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Abstract

With advances in neuroimaging and genetics, imaging genetics is a naturally emerging field

that combines genetic and neuroimaging data with behavioral or cognitive outcomes to

examine genetic influence on altered brain functions associated with behavioral or cognitive

variation. We propose a statistical approach, termed imaging genetics generalized struc-

tured component analysis (IG-GSCA), which allows researchers to investigate such gene-

brain-behavior/cognitive associations, taking into account well-documented biological char-

acteristics (e.g., genetic pathways, gene-environment interactions, etc.) and methodological

complexities (e.g., multicollinearity) in imaging genetic studies. We begin by describing the

conceptual and technical underpinnings of IG-GSCA. We then apply the approach for inves-

tigating how nine depression-related genes and their interactions with an environmental var-

iable (experience of potentially traumatic events) influence the thickness variations of 53

brain regions, which in turn affect depression severity in a sample of Korean participants.

Our analysis shows that a dopamine receptor gene and an interaction between a serotonin

transporter gene and the environment variable have statistically significant effects on a few

brain regions’ variations that have statistically significant negative impacts on depression

severity. These relationships are largely supported by previous studies. We also conduct a

simulation study to safeguard whether IG-GSCA can recover parameters as expected in a

similar situation.

Introduction

Imaging genetics is a rapidly emerging field that integrates genetic and neuroimaging data

with behavioral or cognitive outcomes to examine genetic influence on the variation of brain

function, which is in turn associated with behavioral or cognitive variation [1]. This field has
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made remarkable progress in recent years [2], showing its potential for studying disease- or

task-specific “gene-brain-behavior/cognition (G-B-B/C)” relationships. For example, variation

in the Apolipoprotein E (APOE) gene was associated with altered activity in brain regions,

such as the hippocampus, parietal and prefrontal cortex, during a memory task [3]. A func-

tional variation in the catechol-O-methyltransferase (COMT) gene was related to differential

brain activity in the dorsolateral prefrontal cortex, anterior cingulate cortex, and parietal cor-

tex during cognitive control tasks [4].

Imaging genetic studies have increasingly involved a number of genotypes, such as single

nucleotide polymorphisms (SNPs), and a number of brain-based phenotypes, such as voxel-

level variations (shortly voxels hereafter), in accordance with accumulated evidence that multi-

ple genotypes can be associated with a single phenotype and a single genotype can be associ-

ated with multiple phenotypes [5]. Thus, multivariate techniques have been main statistical

tools for imaging genetic studies [6, 7], including canonical correlation analysis [8], partial

least squares [9], reduced-rank regression [10], and independent component analysis [11, 12].

These techniques generally aim to obtain (low-dimensional) linear combinations or compo-

nents of genetic and imaging data and examine the associations between the resultant genetic

and imaging components.

Despite their usefulness, the scope and flexibility of the conventional multivariate tech-

niques are limited in several ways. First, they do not explicitly account for various well-docu-

mented biological characteristics, such as genetic and molecular pathways (e.g., which SNPs

occur in which genes), while extracting genetic and imaging components. As a result, the

extracted components are often difficult to interpret, lacking direct biological meaning [6].

Second, they largely remain descriptive in nature, focusing on how genetic and imaging com-

ponents are correlated to each other. This makes it difficult to statistically examine the influ-

ence of a component on another (e.g., which genetic components have effects on which

imaging components and how the effects look like). Third, although in principle it is possible

to extend the multivariate techniques to the analysis of more than two datasets, they have typi-

cally been applied to genetic and imaging datasets only to extract their components and associ-

ate them. Subsequently, the extracted genetic and/or imaging components are used to predict

behavioral or cognitive outcomes through the adoption of regression analysis or machine

learning algorithms [13]. This sequential or two-step approach does not guarantee that the

extracted genetic and imaging components are optimal for predicting behavioral or cognitive

phenotypes because they are obtained separately without considering prediction of such phe-

notypes. It would be more desirable to develop a unified framework for incorporating all

genetic, imaging, and behavioral/cognitive phenotypes into analyses simultaneously, so that

genetic and imaging components are extracted to be highly associated with each other as well

as to predict behavioral/cognitive phenotypes well. To address these limitations, it would be

necessary to develop a unified and path-analytic approach for specifying and testing more bio-

logically plausible G-B-B/C relationships.

In this paper, we propose a general multivariate approach, termed imaging genetics gener-

alized structured component analysis (IG-GSCA), for such unified analyses of path-analytic

relationships among all the three sources of data (genetic, imaging, and behavioral/cognitive)

in a more biologically meaningful manner. As will be discussed in more detail in Section 2,

IG-GSCA allows researchers to specify and examine various biologically plausible G-B-B/C

relationships based on knowledge accumulated from previous studies, for example, in

genome-wide whole brain association [14] and connectivity analysis [15, 16].

As the name denotes, this approach is methodologically built on generalized structured

component analysis (GSCA) [17, 18] that is a multivariate method for modeling and testing

path-analytic relationships between observed variables and components thereof based on prior
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knowledge or theory. GSCA is well-suited to our data analytic purposes for several reasons.

First, in imaging genetics, genetic and brain phenotypes, such as SNPs and voxels, represent

observed measurements at specific locations in the genome and brain, indicating that a set of

SNPs or voxels constitutes a gene or brain region. That is, in a statistical model, a gene or brain

region may be regarded as a component of SNPs and voxels [19–21]. GSCA can be used to

obtain such genetic and imaging components based on prior biological knowledge (e.g., which

SNPs occur in which genes, or which voxels form which brain regions). Also, GSCA provides

the unique individual scores of genetic and imaging components, which may represent gene-

or brain-level scores of individuals associated with a specific behavioral or cognitive outcome.

The provision of these individual scores may have important empirical implications. For

example, clinicians may use the scores as proxies for individual gene- or brain-level vulnerabil-

ities associated with risk for chronic diseases. Moreover, GSCA is less likely to suffer from

non-convergence in small samples, complex models, and/or in the presence of multicollinear-

ity [18], which are not uncommon in imaging genetic studies [22]. In addition, recent exten-

sions of GSCA can be very useful for imaging genetic studies. For example, imaging genetic

studies can often involve the specification of interaction terms (e.g., gene-gene interactions,

gene-environment interactions, etc.). GSCA has been extended to incorporate various compo-

nent interaction terms effectively [23]. Moreover, specifying a number of genes and/or brain

regions as well as their potential interactions simultaneously is likely to lead to the issue of

multicollinearity. GSCA has been combined with regularization to address the multicollinear-

ity issue [18, 20, 24].

GSCA has been applied to examine the directional relationships between SNPs, genes, and

behavioral phenotypes [20, 21]. It also has been used for examining directional relationships

among brain regions [19, 25]. However, GSCA has never been employed for connecting

genetic, imaging, and behavioral/cognitive phenotypes simultaneously. Furthermore, we inte-

grate the aforementioned extensions of GSCA, such as testing interaction effects and regulari-

zation, for more efficient model specification and testing of the directional associations among

the three data sources. Thus, IG-GSCA is a GSCA method tailored for the path-analytic analy-

sis of imaging genetic data in a unified manner.

Owing to its generality and flexibility, structural equation modeling (SEM) [26, 27] can also

be considered for such knowledge-based path-analytic analyses of imaging genetic data. None-

theless, SEM may be less suitable for these analyses than IG-GSCA for several reasons. Most

notably, SEM will specify a gene or brain region as a (common) factor that explains the covari-

ation of SNPs or voxels only [28, 29], under the assumption that a gene or brain region exists

independently of SNPs or voxels [30]. This indicates that assigning different SNPs or voxels to

a gene or brain region should not change the gene’s or brain region’s meaning [31], which

does not appear biologically plausible. As stated earlier, instead, it seems more reasonable to

specify a gene or brain region as a weighted composite or biological cluster of SNPs or voxels,

as postulated in IG-GSCA. However, this way of specifying a gene or brain region is not com-

patible with SEM, leading to identification problems in general [32]. Moreover, SEM cannot

provide unique individual gene- or brain-level scores because of the factor score indetermi-

nacy problem [33, 34]. Furthermore, it suffers from non-convergence particularly in small

samples, complex models, and/or in the presence of multicollinearity [35, 36].

A few studies used SEM for associating genetic and imaging data with behavioral or cogni-

tive variables [28, 37]. However, they applied a series of SEM or SEM and other statistical

methods (e.g., regression) sequentially to examine the associations among these data, regard-

less of whether SEM is a suitable method for the studies. Conversely, as noted earlier,

IG-GSCA is a unified statistical framework for researchers to be able to simultaneously associ-

ate genetic, imaging, and behavioral/cognitive data in a biologically plausible fashion.
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The remainder of the paper proceeds as follows. We begin by discussing both conceptual

and technical underpinnings of IG-GSCA, including its model specification and parameter

estimation. We then apply IG-GSCA to real imaging genetics data collected from a sample of

Korean participants in order to investigate the effects of gene-level variations on the thickness

differences of brain regions, which in turn influence depression severity. We also conduct a

simulation study to safeguard whether IG-GSCA performs as expected. We consider a model

similar to the one specified in the real data analysis and examine IG-GSCA’s parameter recov-

ery under different sample sizes. Lastly, we summarize the implications of IG-GSCA and dis-

cuss directions for future research.

