compared with ground truth (pCT) using Dice similarity coefficient (DSC) 

and Hausdorff distance (HD). Finally, we evaluated the RT plan dose distribution for four 

scenarios. 

Results: 

We found that the three-dimensional Generative Adversarial Network (GAN) model trained on 

large patches has the best performance. Using the in-place deformed image identity loss 

enhanced the performance of the deepPERFECT in predicting the body shape. The synthesized 

deformation fields and CT scans were evaluated using multiple figures of merit. The average 



DSC and HD for body contours were 0.93, and 4.6 mm. Additionally, we evaluated the quality of 

clinical-grade radiotherapy plans designed using the synthesized CT, by comparing the 

dosimetric indices measured on synthesized CT and ground truth. We found no statistically 

significant difference between the synthesized CT plans and the ground truth. 

Conclusions: 

We showed that deepPERFECT predicts the shape of the patient body on pCT using the dCT 

scan with good performance. We believe employing deepPERFECT shortens the current 

lengthy clinical workflow by at least one week and improves the effectiveness of treatment and 

the quality of life of pancreatic cancer patients. 

 

  



Introduction 

Pancreatic cancer is a devastating disease with more than 60,000 new cases each year and 

less than 10% 5-year overall survival rate1. Pancreatic cancer patients are at great risk of distant 

progression, so achieving local control (LC) is critical for these patients1–6. Radiation therapy 

(RT) is an effective treatment for achieving LC7–10. Rapid treatment planning and delivery are 

critical for aggressive pancreatic cancer and a week delay increases the possibility of spreading 

or recurring11,12, yet the current RT workflow is considerably time-consuming. 

Figure 1 shows the current RT workflow which consists of numerous steps. Multiple 

appointments and image acquisition result in significant wait time, and a huge burden on 

patients and caretakers13,14. One major source of delay in the workflow is due to the several 

appointments and separate image acquisitions, namely acquiring a diagnostic computed 

tomography (dCT) scan and the planning CT (pCT) scan. This results in a median of 15 days 

delay for patient diagnosis and 15 more from diagnosis to treatment initiation15.  

Reducing the delays to treatment initiation has a significant clinical impact. It has been shown 

that shorter therapy initiation is associated with improved survival16. Amongst more than 29,000 

patients, starting any treatment within 6 weeks improved median OS16. Moreover, the data from 

more than 70,000 pancreatic cancer patients shows the most substantial associations with 

worsened mortality were seen among other cancer types with a 3.2% increase in mortality per 

week of delay17. Moreover, reducing the time before surgery to 32 days reduces the risk of the 

progression of the tumor to the unresectable stage by half compared with a longer waiting time.   

Because of the dCT's superior resolution, it is used for delineating the tumor. It is shown that the 

dCT can be used for RT planning13,14,18,19. However, in practice, because of the differences in 

image acquisition settings, dCT is not used for RT planning and a separate planning CT (pCT) 

is acquired, which results in a considerable delay between diagnosis and treatment delivery. In 

the case of the patients included in this study, there was a median of 11 days, ranging from 2 to 

30 days delay between diagnostic scan and simulation scan. The previous attempts such as 

STAT RT20 for using the day 1 onboard imaging for treatment planning before subsequent 

treatment delivery for palliative cases is not suitable for pancreatic cancer SBRT. The 

physicians need time on deciding the trade-off between target coverage and OAR sparing, and 

then the dose prescription. 

 



 

Figure 1. the illustration of the current clinical workflow that due to the many steps before treatment results in 
considerable treatment delay. On the contrary, by using the synthesized planning CT, we proposed a rapid workflow 
that significantly reduces the treatment delay.   

 

Figure 2 shows a typical pair of dCT and pCT acquired in our institution. The use of a different 

couch in the radiology department and radiation oncology department results in a clear 

difference in the shape of the patient’s back. In radiology CT scans, the curved couch top is 

used for patient comfort. By contrast, radiation oncology flat couch top focuses on the daily 

reproducibility of patient position. Also, to reduce patient movement, the active breath-hold 

technique is used as the standard acquisition procedure for pCT and treatment delivery in our 

institution, which causes a difference in patient anatomy on the two scans21,22. Thus, the design 

of the initial RT plan is only possible until after the acquisition of the pCT scan which results in a 

considerable stall in the treatment workflow.   