Method

Model specification

It is crucial to build a model bridging all three main constituents of imaging genetics (i.e.,

genetic, brain, and behavioral/cognitive phenotypes) in a biologically plausible manner based

on knowledge accumulated from previous literature or researchers’ hypotheses. In model spec-

ification, we should begin with the fundamental premise of imaging genetics that brain-based

phenotypes serve as intermediate phenotypes between genotypes and behavioral/cognitive

phenotypes, indicating that the influence of genetic variation on behaviour/cognition is medi-

ated through brain phenotypes (i.e., indirect effects of genetic variation). Genome-wide whole

brain association studies can be used to obtain information about genotypes that are associated

with brain phenotypes relevant to specific behavioral or cognitive variation.

We can also consider various characteristics of each constituent. For example, it may be rea-

sonable to assume from genetic studies that several SNPs often occur in a gene, rather than a

single SNP per gene. A substantial amount of information on genetic pathways has already

been gathered for researchers to specify which SNPs are linked to which genes in different dis-

eases [14]. As discussed earlier, SNPs can be considered observed variables, whereas a gene

can be a weighted sum of SNPs (i.e., a component). It is also known that multiple genes can be

associated with a single phenotype (polygenicity); a single gene can be involved in multiple

phenotypes (pleiotropy); and the effect of one gene can be modified by another gene, indicat-

ing gene-gene interactions (epistasis) [38].

In imaging studies, it is well recognized that a particular behavioral or cognitive task is asso-

ciated with neural networks of multiple brain regions, rather than isolated brain regions [15].

Connectivity analysis can describe relationships between brain regions within a network [39].

There are two different approaches to connectivity analysis–functional vs. effective connectiv-

ity [16]. Functional connectivity analysis generally focuses on an inter-correlational pattern or

inter-regional coupling between brain regions (e.g., activities in brain region A correlate with

those in brain region B). It can offer insight into correlations between different brain regions

but is limited in that it does not account for directionality between interacting regions. Con-

versely, effective connectivity analysis focuses on directional relationships between brain

regions selected based on a hypothesis or prior knowledge about their importance in complet-

ing a task (e.g., activities in region A exert influence on those in region B). This approach can

be used to better explain functional integration within a distributed neural system, allowing

quantifications and stronger inferences of directed connections of different brain region activi-

ties [15]. Thus, it may be more desirable to explicitly incorporate directional neural network

information given by previous effective connectivity studies. Furthermore, we can include

more than one behavioral/cognitive phenotype at the same time to consider their potential

correlations as well as the effects of genotypes and/or brain-based phenotypes on multiple

behavioral/cognitive phenotypes.
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In IG-GSCA, we incorporate such theoretical considerations into sets of mathematical

equations, also called sub-models. Specifically, as in GSCA, it will involve three sub-models–

weighted relation, measurement, and structural. The weighed relation model is used to explic-

itly define a component as a weighted sum of observed variables. The measurement model

specifies the relationships between observed and components, whereas the structural model is

to express the relationships between components.

For simplicity, hereafter, let us assume that all genetic observed variables indicate SNPs and

imaging observed variables are called voxels, whereas all genetic and imaging components are

genes and brain regions, respectively. Let z denote a J by 1 vector of all observed variables,

including SNPs, voxels, and behavioral/cognitive phenotypes. Let γ denote a P by 1 vector of

all components, including genes, brain regions, and behavioral/cognitive traits. We assume

that all observed variables and components are standardized to have zero means and unit

variances.

The weighted relation model is generally written as follows.

γ ¼Wz; ð1Þ

where W is a P by J matrix of weights assigned to J observed variables. This sub-model is

unique to IG-GSCA (or GSCA), which is distinct from (factor-based) SEM.

The measurement model is generally written as

z ¼ Cγþ ε; ð2Þ

where C is a J by P matrix of loadings relating P components to J observed variables, and ε is a

J by 1 vector of the residuals of all observed variables left unexplained by their components.

The structural model is generally expressed as

γ ¼ Bγþ ζ; ð3Þ

where B is a P by P matrix of path coefficients relating P components among themselves, and z

is a P by 1 vector of the residuals of all components left unexplained by their independent com-

ponents. The combination of (1) and (2) can be seen as the constrained principal component

analysis model [40] in that components of observed variables in (1) are obtained in such a way

that they explain the maximum variances of the observed variables, signified by loadings in

(2), as well as some elements of the W and C matrices are typically constrained to fixed values

(e.g., zero) based on prior knowledge, as illustrated below.

To exemplify these sub-models, we contemplate a prototype model depicted in Fig 1. In the

figure, a box indicates an observed variable and a hexagon represents a component. An arrow

signifies that the variable at the base of an arrow affects the variable at the head of the arrow,

whereas a straight line indicates a weight assigned to each observed variable. This model con-

tains two genes (γ1 and γ2) and two brain regions (γ3 and γ4), each of which is a weighed sum

of two observed variables (SNPs or voxels). It includes one observed behavioral outcome. The

model shows that the two genes affect the two brain regions, one brain region influences the

other brain region, and both brain regions influence the behavioral outcome.
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The weighted relation model for the prototype model can be expressed as
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Fig 1. A path diagram of a prototype IG-GSCA model.

https://doi.org/10.1371/journal.pone.0247592.g001
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The measurement model for the prototype model can be written as follows
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Finally, the structural model for the prototype can be expressed as
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This sub-model contains a series of regression models for all dependent components.

IG-GSCA combines the three sub-models into a single model, as follows.
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ð7Þ

where I is an identity matrix, V =
I

W

" #

, and A =
C

B

" #

, and e =
ε

ξ

" #

. We call (7) the

IG-GSCA model, which enables to accommodate a variety of hypothesized G-B-B/C

relationships.

In the prototype model, for simplicity, we consider only main effects of each component.

However, we can also consider interaction effects of components, for example, gene-gene or

gene-environment interactions. For example, let γ12 denote a gene-gene interaction term that

is defined as the product of the two genes (i.e., γ12 = γ1γ2). Let γ� = [γ; γ12] denote a vector
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consisting of all components and the component interaction term. Then, the weighted relation

model is given as

γ� ¼
W 0

0 1

" #
z

g12

" #

¼W�z�; ð8Þ

where W� =
W 0

0 1

" #

, and z� =
z

g12

" #

. The measurement model is generally given as

z ¼ C; 0½ �
γ

g12

" #

þ ε ¼ C�γ� þ ε; ð9Þ

where C� = [C, 0]. The structural model is generally expressed as follows.

γ� ¼ B�γ� þ ζ�; ð10Þ

where B� consists of additional path coefficients relating γ12 to other variables. The model (7)

can easily accommodate component interaction terms because the above sub-models are

essentially of the same form as (1), (2), and (3).

Parameter estimation

The unknown parameters of IG-GSCA include weights in W, loadings in C, and path coeffi-

cients in B. As illustrated in the previous section, the W, C and B matrices include fixed values

(e.g., zeros) to express hypothesized relationships between variables, making it difficult to esti-

mate the parameters in closed form. Instead, they are to be estimated iteratively. Moreover,

components (e.g., genes and brain regions) and their interaction terms tend to be highly corre-

lated to one another, leading to multicollinearity.

Let zi denote a vector of indicators measured on a single observation of a sample ofN obser-

vations (i = 1, . . ., N). To estimate the parameters, we aim to minimize the following penalized

least squares criterion

φ ¼
t

2

XN

i¼1

ðVzi � AWziÞ
0
ðVzi � AWziÞ þ l1

0jBtj1; ð11Þ

subject to
XN

i¼1

diagðγiγi
0Þ ¼ NI, where 1 is a vector of ones of appropriate order, and λ is a

non-negative tuning parameter for path coefficients. In (11), for any matrix X, | X | denotes

the absolute value of X. When τ = 2, 1’|Bτ|1 become the ridge or L2 penalty [41], whereas when

τ = 1, it is equivalent to the lasso or L1 penalty [42]. Ridge or L2 regularization has been widely

used to deal with multicollinearity, whereas lasso or L1 regularization is used for variable selec-

tion [43]. We are typically interested in dealing with multicollinearity, while keeping our

model specification intact. It is known that within a certain range of the tuning parameter, the

ridge estimator always exhibits a smaller mean square error than the ordinary least squares

estimator [41]. This tendency becomes salient in the presence of multicollinearity [44]. None-

theless, if variable section is of concern, lasso regularization can be adopted to select subsets of

components, facilitating the parsimony and interpretability of the model.