 

Figure 2. A typical pair of dCT (A) and pCT (B) of a patient. (A) the difference in the shape of the couch results in a 
clear change in the patient’s back curvature. Also, the overall shape of the body is different due to the active breath-
hold motion management procedure that is used for pCT acquisition and treatment delivery. (C, D) the differences in 
patient body shape results in a difference in dose distribution (the couches are already removed for planning). 

To address the delay between diagnosis and treatment delivery, we developed deepPERFECT; 

a generative adversarial network (GAN) deep learning (DL) model. The adversarial loss that 

encourages the generation of data indistinguishable from real data, resulted in the huge 

success of GAN models in image synthesis applications23, such as synthesizing CT from cone-

beam CT 24,25, and magnetic resonance image26. deepPERFECT synthesizes the four-

dimensional (4D) including 3 channels of 3D dimensional deformation fields (DF) that transform 

dCT to synthesized pCT (sCT) that can be used for initial verification of the RT treatment plan, 

thus, expediting the treatment course. 

In our feasibility study, we showed that deepPERFECT can expedite the current clinical 

workflow and treatment course by removing the need for acquiring planning CT before 

designing the initial treatment RT plan. Given that there is a significant relationship between the 

increase in mortality and delay in treatment delivery27, we believe deepPERFECT improves the 

quality of life for much-needed pancreatic cancer patients. More importantly, it allows the 

physicians to evaluate the potential RT prognosis ahead of time, and verify the plan on the 

treatment day-one CT. On Day 1 treatment CT, if necessary, the sCT plan will be adapted to the 

treatment delivery patient setup using on/off table imaging for same-day online ART such as on-



table adaptive therapy methods like Ethos or same-day off-table online ART using Raystation 

adaptive treatment planning (RaySearch Laboratories, Sweden). 

Methods and Materials 

Data Preparation 

We included the data from 25 pancreatic cancer patients, treated with stereotactic body 

radiation therapy (SBRT) in our institution under Internal Review Boards (IRBs) approval (15 

cases for training and validation, and ten cases for testing and RT planning). The dCT and pCT 

scans were acquired with 120 KVp, 200 mA, and 50 cm field of view. dCT scans have slice 

thickness ranging from 0.5 to 1.25 mm, and pCT scans’ slice thickness is 2 mm. To have a 

uniform 3D physical dimension, in practice, all scans can be resampled to 1 mm slice thickness, 

but due to GPU limitation, we resampled to 2.5 mm. The pCT was contoured by physicians as 

part of the standard of care in our institution, and the dCT and sCT contours were generated by 

applying the deformation vector fields to dCT contours, and then, were verified by a physician. 

Using an in-house robust couch removal algorithm, we, first, removed the couch from the scans, 

only keeping the patient's body. Because the treatment couch is identical, it was later digitally 

added to the synthesized scans. pCT and dCT were, first, aligned by the spine. Because pCT is 

not yet acquired at the time of dCT acquisition, we chose the dCT as the physical origin for rigid 

registration and used the ROI-restricted rigid registration using an in-house automatic spine 

segmentation algorithm, to further align the spines. 

Next, the dCT was deformably registered to pCT. To avoid the unreal deformation of the spine, 

such as elongation of vertebrae and disk, we used the spine mask to define a rigidity penalty 

term. Because the high contrast lung region dominated the result of the registration, we 

performed a two-step sequential registration, first, the whole body was registered, and 

automatically segmented lungs were excluded for further abdominal-focused registration. The 

abdominal mask was determined by using the lowest point on lung contours while keeping the 

spine rigid penalty to avoid unreal deformation.  All registrations were done by the state-of-the-

art Elastix image registration algorithm28,29.  

As 15 cases were too few for successful training of a DL model, we augmented the data by 

applying random shifts of between -20 mm to 20 mm and random rotations of -10 to 10 degrees 

along the z-axis (depth) and lastly, we used randomly generated patches of the CT images as 



the input to the model. Overall, in each epoch, the DL model was trained on more than 6000 

augmented data. 

Deep Learning Model 

We used four network configurations: (1) 3D U-Net Convolutional network with a patch size 

of(128*128*128), (2) 2.5D Pix2Pix generative adversarial network (GAN) with three adjacent 

slices of (128*128), (3) 3D Pix2Pix GAN with small patch size (32*32*32), and (4) 3D Pix2Pix 

GAN with large patch size (128*128*128). The output of the DL model is the DFs. We chose to 

generate DFs rather than CT scans to keep the CT intensity calibration intact. The intensity of 

dCT and pCT is based on careful calibration and quality assurance of the CT scanner and is 

crucial for accurate dose calculation. Because DFs are real numbers with positive and negative 

values, we used leaky rectified linear unit activation function f(x) = max (0.01x, x).  Batch 

normalization was applied to the output of convolutional layers. deepPERFECT was trained with 

three loss functions: (1) DF identity loss, the L1-norm of the difference between the true and 

generated DFs, (2) abdominal identity loss, the L1-norm of difference in intensity of the 

abdominal portion of pCT and intermediate sCT scan, created using the generated DFs applied 

to dCT in-place, (3) the adversarial loss for GAN architecture. A weighted Adam optimizer was 

used to optimize the loss functions. Figure 3 shows an overview of the DL model and loss used 

for training. 

 

Figure 3. An overview of the 3D GAN model and losses used to train the model. 



Training and Testing of the Model 

Out of 15 cases for training, we used data from 13 patients for training and 2 for validation. After 

the hyperparameters are set, we trained the model on all 15 cases and tested it on the 10 leave-

out cases. We used the following cost function for deepPERFECT training. 

𝑙𝑜𝑠𝑠 = 𝜆1𝐿𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆2 𝐿𝐿1(𝐺) +  𝜆3 𝐿𝐿1(𝐼) + 𝜆4 𝑅𝑠𝑚𝑜𝑜𝑡ℎ(𝐺) 

𝜆 is the hyparameter that indicates the effect of each loss on the final loss function value. In this 

equation, G denotes the generator output which is deformation vector fields and D denotes the 

discriminator.  𝐼 denotes the final deformed image and R represents the regulatory term. 

𝐿𝐺𝐴𝑁(𝐺, 𝐷) is the adversarial loss defined as: 

𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦 (log 𝐷(𝑥, 𝑦)) + 𝐸𝑥(log (1 − 𝐷(𝑥, 𝐺(𝑥))) 

In which x represents the input and y is the target deformation vector field.  

𝐿𝐿1(𝐺) is the L1 norm of the differences between target DVFs and network generator DVFs 

defined as: 

𝐿𝐿1(𝐺) = 𝐸𝑥,𝑦(|𝑦 − 𝐺(𝑥)| 

𝐿𝐿1(𝐼) is the L1 norm between target image 𝐼 and deformed image, created by applying G(x) or 

Gx to the input image, defined as: 

𝐿𝐿1(𝐼) = 𝐸𝑥,𝑦(|𝐼 − 𝐺𝑥(𝑥)|)  

Finally, to enforce smooth deformation fields, we used the second-order curvature regulatory 

term, widely used in registration literature, given by 

𝑅𝑠𝑚𝑜𝑜𝑡ℎ(𝐺) = ∫ ∑‖∆𝐺𝑖(𝑥)‖2

3

𝑗=1

 

 

Radiation Therapy Planning 

We planned the ten test cases with volumetric modulated arc therapy (VMAT) SBRT (33Gy in 5 

fx), according to the pancreatic SBRT planning protocol in our institution. The planning target 

volume (PTV) was created by a 2 mm expansion of mock multiple active breath-hold (GTV-

multabh), which itself is a 3mm uniform expansion of GTV. For further details please refer to our 



previous studies5,21,22. The target objectives for RT planning were as follows: 100% of PTV 

receive 25 Gy, at least 95% of PTV volume receive 33 Gy, less 1cc volume of PTV receives 

more than 42.9 Gy, 100% of GTV receive 33 Gy, at least 95% of GTV-multabh receive 33 Gy. 