We apply an alternating regularized least squares algorithm [24] to minimize this criterion.

This algorithm will repeat three steps until convergence. In each step, one set of the parameters

will be updated with the other sets fixed. If an interaction term of components is included, the

algorithm estimates weights, considering that the component interaction term shares the same
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weights as those for its interacting components because it is the product of these components,

each of which is a weighted sum of observed variables [23]. For instance, if γ12 is a gene-gene

interaction between γ1 and γ2 in the prototype model, i.e., γ12 = γ1γ2 = (z1w1 + z2w2)(z3w3

+ z4w4), then γ12 shares w1 and w2 with γ1, and w3 and w4 with γ2.

We employ K-fold cross validation [45] to determine the value of λ in an automatic man-

ner. We use the bootstrap method [46] to estimate the standard errors or confidence intervals

of the parameter estimates without resorting to a distributional assumption. The standard

errors or confidence intervals can be used for testing the statistical significance of the parame-

ter estimates. Upon convergence, IG-GSCA provides unique individual component scores as

shown in (1).

Example: Gene-brain-depression data

Data overview

Participants. In a sample of 231 Korean participants, healthy volunteers were 137

(59.3%), who were recruited from community advertisements, whereas post-traumatic stress

disorder (PTSD) patients were 94 (40.7%), who were recruited from notices on the bulletin

board in a university hospital in a suburban area of Seoul, South Korea. The PTSD patients

were diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edi-

tion (DSM-5) by a psychiatrist, and healthy participants were also evaluated using the DSM-5

by a psychiatrist. Participants were excluded if they were pregnant, intellectually disabled,

drug-abusing, taking medications with potentially psychoactive effects, or at high risk for sui-

cide. The sample consisted of 75 (32.5%) men and 156 (67.5%) women with a mean age of

46.10 years (SD = 13.49). All the participants signed a written form of informed consent,

approved by the Institutional Review Board at Inje University Ilsan Paik Hospital prior to the

start of the research (IRB no. 2015-07-025).

Measures. Psychiatric and behavioral measures. To measure the severity of depression as

the outcome variable, the Korean translation of the Hospital Anxiety Depression Scale

(HADS) [47] was administered. The HADS is a self-report rating scale and comprised of a set

of seven questions for anxiety (HADS-A) and a set of seven questions for depression

(HADS-D). The total sum score of the seven items in the HADS-D was used in the study.

To measure the exposure to traumatic events as an independent variable, the Korean vali-

dated version of Life Events Checklist (LEC) was used to assess the experience of potentially

traumatic events (PTEs) [48]. The LEC comprised of 17 items of PTEs concerning experienc-

ing, witnessing, and learning about PTEs. We used the items of PTE experience since other

responses could be confusing to some respondents.

To control for the effect of alcohol-related problems as a covariate, the Alcohol Use Disor-

ders Identification Test (AUDIT) was used to assess alcohol consumption, drinking behav-

iours, and alcohol-related problems. The AUDIT is a 10-item screening tool developed by the

World Health Organization (WHO), and well-validated in Korea [49]. The AUDIT is assessed

with a 5-point Likert scale ranging from 0 (“never”) to 4 (“4 or more times a week”). Table 1

provides a summary of demographic, psychological, and behavioral characteristics of the

participants.

DNA genotyping. All participants had their blood sampled to extract DNA using Nano-

Drop1ND-1000 UV-Vis Spectrophotometer. Then, genomic DNA were diluted to 10 ng/μl

concentration at 96 well PCR plates. TaqMan SNP Genotyping Assays were obtained from

Applied Biosystems (Waltham, MA). The probes were labeled with FAM or VIC dye at the 5’

end and a minor-groove binder and non-fluorescent quencher at the 3’ end. 2 μL of DNA was

added to each 5 μL PCR reaction at 384 well reaction plates. SNP genotyping reactions were
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performed on ABI PRISM 7900HT Real-time PCR system. After the PCR amplification, allelic

discrimination is performed at the same machines (ABI 7900HT). The allelic discrimination is

an end point plate read. The SDS v2.4 software calculates the fluorescence measurements

made during the plate read and plots Rn values based on the signals from each well. A total of

18 SNPs from 9 different DNAs were obtained for the study. For all SNPs, the wild, hetero,

and mutant genotypes were coded as 1, 2, and 3, respectively. Nine genes selected based on

their relations with depression include: SLC6A4 [50], FKBP5 [51], ADCYAP1R1 [52], BDNF

[53], COMT [54], HTR3A [55], DRD2 [56], NR3C1 [57], and OXTR [58]. Table 2 exhibits the

names and frequencies of all the genes considered in the study.

MRI acquisition and processing and voxel-based morphometry. MRI was performed using a

1.5 T scanner (Magneton Avanto, Siemens, Erlangen, Germany). Head motion was minimized

with restraining foam pads provided by the manufacturer. High-resolution T1-weighted MRI

Table 1. A summary of participants’ demographic, psychological, and behavioral characteristics.

Total participants Healthy participants PTSD participants

(N = 231) (N = 137) (N = 94)

Mean ± SD or N (%)

Sex

Male 75 (32.5) 40 (29.2) 35 (37.2)

Female 156 (67.5) 97 (70.8) 59 (62.8)

Age 46.10 ± 13.49 47.05 ± 13.58 44.72 ± 13.32

AUDIT 3.04 ± 3.61 2.80 ± 3.43 3.38 ± 3.86

PTE 3.72 ± 2.47 3.10 ± 2.35 4.63 ± 2.37

Depression 8.80 ± 4.59 6.80 ± 3.71 11.71 ± 418

PTSD—post-traumatic stress disorder; AUDIT—alcohol use disorders identification test; PTE—potentially traumatic events.

https://doi.org/10.1371/journal.pone.0247592.t001

Table 2. List of genes and SNPs included in the gene-brain-depression data.

Gene SNP wild [N(%)] hetero [N(%)] mutant [N(%)]

SLC6A4 rs25531 AA 174 (75.3%) AG 57 (24.7) GG 0 (0%)

FKBP5 rs9296158 GG 115 (49.8%) AG 98 (42.4%) AA 18(7.8%)

rs3800373 AA 148 (64.1%) AC 71 (30.7%) CC 12 (5.2%)

rs1360780 CC 144 (62.3%) CT 74 (32.0%) TT 13 (5.6%)

rs9470080 CC 111 (48.1%) CT 100 (43.2%) TT 20 (8.7%)

rs4713916 GG 146 (63.2%) AG 74 (32.0%) AA 11 (4.8%)

rs4713919 GG 130 (56.3%) AG 82 (35.5%) AA 19 (8.2%)

rs6902321 TT 118 (51.1%) CT 97 (42.0%) CC 16 (6.9%)

rs56311918 TT 168 (72.7%) CT 59 (25.5%) CC 4 (1.7%)

rs3798345 CC 157 (68.0%) CT 66 (28.5%) TT 8 (3.5%)

ADCYAP1R1 rs2267735 CC 59 (25.5%) CG 119 (51.5%) GG 53 (22.9%)

BDNF rs6265 CC 75 (32.5%) CT 108 (46.8%) TT 48 (20.8%)

COMT rs4680 GG 116 (50.2%) AG 102 (44.2%) AA 13 (5.6%)

rs4633 CC 119 (51.5%) CT 100 (43.3%) TT 12 (5.2%)

HTR3A rs1062613 CC 194 (84.0%) CT 34 (14.7%) TT 3 (1.3%)

DRD2 rs2075652 GG 86 (37.2%) GA 99 (42.9%) AA 46 (19.9%)

NR3C1 rs258747 AA 125 (54.1%) AG 89 (38.5%) GG 17 (7.4%)

OXTR rs53576 AA 92 (39.8%) AG 99 (42.9%) GG 40 (17.3%)

https://doi.org/10.1371/journal.pone.0247592.t002
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images were acquired with the acquisition parameters of a 227 × 384 acquisition matrix, a

210 × 250 field-of-view, 0.9 × 0.7 × 1.2 voxel size, a total of 87,168 voxels, a TE of 3.42 ms, a TR

of 1,900 ms, 1.2 mm slice thickness, and a flip angle of 15˚.

All images were inspected visually for motion or other artifacts before and after preprocess-

ing. The voxel-based volumetry (VBM) was conducted using CAT12 (http://dbm.neuro.uni-

jena.de/cat/) implemented in SPM12 (Wellcome Department of Cognitive Neurology, Lon-

don, UK). SPM12 tissue probability maps were used for the initial spatial registration. The

structural T1 images were regularized with an ICBM East Asian template and normalized

using the DARTEL algorithm [59]. The images were then segmented into gray matter, white

matter, and cerebrospinal fluid [60]. Jacobian-transformed tissue probability maps were used

to modulate images. The projection-based thickness method was applied to the SPM analysis

to estimate the cortical thickness for the left and right hemispheres [61]. The cortical thickness

was extracted using the Destrieux atlas, which is the default FreeSurfer atlas. The Destrieux

atlas consists of 74 cortical areas in the left and right hemispheres, including both gyri and

sulci. Segmentation was automatically conducted using probabilistic methods [62]. A total of

53 regions of interest (ROIs), which mostly represent the thickness of cortical gyri and limbic

sulci, were selected from the atlas for the study. Table 3 shows the name, mean, and standard

deviation of each ROI.

Model specification

Depression symptoms are known to be linked to altered brain structures [63], which may be

influenced by the number of exposure to stressful or traumatic life events [64, 65], genetic

polymorphism [66], and the interaction of both—gene-environment interactions [67–69].

Also, these relations may be affected by covariates such as age [70, 71], sex [72, 73], and alco-

hol-related problems [74, 75]. Accordingly, we hypothesized that the PTE, genetic polymor-

phism, and their interactions directly influenced the cortical thickness of the ROIs, which in

turn had direct effects on depression severity, while controlling for the effects of age, sex, and

AUDIT on both cortical thickness and depression severity. We also assumed that the PTE

influenced depression severity directly. Fig 2 displays the hypothesized structural model. As

shown in the figure, the model consisted of nine genetic components (i.e., genes) and 53 imag-

ing components (i.e., ROIs). Each gene was associated with its observed variables (i.e., SNPs).

The number of SNPs per gene ranged from one to nine. Each ROI was associated with two

observed variables that denoted its left and right sides of the brain. Nine gene-environment

interactions between the genes and PTE were considered that also influenced the ROIs.

Results

We applied IG-GSCA to fit the specified model to the data. We chose λ = 136 based on five-

fold cross validation. We used 4000 bootstrap samples to estimate the standard errors and 95%

confidence intervals of the parameter estimates. As shown in Table 4, all weight estimates were

statistically significant, suggesting that all observed variables contributed to forming their cor-

responding components. In addition, all the loading estimates were statistically significant and

large in magnitude (> .75). This indicates that all components were obtained to explain the

variances of their observed variables well.

The specified model included a total of 1,246 path coefficients. One hundred eighty-four of

their estimates turned out to be statistically significant. To conserve space, we focus here on

reporting and interpreting statistically significant path coefficient estimates that constituted

the hypothesized G-B-B/C pathways linking the genes, ROIs, and depression severity, pre-

sented in Table 5. The full results of all the path coefficient estimates can be found in S1 Table.
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Table 3. List of regions of interest (ROIs) included in the gene-brain-depression data.

ROI Hemisphere Mean ± SD ROI Hemisphere Mean ± SD

precentral gyrus Left- 2.75 ± 0.19 Inferior temporal gyrus (T3) Left- 3.13 ± 0.16

Right- 2.73 ± 0.22 Right- 3.15 ± 0.17

subcentral gyrus Left- 2.75 ± 0.17 lateral occipito-temporal gyrus (fusiform gyrus,

O4-T4)

Left- 2.88 ± 0.18

Right- 2.75 ± 0.18 Right- 2.88 ± 0.17

inferior frontal gyrus (or F3) Left- 2.39 ± 0.27 lingual gyrus (O5) Left- 1.95 ± 0.13

Right- 2.44 ± 0.25 Right- 2.06 ± 0.14

triangular part of the inferior frontal gyrus Left- 2.71 ± 0.21 parahippocampal gyrus (or T5) Left- 3.13 ± 0.24

Right- 2.73 ± 0.19 Right- 3.23 ± 0.25

opercular part of the inferior frontal gyrus Left- 2.80 ± 0.17 cuneus (O6) Left- 1.77 ± 0.13

Right- 2.79 ± 0.16 Right- 1.83 ± 0.13

orbital part of the inferior frontal gyrus Left- 2.82 ± 0.22 occipital pole Left- 1.94 ± 0.15

Right- 2.88 ± 0.25 Right- 1.95 ± 0.13

middle frontal gyrus (or F2) Left- 2.71 ± 0.17 temporal pole Left- 3.44 ± 0.19

Right- 2.70 ± 0.16 Right- 3.45 ± 0.24

superior frontal gyrus Left- 3.04 ± 0.16 postcentral gyrus Left- 2.12 ± 0.16

Right- 3.01 ± 0.18 Right- 2.10 ± 0.17

gyrus rectus Left- 2.78 ± 0.20 supramarginal gyrus Left- 2.76 ± 0.16

Right- 2.73 ± 0.19 Right- 2.77 ± 0.15

transverse frontopolar gyrus or gyri Left- 2.73 ± 0.27 angular gyrus Left- 2.68 ± 0.16

Right- 2.72 ± 0.25 Right- 2.66 ± 0.15

medial orbital sulcus Left- 2.42 ± 0.19 superior parietal lobule (or P1) Left- 2.37 ± 0.16

Right- 2.40 ± 0.18 Right- 2.36 ± 0.16

4 orbital gyri Left- 2.86 ± 0.15 precuneus Left- 2.52 ± 0.16

Right- 2.91 ± 0.16 Right- 2.52 ± 0.16

superior circular sulcus of the insula Left- 2.67 ± 0.12 paracentral lobule and sulcus Left- 2.29 ± 0.22

Right- 2.67 ± 0.14 Right- 2.33 ± 0.21

anterior circular sulcus of the insula Left- 2.84 ±0.20 subcentral gyrus and sulci Left- 2.75 ± 0.17

Right- 2.87 ± 0.22 Right- 2.75 ± 0.18

inferior circular sulcus of the insula Left- 2.71 ± 0.21 Marginal branch (or part) of the cingulate sulcus Left- 2.24 ± 0.16

Right- 2.61 ± 0.22 Right- 2.25 ± 0.16

vertical ramus of anterior segment of lateral sulcus Left- 2.44 ± 0.23 subparietal sulcus Left- 2.40 ± 0.18

Right- 2.53 ± 0.27 Right- 2.46 ± 0.20

horizontal ramus of anterior segment of lateral sulcus Left- 2.33 ± 0.30 calcarine sulcus Left- 1.72 ± 0.12

Right- 2.35 ± 0.23 Right- 1.81 ± 0.14

posterior segment of the lateral sulcus Left- 2.43 ± 0.17 medial occipitotemporal sulcus (or collateral sulcus) Left- 2.35 ± 0.17

Right- 2.46 ± 0.17 Right- 2.37 ± 0.20

the short insular gyri Left- 3.54 ± 0.20 lateral occipito-temporal (or fusiform) sulcus Left- 2.55 ± 0.18

Right- 3.42 ± 0.22 Right- 2.57 ± 0.16

long insular gyrus Left- 3.27 ± 0.24 subcallosal area or gyrus Left- 2.74 ± 0.25

Right- 3.32 ± 0.30 Right- 2.74 ± 0.35

transverse temporal gyrus (or Heschl’s gyrus) Left- 2.39 ± 0.24 pericallosal sulcus or sulcus of the corpus callosum Left- 2.26 ± 0.31

Right- 2.42 ± 0.24 Right- 2.24 ± 0.35

Planum temporale or temporal plane of the superior

temporal gyrus

Left- 2.53 ± 0.22 Anterior part of the cingulate gyrus and

sulcus (ACC)

Left- 2.88 ± 0.17

Right- 2.56 ± 0.21 Right- 2.85 ± 0.20

Planum polare of the superior temporal gyrus Left- 3.38 ± 0.26 Middle-anterior part of the cingulate gyrus and

sulcus (aMCC)

Left- 2.78 ± 0.23

Right- 3.27 ± 0.24 Right- 2.85 ± 0.20

(Continued)
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In the specified gene and brain function relationships, the dopamine receptor D2 (DRD2)

gene had positive influences on the middle-posterior part of the cingulate gyrus and sulcus

(pMCC) (b = .07, SE = .03, 95% CI = [.01, .14]) and the triangular part of the inferior frontal

gyrus (b = .11, SE = .03, 95% CI = [.04, .17]), suggesting that people with the mutant allele in

DRD2 are likely to have a thicker triangular part of the inferior frontal gyrus and pMCC. This

finding is consistent with previous research that people with the wild genotype of the DRD2

gene (GG) had reduced activity in the inferior frontal gyrus [76] and reduced connectivity in

pMCC [77] relative to people with the hetero or mutant genotype. In the specified brain func-

tion and depression relationships, three ROIs, such as the triangular part of the inferior frontal

gyrus (b = -.07, SE = .03, 95% CI = [-.12, -.00]), the anterior circular sulcus of the insula (b =

-.11, SE = .03, 95% CI = [-.17, -.05]), and pMCC (b = -.08, SE = .03, 95% CI = [-.14, -.01]),

turned out to be negatively associated with depression severity, indicating that the thinner

these ROIs are, the higher level of depression on average. This is consistent with previous find-

ings that revealed a significantly thinner or smaller triangular part of the inferior frontal gyrus

[78], anterior insula [79], and pMCC [80] in depressive people than those in healthy people.