The organs at risk (OAR) constraints were as the following: less than 20 ccs of the bowel, 

duodenum, and stomach receive 20 Gy, less than 1cc of the bowel, duodenum, and stomach 

receive 33 Gy, and less than 25% of kidney receive 12 Gy, less than 50% of liver receive 12 Gy, 

and less than 1 cc of the spinal cord receive 8 Gy. We used Raystation (RaySearch 

Laboratories, Stockholm, Sweden) treatment planning system for plan optimization and dose 

distribution calculation. 

As shown in Figure 4, for each patient, we designed and optimized two VMAT plans on pCT and 

sCT. The dose distribution was calculated for four scenarios. (1) the dose distribution of pCT 

plan on pCT scan (the ground truth dose distribution). (2) the dose distribution of sCT plan on 

sCT scan. (3) the “Plan Recalculation” scenario in which we recalculated the dose distribution of 

sCT plan on pCT scan using the pCT isocenter by shifting the iso-center of the sCT plan beams 

to pCT iso-center. Then, we evaluate the dosimetric indices using the pCT contours. (4) the 

“Synthesized ROIs on Planning CT” scenario in which we recalculated the dose distribution of 

sCT plan on pCT scan using the sCT isocenter (no shift in isocenter). Then, we evaluate the 

dosimetric indices using the sCT contours mapped to the pCT. Using this scenario, we assured 

that the observed difference between ground truth and the “Plan Recalculation” scenario is due 

to the unpredictable and patient specific abdominal anatomical variation and not the CT quality. 

 

Figure 4. Illustration of the RT planning scenarios. 



Evaluation metrics  

First, we evaluated deepPERFECT by comparing the intensity of pCT scans with sCT scans 

using the root averaged squared sum of differences (RASSD). Secondly, the body contours on 

the two scans were compared using the Dice similarity coefficient (DSC), and Hausdorff 

distance (HD). No center of mass alignment was done for DSC and HD calculation. Lastly, we 

reported dose volume histogram point measurements, the V22 Gy and V33 Gy defined as the 

volume of the ROI receiving 22 Gy and 33 Gy for OARs (Duodenum, stomach, and bowel), and 

the percentage of target coverage with the prescribed dose (V33 Gy) for target volumes (GTV 

and PTV) for the four dose distribution scenarios, explained in the previous section. 

Statistical Analysis 

Using the pairwise permutation test (n=10,000), we tested the equivalency of dosimetric indices. 

The normality assumption was circumvented by using a non-parametric permutation test. 

Placement of the Virtual Couch 

To synthesize the sCT, the couch is first removed from the dCT scans, but the treatment couch 

is required for accurate dose calculation, Thus, later in the process, we developed an algorithm 

that augments the sCT with the couch by placing a virtual couch with its surface tangent to the 

back of the patient.  

Results 

Figure 5 shows the results for an example test case. Figure 5 (A) shows dCT (input to the 

model), (B) pCT (ground truth), and (C-F) the sCT for 3D Pix2Pix with large patches, U-Net, 

2.5D Pix2Pix, and 3D Pix2Pix with small patches. As seen, the back of the patient and the 

overall shape of the abdominal area have the most similarity to sCT generated by 3D Pix2Pix 

with large patches (Figure 5(C)). 



  

Figure 5. An illustration of planning CT synthesis result: (A) the dCT, the input to the model, (B) the pCT, the ground 
truth, and (C-F) the sCT generated by Pix2Pix 3D large patches, U-Net, Pix2Pix 2.5. and Pix2Pix small patches, 
respectively. 

We evaluated the quality of the sCT scan using the ASSD, DSC, and HD for the entire body 

contour. The result is summarized in table 1. The 3D Pix2Pix trained on the large patches 

showed the best performance among the other configurations. We used this configuration to 

generate sCT for the RT planning part of the study. 