Moreover, PTE had a negative effect on the triangular part of the inferior frontal gyrus (b =

-.08, SE = .03, 95% CI = [-.14, -.01]), suggesting that traumatic stressful events may diminish

the thickness of this part. This finding is supported by previous research that traumatic experi-

ences were associated with a thinner or smaller triangular part of the inferior frontal gyrus [81,

82]. Lastly, PTE had a positive impact on depression severity (b = .14, SE = .03, 95% CI = [.07,

.20]). This also indicates that the effect of PTE on depression severity was not fully mediated

by the ROIs. The association between stressful or traumatic experiences and depression has

been found in numerous studies [83–86].

The gene-environment interaction between PTE and the serotonin transporter gene

(SLC6A4) had a significant effect on the triangular part of the inferior frontal gyrus (b = .06,

SE = .03, 95% CI = [.00, .02]). We additionally investigated the conditional effects of PTE on

the triangular part of the inferior frontal gyrus at different levels of the serotonin transporter

gene. Specifically, the conditional effects were tested when rs25531 was AA (the wild genotype)

and AG (the hetero genotype), since SLC6A4 had only one observed variable rs25531, whose

values were AA and AG in the data. It turned out that PTE had a negative effect on the triangu-

lar part of the inferior frontal gyrus only when rs25531 was AA (b = -.11, SE = .04, 95% CI =

[-.18, -.03]). Although there are few studies regarding the interaction between rs25531 and an

environment on brain structures, many other studies revealed that the wild allele (A) of seroto-

nin transporter genes could be considered a risk allele and be associated with thinner or

smaller brain [87, 88].

In addition, DRD2 had an indirect effect on depression severity mediated through the tri-

angular part of the inferior frontal gyrus (indirect effect = -.01, SE = .00, 95% CI = [-.02, -.00]).

Table 3. (Continued)

ROI Hemisphere Mean ± SD ROI Hemisphere Mean ± SD

lateral aspect of the superior temporal gyrus Left- 3.11 ± 0.19 Middle-posterior part of the cingulate gyrus and

sulcus (pMCC)

Left- 2.62 ± 0.16

Right- 3.12 ± 0.20 Right- 2.66 ± 0.16

middle temporal gyrus Left- 3.07 ± 0.17 Posterior-dorsal part of the cingulate gyrus (dPCC) Left- 2.91 ± 0.17

Right- 3.07 ± 0.15 Right- 2.91 ± 0.17

superior occipital gyrus (O1) Left- 2.17 ± 0.20 Posterior-ventral part of the cingulate gyrus (vPCC

or isthmus)

Left- 2.64 ± 0.25

Right- 2.21 ± 0.16 Right- 2.67 ± 0.25

middle occipital gyrus (O2, lateral occipital gyrus) Left- 2.57 ± 0.14

Right- 2.63 ± 0.13

https://doi.org/10.1371/journal.pone.0247592.t003

PLOS ONE Imaging genetics generalized structured component analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0247592 March 10, 2021 13 / 28

https://doi.org/10.1371/journal.pone.0247592.t003
https://doi.org/10.1371/journal.pone.0247592


This indicates that mutation of the DRD2 gene may render the person less susceptible to

depression through thickening the triangular part of the inferior frontal gyrus. This finding

supports gene–brain–behaviour relationships of dopamine genes, which are known to be asso-

ciated with neural changes in reward-related regions, which could play an essential role in the

Fig 2. The structural model specified for the gene-brain-depression data. All weights and residual terms are omitted to make the figure concise.

https://doi.org/10.1371/journal.pone.0247592.g002
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Table 4. The estimates of weights and loadings and their standard errors and 95% confidence intervals.

Name Weights Loadings

Component Observed variable Estimate SE 95% CI Estimate SE 95% CI

SLC6A4 rs25531 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

FKBP5 rs9296158 0.15 0.05 0.05 0.27 0.89 0.02 0.85 0.92

rs3800373 0.10 0.04 0.01 0.18 0.88 0.03 0.82 0.93

rs1360780 0.13 0.05 0.04 0.25 0.92 0.01 0.89 0.95

rs9470080 0.14 0.07 0.00 0.27 0.91 0.01 0.88 0.93

rs4713916 0.14 0.06 0.02 0.26 0.93 0.01 0.90 0.95

rs4713919 0.10 0.03 0.04 0.17 0.85 0.03 0.80 0.90

rs6902321 0.11 0.05 0.01 0.21 0.89 0.02 0.85 0.92

rs56311918 0.15 0.03 0.10 0.21 0.84 0.03 0.78 0.88

rs3798345 0.11 0.05 0.01 0.20 0.89 0.02 0.84 0.93

ADCYAP1R1 rs2267735 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

BDNF rs6265 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

COMT rs4680 0.47 0.13 0.22 0.73 0.98 0.01 0.95 1.00

rs4633 0.54 0.13 0.29 0.79 0.98 0.01 0.96 1.00

HTR3A rs1062613 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

DRD2 rs2075652 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

NR3C1 rs258747 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

OXTR rs53576 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

PTE post traumatic events 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

precentral gyrus Left precentral gyrus 0.53 0.02 0.50 0.57 0.91 0.02 0.86 0.94

Right precentral gyrus 0.56 0.02 0.53 0.61 0.92 0.02 0.89 0.94

subcentral gyrus Left subcentral gyrus 0.55 0.02 0.51 0.59 0.90 0.01 0.87 0.92

Right subcentral gyrus 0.56 0.02 0.52 0.60 0.90 0.01 0.87 0.93

inferior frontal gyrus (or F3) Left inferior frontal gyrus (vertical) 0.61 0.03 0.55 0.66 0.81 0.03 0.74 0.85

Right inferior frontal gyrus (vertical) 0.62 0.03 0.57 0.70 0.82 0.02 0.77 0.86

triangular part of the inferior frontal gyrus Left triangular part of the inferior frontal gyrus 0.57 0.02 0.53 0.62 0.91 0.01 0.88 0.93

Right triangular part of the inferior frontal gyrus 0.53 0.02 0.49 0.58 0.89 0.01 0.86 0.92

opercular part of the inferior frontal gyrus Left opercular part of the inferior frontal gyrus 0.56 0.02 0.52 0.60 0.88 0.02 0.83 0.91

Right opercular part of the inferior frontal gyrus 0.58 0.02 0.53 0.62 0.88 0.02 0.85 0.91

orbital part of the inferior frontal gyrus Left orbital part of the inferior frontal gyrus 0.62 0.02 0.57 0.66 0.87 0.02 0.83 0.89

Right orbital part of the inferior frontal gyrus 0.56 0.02 0.52 0.61 0.83 0.02 0.79 0.87

middle frontal gyrus (or F2) Left middle frontal gyrus (or F2) 0.52 0.02 0.48 0.57 0.95 0.01 0.93 0.97

Right middle frontal gyrus (or F2) 0.53 0.02 0.49 0.57 0.95 0.01 0.94 0.97

superior frontal gyrus Left superior frontal gyrus 0.53 0.03 0.48 0.58 0.97 0.00 0.96 0.98

Right superior frontal gyrus 0.50 0.03 0.45 0.55 0.97 0.00 0.96 0.98

gyrus rectus Left gyrus rectus 0.57 0.02 0.53 0.61 0.90 0.02 0.86 0.93

Right gyrus rectus 0.55 0.02 0.51 0.60 0.89 0.02 0.86 0.92

transverse frontopolar gyrus or gyri Left transverse frontopolar gyrus or gyri 0.55 0.02 0.52 0.59 0.92 0.01 0.90 0.94

Right transverse frontopolar gyrus or gyri 0.53 0.02 0.49 0.57 0.92 0.01 0.89 0.94

medial orbital sulcus Left medial orbital sulcus 0.55 0.02 0.51 0.59 0.88 0.02 0.84 0.91

Right medial orbital sulcus 0.58 0.02 0.54 0.62 0.89 0.02 0.86 0.92

4 orbital gyri Left 4 orbital gyri 0.54 0.02 0.50 0.57 0.91 0.01 0.88 0.93

Right 4 orbital gyri 0.56 0.02 0.52 0.60 0.92 0.01 0.89 0.94

superior circular sulcus of the insula Left superior(circular sulcus of the insula) 0.54 0.02 0.51 0.58 0.90 0.01 0.87 0.92

Right superior(circular sulcus of the insula) 0.56 0.02 0.53 0.60 0.91 0.01 0.88 0.93

(Continued)
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Table 4. (Continued)

Name Weights Loadings

Component Observed variable Estimate SE 95% CI Estimate SE 95% CI

anterior circular sulcus of the insula Left anterior(circular sulcus of the insula) 0.60 0.03 0.54 0.67 0.82 0.03 0.75 0.86

Right anterior(circular sulcus of the insula) 0.61 0.03 0.55 0.68 0.83 0.03 0.76 0.87

inferior circular sulcus of the insula Left inferior(circular sulcus of the insula) 0.57 0.02 0.52 0.62 0.91 0.01 0.88 0.93

Right inferior(circular sulcus of the insula) 0.54 0.02 0.50 0.58 0.90 0.02 0.85 0.93

vertical ramus of anterior segment of lateral sulcus Left vertical ramus of anterior segment of lateral

sulcus

0.61 0.03 0.55 0.66 0.81 0.03 0.74 0.85

Right vertical ramus of anterior segment of lateral

sulcus

0.62 0.03 0.57 0.70 0.82 0.02 0.77 0.86

horizontal ramus of anterior segment of lateral

sulcus

Left horizontal ramus of anterior segment of lateral

sulcus

0.66 0.05 0.56 0.74 0.78 0.05 0.66 0.84

Right horizontal ramus of anterior segment of lateral

sulcus

0.64 0.06 0.56 0.75 0.76 0.05 0.69 0.84

posterior segment of the lateral sulcus Left posterior segment of the lateral sulcus 0.55 0.02 0.51 0.60 0.87 0.02 0.83 0.90

Right posterior segment of the lateral sulcus 0.59 0.02 0.55 0.63 0.89 0.02 0.85 0.91

the short insular gyri Left short insular gyri 0.62 0.03 0.57 0.68 0.85 0.02 0.81 0.88

Right short insular gyri 0.57 0.02 0.53 0.63 0.82 0.03 0.76 0.86

long insular gyrus Left long insular gyrus 0.61 0.02 0.56 0.66 0.87 0.02 0.83 0.90

Right long insular gyrus 0.56 0.02 0.52 0.61 0.84 0.02 0.79 0.88

transverse temporal gyrus (or Heschl’s gyrus) Left transverse temporal gyrus (or Heschl’s gyrus) 0.57 0.02 0.53 0.62 0.86 0.02 0.83 0.89

Right transverse temporal gyrus (or Heschl’s gyrus) 0.58 0.02 0.54 0.63 0.87 0.02 0.83 0.90

Planum temporale or temporal plane of the

superior temporal gyrus

Left Planum temporale or temporal plane of the

superior temporal gyrus

0.57 0.02 0.53 0.62 0.85 0.02 0.81 0.89

Right Planum temporale or temporal plane of the

superior temporal gyrus

0.60 0.02 0.55 0.64 0.87 0.02 0.82 0.90

Planum polare of the superior temporal gyrus Left Planum polare of the superior temporal gyrus 0.60 0.03 0.54 0.66 0.83 0.03 0.77 0.87

Right Planum polare of the superior temporal gyrus 0.61 0.03 0.55 0.67 0.83 0.02 0.78 0.87

lateral aspect of the superior temporal gyrus Left lateral aspect of the superior temporal gyrus 0.55 0.02 0.51 0.59 0.89 0.02 0.86 0.92

Right lateral aspect of the superior temporal gyrus 0.57 0.02 0.53 0.60 0.90 0.02 0.86 0.93

middle temporal gyrus Left middle temporal gyrus 0.56 0.02 0.52 0.60 0.91 0.01 0.89 0.93

Right middle temporal gyrus 0.54 0.02 0.50 0.58 0.90 0.01 0.88 0.93

superior occipital gyrus (O1) Left superior occipital gyrus (O1) 0.58 0.02 0.54 0.63 0.87 0.02 0.83 0.90

Right superior occipital gyrus (O1) 0.57 0.02 0.53 0.62 0.86 0.02 0.83 0.89

middle occipital gyrus (O2, lateral occipital gyrus) Left middle occipital gyrus (O2, lateral occipital gyrus) 0.57 0.02 0.53 0.61 0.88 0.02 0.84 0.91

Right middle occipital gyrus (O2, lateral occipital

gyrus)

0.57 0.02 0.53 0.61 0.88 0.02 0.84 0.91

Inferior temporal gyrus (T3) Left Inferior temporal gyrus (T3) 0.58 0.02 0.54 0.63 0.87 0.01 0.84 0.90

Right Inferior temporal gyrus (T3) 0.57 0.02 0.53 0.60 0.87 0.02 0.83 0.90

lateral occipito-temporal gyrus (fusiform gyrus,

O4-T4)

Left lateral occipito-temporal gyrus (fusiform gyrus,

O4-T4)

0.56 0.02 0.52 0.60 0.88 0.02 0.84 0.91

Right lateral occipito-temporal gyrus (fusiform gyrus,

O4-T4)

0.58 0.02 0.54 0.62 0.88 0.02 0.85 0.91

lingual gyrus (O5) Left lingual gyrus (O5) 0.58 0.02 0.54 0.61 0.90 0.01 0.87 0.93

Right lingual gyrus (O5) 0.54 0.02 0.50 0.58 0.89 0.02 0.86 0.92

parahippocampal gyrus (or T5) Left parahippocampal gyrus (or T5) 0.56 0.02 0.51 0.60 0.88 0.02 0.84 0.92

Right parahippocampal gyrus (or T5) 0.57 0.02 0.53 0.61 0.89 0.02 0.85 0.93

cuneus (O6) Left cuneus (O6) 0.53 0.02 0.49 0.58 0.89 0.02 0.86 0.92

Right cuneus (O6) 0.58 0.02 0.54 0.61 0.91 0.02 0.87 0.94
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Table 4. (Continued)

Name Weights Loadings

Component Observed variable Estimate SE 95% CI Estimate SE 95% CI

occipital pole Left occipital pole 0.59 0.02 0.55 0.63 0.87 0.02 0.82 0.90

Right occipital pole 0.57 0.02 0.53 0.62 0.86 0.02 0.81 0.90

temporal pole Left temporal pole 0.59 0.02 0.54 0.63 0.87 0.02 0.83 0.91

Right temporal pole 0.56 0.03 0.52 0.62 0.86 0.02 0.82 0.90

postcentral gyrus Left postcentral gyrus 0.55 0.02 0.51 0.59 0.90 0.01 0.87 0.92

Right postcentral gyrus 0.56 0.02 0.52 0.60 0.90 0.01 0.88 0.93

supramarginal gyrus Left supramarginal gyrus 0.54 0.02 0.49 0.58 0.91 0.01 0.88 0.93

Right supramarginal gyrus 0.56 0.02 0.52 0.60 0.92 0.01 0.89 0.94

angular gyrus Left angular gyrus 0.55 0.02 0.51 0.59 0.89 0.02 0.86 0.92

Right angular gyrus 0.57 0.02 0.53 0.61 0.90 0.01 0.87 0.92

superior parietal lobule (or P1) Left superior parietal lobule (or P1) 0.51 0.02 0.47 0.55 0.93 0.01 0.91 0.95

Right superior parietal lobule (or P1) 0.56 0.02 0.52 0.60 0.94 0.01 0.92 0.96

precuneus Left precuneus 0.55 0.02 0.51 0.59 0.94 0.01 0.93 0.96

Right precuneus 0.52 0.02 0.48 0.55 0.93 0.01 0.91 0.95

paracentral lobule and sulcus Left paracentral lobule and sulcus 0.55 0.02 0.51 0.59 0.93 0.01 0.91 0.95

Right paracentral lobule and sulcus 0.53 0.02 0.49 0.57 0.92 0.01 0.90 0.94

subcentral gyrus and sulci Left subcentral gyrus and sulci 0.55 0.02 0.51 0.59 0.90 0.01 0.87 0.92

Right subcentral gyrus and sulci 0.56 0.02 0.52 0.60 0.90 0.01 0.87 0.93

Marginal branch (or part) of the cingulate sulcus Left marginal branch (or part) of the cingulate sulcus 0.55 0.02 0.51 0.59 0.90 0.01 0.87 0.93

Right marginal branch (or part) of the cingulate sulcus 0.56 0.02 0.52 0.59 0.91 0.01 0.88 0.93

subparietal sulcus Left subparietal sulcus 0.60 0.02 0.56 0.64 0.88 0.01 0.84 0.90