Table 1. The result of the image quality evaluation 

Model Architecture Pix2Pix 3D 

Large Patch  

Pix2Pix 3D 

Small Patch 

Pix2Pix 2.5D U-Net 

Metric  Average ± STD 

RASSD (HU) 334 ± 65 541 ± 83 874 ± 156 1242 ± 132  

DSC body contour 0.93 ± 0.04 0.81 ± 0.12 0.62 ± 0.09 0.57 ± 0.08 

HD body contour (mm) 4.6 ± 2.1 15.2 ± 5.9 28.1 ± 6.2 35.7 ± 6.7 

DSC GTV 0.82 ± 0.12 0.69 ± 0.13 0.64 ± 0.16 0.61 ± 0.13 

HD GTV (mm) 7.12 ± 3.1 14.8 ± 8.9 18.3 ± 9.2 25.8 ± 8.6 

 



For the best model, Pix2Pix 3D with large patches, the average and standard deviation 

difference in GTV volume on pCT and sCT was 1.1±1.8  cc. The GTV minimum distance to the 

main OARs namely duodenum, stomach, and bowel was also measured. The average and 

standard deviation of the difference in minimum distance between GTV-duodenum, GTV-

stomach, and GTV-bowel were 0.37±1.1 mm, 0.52±1.4 mm, 0.61± 1.5 mm, respectively. There 

was a median of 11 days, ranging from 2 to 30 days delay between the diagnostic scan and 

simulation scan, and a median of 8 days to treatment initiation. The averaged DSC between 

dCT and pCT was 0.62 ± 0.1, which increased to 0.82 ± 0.12 for pCT and sCT.  Moreover, the 

DSC Figure 6 shows the diagnostic CT (A), planning CT (B), and synthesized CT (C) in the 

abdominal level/window (40/400) on the first row. The second row (D) is illustrating the HU 

intensity difference map between planning CT and diagnostic CT (pCT – dCT) and (E) between 

planning CT and synthesized CT (pCT – sCT). deepPERFECT predicted synthesized CT from 

diagnostic CT shows a high similarity to planning CT. 

 

Figure 6. First row: The diagnostic CT (A), planning CT (B), and synthesized CT (C) in abdominal level/window 
(40/400). Second row: (D) is illustrating the HU intensity difference map between planning CT and diagnostic CT 
(pCT – dCT) and (E) between planning CT and synthesized CT (pCT – sCT). deepPERFECT predicted synthesized 
CT from diagnostic CT shows a high similarity to planning CT. 

Next, we compared the SBRT plans using the OARs (duodenum, stomach, bowel) V20 Gy and 

V33 Gy, Dmax (max dose), and V100%, V95% for target volumes (GTV and PTV). The 

duodenal V33Gy had a marginally significant difference (p-value=0.049) between ground truth 



and plan recalculation. No other statistically significant differences were found in V20Gy and 

V33Gy. As expected, due to the unpredictable and patient-specific abdominal anatomical 

variations the “plan recalculation” scenario, in which the isocenter is only shifted, showed on 

average a 2% reduction in PTV coverage with the prescribed dose (33 Gy). PTV V95% and 

GTV V100%, and V95% were comparable. Figure S1 of supplementary material, shows the 

V95% coverage for GTV and PTV, as well as the Dmax for OARs. 



 



Figure 6. Comparison of dosimetric indices for  SBRT plans: the comparison was done for V33Gy for target volumes 
(GTV and PTV) and V33Gy and V20Gy for the proximal OARs (duodenum, stomach, and bowel). Each figure 
consists of four box plots for RT plans designed on pCT (ground truth), sCT, and plan recalculation (dose 
recalculation by shifting the isocenter of beams to pCT isocenter), Synthesized ROIs on planning CT (dose 
recalculation on pCT using sCT ROIs). 

Discussion 

We presented a novel DL system to reduce the extended delay before treatment delivery due to 

the separate scan acquisitions. Our method makes the dCT compatible with the treatment room 

setup, and thus, allows the initial RT plan to be designed. Thus, the physicians can evaluate the 

potential RT prognosis ahead of time, verify the plan on the treatment day-one CT and apply 

any online adaptation if needed. This reduces the wait time before the start of the treatment 

course. Our method can reduce the length of the treatment course by at least one week and 

given that the treatment delay increases mortality27, we believe our method improves the 

patient’s quality of life. 