Right subparietal sulcus 0.55 0.02 0.52 0.60 0.85 0.02 0.81 0.89

calcarine sulcus Left calcarine sulcus 0.55 0.02 0.51 0.58 0.91 0.02 0.88 0.94

Right calcarine sulcus 0.55 0.02 0.51 0.59 0.91 0.01 0.88 0.94

medial occipitotemporal sulcus (or collateral

sulcus)

Left medial occipitotemporal sulcus (or collateral

sulcus)

0.58 0.04 0.50 0.66 0.87 0.03 0.81 0.93

Right medial occipitotemporal sulcus (or collateral

sulcus)

0.57 0.02 0.52 0.62 0.86 0.04 0.79 0.93

lateral occipito-temporal (or fusiform) sulcus Left lateral occipito-temporal (or fusiform) sulcus 0.63 0.04 0.56 0.70 0.79 0.04 0.68 0.84

Right lateral occipito-temporal (or fusiform) sulcus 0.64 0.05 0.58 0.74 0.79 0.05 0.72 0.84

subcallosal area or gyrus Left subcallosal area or gyrus 0.58 0.04 0.51 0.65 0.75 0.05 0.64 0.82

Right subcallosal area or gyrus 0.68 0.04 0.61 0.78 0.83 0.03 0.77 0.87

pericallosal sulcus or sulcus of the corpus callosum Left pericallosal sulcus or sulcus of the corpus

callosum

0.59 0.02 0.55 0.64 0.87 0.02 0.83 0.91

Right pericallosal sulcus or sulcus of the corpus

callosum

0.57 0.02 0.52 0.61 0.86 0.02 0.81 0.89

anterior part of the cingulate gyrus and sulcus

(ACC)

Left anterior part of the cingulate gyrus and sulcus

(ACC)

0.53 0.02 0.50 0.57 0.93 0.01 0.90 0.95

Right anterior part of the cingulate gyrus and sulcus

(ACC)

0.54 0.02 0.51 0.58 0.93 0.01 0.91 0.95

middle-anterior part of the cingulate gyrus and

sulcus (aMCC)

Left middle-anterior part of the cingulate gyrus and

sulcus (aMCC)

0.52 0.02 0.49 0.57 0.90 0.02 0.85 0.94

Right middle-anterior part of the cingulate gyrus and

sulcus (aMCC)

0.58 0.02 0.54 0.62 0.92 0.02 0.87 0.95

middle-posterior part of the cingulate gyrus and

sulcus (pMCC)

Left middle-posterior part of the cingulate gyrus and

sulcus (pMCC)

0.58 0.02 0.54 0.62 0.91 0.01 0.89 0.93

Right middle-posterior part of the cingulate gyrus and

sulcus (pMCC)

0.53 0.02 0.49 0.57 0.89 0.01 0.86 0.92

(Continued)
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pathogenesis of depression [89]. Lastly, Table 6 shows how much variance of each dependent

component is explained by its independent variables (average R2 = .20).

Simulation study

We conducted a simulation study to examine whether IG-GSCA could perform as expected,

particularly in terms of parameter recovery. In this study, we contemplated a model that was

quite similar to, yet on a slightly larger scale, the one specified in the real data analysis. As dis-

played in Fig 3, the model included nine genes, which were associated with one, two, or four

SNPs, and sixty brain ROIs, each of which was linked to two brain-level observed variables. It

also included an independent observed variable representing an environmental variable. The

genes and environmental variable were specified to affect the 60 ROIs, which in turn were to

influence an outcome variable that represents a behavioral or cognitive variable of interest.

The environmental variable also had a direct effect on the outcome variable. The model further

included the interaction term of each gene and the environmental variable (i.e., a total of nine

gene-environment interaction terms), which influenced each ROI. In the model, a zero path

coefficient is denoted by a dashed arrow.

We considered four levels of sample size (N = 250, 500, 1000, and 2000), for each of which

we drew 1000 samples randomly based on a data generating procedure, whose detailed

Table 4. (Continued)

Name Weights Loadings

Component Observed variable Estimate SE 95% CI Estimate SE 95% CI

posterior-dorsal part of the cingulate gyrus and

sulcus (dPCC)

Left posterior-dorsal part of the cingulate gyrus and

sulcus (dPCC)

0.59 0.02 0.54 0.63 0.90 0.01 0.87 0.92

Right posterior-dorsal part of the cingulate gyrus and

sulcus (dPCC)

0.54 0.02 0.50 0.58 0.88 0.02 0.84 0.91

posterior-ventral part of the cingulate gyrus and

sulcus (vPCC or isthmus)

Left posterior-ventral part of the cingulate gyrus and

sulcus (vPCC or isthmus)

0.56 0.02 0.51 0.61 0.86 0.02 0.81 0.89

Right posterior-ventral part of the cingulate gyrus and

sulcus (vPCC or isthmus)

0.59 0.02 0.55 0.64 0.87 0.02 0.83 0.90

Depression HAD-Depression 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

gender gender 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

age age 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

AUDIT AUDITpre 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00

Genes and ROIs are components, and SNPs and brain hemispheres are observed variable.

https://doi.org/10.1371/journal.pone.0247592.t004

Table 5. Statistically significant estimates of the path coefficients that constitute the linkages from genes to ROIs to depression severity, and their standard errors

and 95% confidence intervals.

Path coefficients Estimate SE 95% CI

DRD2 (gene) Middle-posterior part (pMCC) 0.07 0.03 0.01 0.14

DRD2 (gene) Triangular part of the inferior frontal gyrus 0.11 0.03 0.04 0.17

PTE Triangular part of the inferior frontal gyrus -0.08 0.03 -0.14 -0.01

PTE x SLC6A4 (gene) Triangular part of the inferior frontal gyrus 0.06 0.03 0.00 0.02

Triangular part of the inferior frontal gyrus Depression -0.07 0.03 -0.12 0.00

Anterior (circular sulcus of the insula) Depression -0.11 0.03 -0.17 -0.05

Middle-posterior part (pMCC) Depression -0.08 0.03 -0.14 -0.01

PTE Depression 0.14 0.03 0.07 0.20

https://doi.org/10.1371/journal.pone.0247592.t005
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description is provided in S1 Appendix. As in the real data analysis, we applied ridge-type reg-

ularization based on five-fold cross validation.

As parameter recovery measures, we calculated finite-sample properties, such as bias, stan-

dard deviation (SD), and root mean square error (RMSE), of the IG-GSCA parameter esti-

mates. To conserve space, we focus here on reporting the average values of these properties for

loading and path coefficient estimates per sample size. All the properties of individual parame-

ter estimates are provided in S2 Table.

Table 7 presents the average bias, SD, and RMSE values of loading and path coefficient esti-

mates per sample size. On average, the biases of the loading estimates for both sets of compo-

nents (i.e., genes and ROIs) were virtually zero across all sample sizes, and their SD and RMSE

values deceased and became close to zero as the sample size increased. On the other hand, in

general, IG-GSCA’s estimates for non-zero path coefficients seemed to be slightly biased in

Table 6. R2 for all dependent variables that include ROIs and depression severity.

Dependent variables R2 Dependent variables R2

precentral gyrus 0.19 lateral occipito-temporal gyrus (fusiform gyrus,

O4-T4)

0.11

subcentral gyrus 0.22 lingual gyrus (O5) 0.18

inferior frontal gyrus (or F3) 0.18 parahippocampal gyrus (or T5) 0.11

triangular part of the inferior frontal gyrus 0.30 cuneus (O6) 0.13

opercular part of the inferior frontal gyrus 0.30 occipital pole 0.09

orbital part of the inferior frontal gyrus 0.29 temporal pole 0.12

middle frontal gyrus (or F2) 0.27 postcentral gyrus 0.23

superior frontal gyrus 0.33 supramarginal gyrus 0.25

gyrus rectus 0.22 angular gyrus 0.28

transverse frontopolar gyrus or gyri 0.23 superior parietal lobule (or P1) 0.23

medial orbital sulcus 0.21 precuneus 0.20

4 orbital gyri 0.27 paracentral lobule and sulcus 0.23

superior circular sulcus of the insula 0.18 subcentral gyrus and sulci 0.22

anterior circular sulcus of the insula 0.13 Marginal branch (or part) of the cingulate sulcus 0.23

inferior circular sulcus of the insula 0.31 subparietal sulcus 0.11

vertical ramus of anterior segment of lateral

sulcus

0.18 calcarine sulcus 0.27

horizontal ramus of anterior segment of lateral

sulcus

0.16 medial occipitotemporal sulcus (or collateral sulcus) 0.25

posterior segment of the lateral sulcus 0.26 lateral occipito-temporal (or fusiform) sulcus 0.11

the short insular gyri 0.15 subcallosal area or gyrus 0.11

long insular gyrus 0.22 pericallosal sulcus or sulcus of the corpus callosum 0.08

transverse temporal gyrus (or Heschl’s gyrus) 0.15 anterior part of the cingulate gyrus and sulcus (ACC) 0.17