The source of delay from diagnosis to treatment delivery is not only the scheduling, wait time 

and acquision of planning CT, but also the treatment design, RT planning, verification. The 

physicians need time to make decision regarding the trade off between taget coverage and 

OAR sparing, and dose prescription. With treatment Day1, there is insufficient time to make a 

decision. For example, the patient may have previous RT treatment, or neoadjuvant or 

concurrent/adjuvant other cancer treatment therapies such as chemotherapy. All these are 

delayed until pCT acquisition, therefore syntheising the deepPERFECT generated sCT can 

provide enough time for physician to have well ahead of time assessment. With implementation 

of deepPERFECT, as soon as the diagnostic CT is available, the physicians can also evaluate 

the early prognosis of RT treatment, and decide on prescribtion, dose constraint, and inititatie 

the treatment. 

In this study, we used the 3D Unet GAN architecture for developing the deepPERFECT 

framework. The 3D UNet GAN architecture has been long used for various medical image 

synthesis applications. It has been used for synthesizing PET scans from MRI30,31, and 

synthesizing the CT scan from MRI32 and frequently used in MRI reconstruction33–37, low dose 

CT denoising33,34,38, optimization of the pre-trained network for sharpness detection and 

highlighting low contrast region in CT image38, and many other applications. Due to 3D Unet 

GAN robust performance and versatility, we also based deepPERFECT design upon 3D Unet 

architecture. More advanced DL methods has also been used for similar applications that 



warrants future study to determine if they can be used to improve the performance of 

deepPERFECT framework. 

Although we used a DL model in this study, other methods including analytical and physical-

based models like the finite element method could potentially be used. Previously, these 

methods have been used to predict the deformation of the body and organs because of surgical 

procedures and physiological deformation4–6,14. The downside of the DL models is that they 

require high computational resources, a large amount of data, and a long training time, 

however, their main advantage is very short run-time. Our DL model generates the DFs in less 

than a second, but a finite element model may take hours to do the analysis.  

Table 1 shows the results of the quantified image synthesis evaluation. The 3D Pix2Pix with 

large patches has the best performance among the other structures. Although the 3D Pix2Pix 

with small patches and 2.5D Pix2Pix require much less GPU memory, they have lower 

performance. We believe this is because the differences between the dCT and pCT are clearer 

in a large field of view. The U-Net structure has the worst performance compared to GAN 

models, which demonstrates the superiority of GAN models in the synthesis task. Here, we 

generated DFs, therefore the CT intensity of the sCT remains undistorted and calibrated, as a 

result, the sCT can directly be used for planning. The average DSC for GTV contour was 0.82. 

The lowest GTV DSC was observed for cases with the maximum delay. We also observed a 

trend between DSCs and delay, the longer the delay, the lower the DSC. In addition, the GTV 

location is subjected to abdominal day-to-day movement and filling which makes the exact 

prediction of the GTV location nearly impossible. In daily clinical practice, this challenge is 

addressed by aligning the GTV or fiducial markers inside the GTV under the guidance of 

onboard cone beam CT and using adaptive radiation therapy using the treatment Day1 CT. 40,41 

Figure 6 shows the bar plots for the V22 Gy and V33 Gy of duodenum, stomach, bowel, and the 

V33Gy target coverage. The reason V22Gy and V33Gy were chosen is that as seen in the 

planning protocol these indices are the main clinical constraints for the OARs. Moreover, 

because the prescribed dose of the SBRT plans was 33Gy, the V33Gy for target volumes is of 

great interest to the physicians. Our result suggested that the RT plan on the sCT scan has no 

statistically significant difference from the ground truth. However, when the dose was 

recalculated on the planning CT, using the planning CT contours, there was a significant 

difference between the ground truth and recalculated V22Gy and V33Gy. This difference is due 

to the natural, unpredictable, and patient-specific variation of the abdominal organs. When the 

isocenter of dose distribution was shifted to the pCT plan isocenter, we achieved full GTV 



coverage, and although the average PTV coverage was reduced the change in PTV coverage 

was not statistically significant from the ground truth. 

We are aware that our study may have a few shortcomings. First, here we used the small 

training data. We tried to overcome the issue by using multiple data augmentation methods. As 

explained in the methods section, we could increase the amount of data from 15 cases to more 

than 6000 cases. Another shortcoming is that due to GPU limitations, we had to reduce the 

resolution of the CT images. The loss of resolution in our current model may result in some 

uncertainty in tumor delineation. The high-quality dCT scan is ideal for tumor delineation due to 

the high resolution and contrast. As a result, the performance of our current model has 

degraded due to this loss of quality and resolution. The current resolution may not be enough 

for clinical treatment planning and delivery as well, however, here our goal was to demonstrate 

the feasibility of the rapid workflow and as part of future studies, we train the model on high-end 

GPUs with no degradation in image quality, therefore, since deepPERFECT generates the sCT 

directly from dCT, the sCT will be a high-resolution scan as well. 

Another limitation of our study is that in our current model, we do not include any breathing 

information. Here, we are using the diagnostic CT to generate the breath-hold planning CT. 

Considering the patient may have a different breath-hold level, the current model may not be 

able to capture the patient-specific pattern. To tackle this, we used conditional-GAN model to 

including patient-specific information by using. A potential remedy is to incorporate a breathing 

measuring device to measure the patient’s breath-hold level by a quick breathing test. Based on 

this, we will scale the deformation vector fields to match the breating level on the sCT to the 

patient-specific breath-hold level.  However, at the moment this data is not available to us, 

therefore as part of our future work, to implement this model in our clinical practice, we will 

measure patients breath-hold level by using spirometer (such shown in the following figure) to 

create a breathing level aware system. 

New-onset of diabetes and weight loss are common features of pancreatic cancer43. The 

severity, extent to which patients are affected, and which type of patients in most affected are 

not well understood. Studies have reported that patients with high body mass index (BMI), and 

obesity show the most weight loss44. Although we are only using data from 25 patients, the 

result is consistent with what we have seen in our data. More importantly, another important 

factor is the time delay between dCT and pCT scans. Patients with low BMI on dCT scan, even 

with a long delay between two scans, do not show noticeable weight loss on pCT scan. 

However for patients with almost similar delay, the higher the BMI, the more noticeable change 



in the patient's body shape is seen. Finally, for one patient with a high BMI, and 2 days delay 

between two scans, there was no weight loss seen. As a result, although the current model 

does not account for the weight loss which is reflected in body contour DSC of 0.95, ultimately, 

with the implementation of deepPERFECT that results in reducing the delay to a few days, the 

effect of weight loss will be neglectable. 

Finally, in the current study, we only applied our DL model to pancreatic cancer cases. 

However, deepPERFECT can be used for other anatomical sites as well. Our preliminary 

evaluations showed that our model can successfully be applied to liver and lung cancer 

patients, but further training and testing are required. We also applied our model to the prostate 

cancer patient, but due to the considerable differences in the CT field of view, the model 

showed inferior performance. Nevertheless, the concept of planning CT-free workflow can still 

be applied to prostate cancer. Therefore, future studies aim at improving the performance of the 

model by using more data and increasing the resolution of the model using higher-performance 

GPU resources, and extending the application of deepPERFECT to more anatomical sites. 

Conclusion 

We demonstrated the feasibility of planning CT-free rapid pancreatic RT workflow using our 

deepPERFECT method. We used a fully convolutional 3D/4D GAN DL model to synthesize the 

planning CT from the initial diagnostic CT. The synthesized CT is compatible with the treatment 

room setup and mimics the patient shape on the treatment couch. Using this method, we 

showed that a comparable RT plan to the planning CT plan can be designed on synthesized CT 

that in turn considerably expedites the workflow and reduces the highly undesirable wait time 

before RT treatment delivery. This allows the physicians to assess the potential RT outcome 

well ahead of RT treatment course and verify and adapt the initial plan, if needed, to the 

treatment day-one CT. 
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