Planum temporale or temporal plane of the

superior temporal gyrus

0.23 middle-anterior part of the cingulate gyrus and sulcus

(aMCC)

0.21

Planum polare of the superior temporal gyrus 0.20 middle-posterior part of the cingulate gyrus and

sulcus (pMCC)

0.22

lateral aspect of the superior temporal gyrus 0.18 posterior-dorsal part of the cingulate gyrus and

sulcus (dPCC)

0.19

middle temporal gyrus 0.17 posterior-ventral part of the cingulate gyrus and

sulcus (vPCC or isthmus)

0.18

superior occipital gyrus (O1) 0.09 Depression 0.27

middle occipital gyrus (O2, lateral occipital

gyrus)

0.09 Average R2 0.20

Inferior temporal gyrus (T3) 0.11

https://doi.org/10.1371/journal.pone.0247592.t006
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smaller samples. This seems to be due to the adoption of ridge-type regularization, which

tends to yield biased estimates particularly in small samples [44]. Nonetheless, their average

bias decreased with the sample size and became close to zero when N = 2000. This tendency is

also expected because multicollinearity can be of less concern in large samples. The average SD

and RMSE values of the path coefficient estimates also decreased when the sample size

increased. IG-GSCA’s estimates for zero path coefficients were unbiased regardless of the sam-

ple size and their SD and RMSE deceased when the sample size increased.

Fig 3. The structural model specified for the simulations study. All weights and residual terms are omitted. A non-zero path

coefficient is denoted by an arrow, whereas a zero path coefficient is by a dashed arrow.

https://doi.org/10.1371/journal.pone.0247592.g003
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Conclusions

We proposed a flexible statistical approach, named IG-GSCA, for examining the associations

among genetic, imaging and behavioral/cognitive data in a unified manner. As demonstrated

in Section 3, IG-GSCA was able to specify complex directional relationships among genes,

ROIs, and depression severity in a more biologically plausible way based on previous knowl-

edge, and to identify the influences of a gene (DRD2) and a gene-environment interaction

(PTE x SLC6A4) on several brain regions, which in turn affected depression severity. In addi-

tion, our simulation study showed that IG-GSCA performed as expected in terms of parameter

recovery under a model similar to the one specified for the real data analysis.

IG-GSCA can be a useful tool for researchers in imaging genetics to study the neurobiologi-

cal basis of individual behavioral or cognitive differences, addressing various issues inherent to

current multivariate methodologies (e.g., less biologically interpretable, descriptive, or sequen-

tial). It also has the potential to inform clinicians about specific genetic or brain-level vulnera-

bilities associated with risk for chronic diseases later in life, which are proxied by individuals’

genetic or imaging component scores in disease-specific imaging genetics models.

Despite its technical and empirical implications, IG-GSCA can be refined and extended in

many ways to further enhance its generality and flexibility. For example, genetic and imaging

data can often be hierarchically structured such that their individual-level cases are grouped

Table 7. Average biases, Standard Deviations (SD), and Root Mean Square Errors (RMSE) of loadings and path coefficients estimated from IG-GSCA over different

sample sizes in the simulation study.

Loadings Loadings for Genes Loadings for ROIs

Bias SD RMSE Bias SD RMSE

N = 250 0.001 0.020 0.020 0.001 0.013 0.013

N = 500 0.001 0.014 0.014 0.001 0.009 0.009

N = 1000 0.000 0.010 0.010 0.000 0.006 0.006

N = 2000 0.000 0.007 0.007 0.000 0.004 0.004

Path coefficients Effects of Genes and Environment on ROIs

Zeros Nonzeros

Bias SD RMSE Bias SD RMSE

N = 250 0.003 0.042 0.042 0.032 0.043 0.055

N = 500 0.002 0.030 0.030 0.017 0.033 0.038

N = 1000 0.002 0.021 0.022 0.008 0.024 0.026

N = 2000 0.002 0.015 0.015 0.004 0.022 0.022

Effects of Gene-Environment Interactions on ROIs

Zeros Nonzeros

Bias SD RMSE Bias SD RMSE

N = 250 0.003 0.042 0.043 0.027 0.046 0.054

N = 500 0.002 0.030 0.030 0.014 0.035 0.038

N = 1000 0.002 0.021 0.021 0.007 0.025 0.026

N = 2000 0.002 0.015 0.015 0.004 0.022 0.022

Effects of ROIs on Outcome

Zeros Nonzeros

Bias SD RMSE Bias SD RMSE

N = 250 0.007 0.049 0.050 0.057 0.052 0.078

N = 500 0.004 0.037 0.037 0.028 0.041 0.050

N = 1000 0.002 0.027 0.027 0.013 0.029 0.031

N = 2000 0.002 0.019 0.019 0.006 0.022 0.022

https://doi.org/10.1371/journal.pone.0247592.t007
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within higher-level units. For example, individuals’ genetic variation and brain activity can be

measured across different experimental groups or time points. In such hierarchical/multilevel

data, the individual-level measures nested within the same higher-level unit are likely to be

more similar than those in different units, thus leading to dependency among individual-level

measures within the same unit. Ignoring this dependency in parameter estimation can yield

biased results [90]. In its base form, IG-GSCA will estimate parameters under the assumption

that all observations are independent, ignoring potential nested structures in genetic and imag-

ing data. It can be extended to explicitly account for such nested structures by permitting

parameters to vary across higher-level units.

In addition, IG-GSCA currently posits that a component is always associated with a set of

observed variables (e.g., a gene with SNPs, or a brain region with voxels). This type of compo-

nent is called a first-order component, which is directly linked to observed variables [18]. In

genetic studies, it may also be reasonable to assume that multiple genes in turn constitute a

biological pathway [20]. Then, such a pathway can be seen as a ‘second-order’ component,

which is related only to their first-order components (genes). In neuroimaging studies, it

becomes common to utilize multiple neuroimaging modalities (e.g., structured magnetic reso-

nance imaging, electroencephalography, etc.) to measure activities of brain regions. In this

case, we may consider higher-order components integrated over brain regions from each

modality [91]. IG-GSCA can be extended to take into account such higher-order genetic or

imaging components.

Furthermore, imaging data have increasingly been treated as smooth functions or curves

that vary over a continuum (e.g., time and/or space), rather than conventional multivariate

data (a collection of discrete observations). For example, functional magnetic resonance imag-

ing records blood-oxygen level dependent signals per voxel continuously over a great number

of time points (scans), indicating that these signals can be represented as bivariate functions of

time (scans) and space (voxels) [92, 93]. Similarly, SNPs have been considered smooth func-

tions of space (physical positions) [94]. IG-GSCA is geared only for the analysis of multivariate

data. It can be generalized to the analysis of genetic and imaging data as functions in the mea-

surement model, accounting for their distinctive characteristics (e.g., smoothness), in a way

similar to functional GSCA [95].

IG-GSCA in this paper has not paid attention to the analysis of longitudinal data. For exam-

ple, it does not take into account the dynamic nature of temporally (serially) correlated data

that are prevalent particularly in brain connectivity studies [16]. IG-GSCA may be extended to

incorporate autoregressive modeling to consider the dynamic relationships in time series data,

as proposed in dynamic GSCA [19]. Moreover, IG-GSCA can be readily extended to accom-

modate growth curve models [96, 97], as GSCA can deal with the same models [18].

IG-GSCA currently estimates parameters by aggregating the data across observations under

the implicit assumption that all observations come from a single homogenous population. In

some cases, however, it may be more reasonable to assume that observations are drawn from

(unknown) heterogeneous subgroups in the population, which exhibit different path-analytic

relationships among observed variables and components [98–100]. Thus, future work is

needed to simultaneously combine IG-GSCA with cluster analysis to capture such cluster-level

heterogeneity, inspired by the development of fuzzy clusterwise GSCA [98].

In closing, IG-GSCA can be a useful tool for imaging genetic studies that aim to associate

both genetic and imaging data with behavioral/cognitive outcomes simultaneously. It is more

general than regression models, enabling to combine SNPs to genes and voxels to brain

regions and examine various gene-brain-behavior/cognition relationships, in a biologically

plausible manner. Also, this approach can be more beneficial for such complex path-analytic

association studies of the three sources of data, as compared to (factor-based) SEM. Although
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we have discussed several limitations of IG-GSCA, we may address these technical issues in

future research by adapting many prior developments in GSCA, contributing to making

IG-GSCA applicable and useful for a greater variety of imaging genetic studies. In addition, we

hope to develop a software program for IG-GSCA in a user-friendly format, such as an R pack-

age, in the near future. This will make the approach more accessible to researchers in imaging

genetics, facilitating its applications to more diverse real-world problems and more thorough

investigations of its empirical utility in the field.
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