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Abstract

Class V myosin (myosin-V) is a cargo transporter that moves along an actin filament with large (,36-nm) successive steps. It
consists of two heads that each includes a motor domain and a long (23 nm) neck domain. One of the more popular models
describing these steps, the hand-over-hand model, assumes the two-headed structure is imperative. However, we
previously succeeded in observing successive large steps by one-headed myosin-V upon optimizing the angle of the acto-
myosin interaction. In addition, it was reported that wild type myosin-VI and myosin-IX, both one-headed myosins, can also
generate successive large steps. Here, we describe the mechanical properties (stepsize and stepping kinetics) of successive
large steps by one-headed and two-headed myosin-Vs. This study shows that the stepsize and stepping kinetics of one-
headed myosin-V are very similar to those of the two-headed one. However, there was a difference with regards to stability
against load and the number of multisteps. One-headed myosin-V also showed unidirectional movement that like two-
headed myosin-V required 3.5 kBT from ATP hydrolysis. This value is also similar to that of smooth muscle myosin-II, a non-
processive motor, suggesting the myosin family uses a common mechanism for stepping regardless of the steps being
processive or non-processive. In this present paper, we conclude that one-headed myosin-V can produce successive large
steps without following the hand-over-hand mechanism.
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Introduction

The myosin super family consists of motor proteins that move

and/or generate force unidirectionally along actin filaments in

order to regulate a vast number of essential cellular processes

including muscle contractions, vesicle transport, and cell division

[1,2]. In order to reveal the mechanism for force generation, many

researchers have observed myosin’s single molecular mechanical

properties [3,4]. Class V myosin (myosin-V), although an unusual

myosin in that it generates large successive (,36 nm) steps, much

larger than the ,5 nm steps taken by myosin-II during muscle

contraction, is quite popular for such studies [5,6]. Myosin-V has

two heads, each of which consists of a motor domain and a long

neck domain which influences the stepsize [7,8]. Based on these

structural features, a ‘‘hand-over-hand’’ model has been proposed

to explain its unidirectional and successive large steps [9]. Novel

fluorescent techniques that offer nm resolution and the angle of the

fluorophore have affirmed this model [9-12]. A central premise for

multiple successive large steps according to the model is that the

two-headed structure is indispensable. This has been reaffirmed by

previous studies that have shown myosin-V subfragment 1, a one-

headed version of myosin-V, fails to make successive steps [13,14]

and the argument that the two heads are necessary because

processive stepping is regulated by the internal strain between

them [15–18].

However, other studies have challenged this conclusion. We

have observed that one-headed myosin-V included into headless

myosin-II cofilaments can also generate successive 36 nm steps

[19]. We have also incorporated one-headed myosin-V smooth

muscle myosin rod chimeras (M5SH) into myosin rod filaments,

allowing us to determine the orientation of the actomyosin

interaction, finding that the stepsize of myosin-II depends on the

angle between the cofilament and the actin filament [20].

Optimizing this angle enables one-headed myosin-V to take

successive multiple 36 nm steps [19]. Furthermore, other one-

headed myosins have been found to move successively including

myosin-VI [21] and myosin-IX [22]. Here, we compared the

motility properties between M5SH and M5DH, a two-headed

myosin-V chimera. Overall, the data suggest that one-headed

myosin-V can produce successive steps, which implies that the

hand-over-hand mechanism is not the only mechanism used by

myosin to achieve processive movement, although it may be the

preferred one.

Results

Single molecular measurements of M5SH and M5DH
using optical tweezers

Movements of M5SH and M5DH along an actin filament were

observed by optical trap nanometry, as previously reported [19].
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We detected successive large steps for both M5SH and M5DH

when mixed with headless myosin cofilaments (Fig. 1). Cofilaments

were adsorbed onto the surface of a pedestal made on a quartz

glass surface [19,20,23]. The long cofilaments allowed us to easily

find the location of the M5SHs and M5DHs and also manipulate

the actin filaments to make a favorable angle with the heads

(65,80u for M5SH; 45,60u for M5DH), otherwise, the

probability of successive stepping markedly decreased [19].

Mechanical steps of single M5SHs and M5DHs at 100 and

10 mM ATP are shown in Fig. 1 A–D. The traces of the bead

displacements consisted of successive multisteps (Fig. 1 yellow and

blue arrowheads), although the displacements sometimes developed

in a single-step fashion (Fig. 1 white arrowheads). For M5SH

cofilaments, 55 cofilaments among 509 cofilaments interacted with

the actin filament, with 37 of these generating successive multisteps

(Table 1). This probability (37/509 = 0.07) corresponds to that in

our previous report in which we discussed the possibility that a

cofilament includes a single M5SH molecule [19]. For M5DH

cofilaments, 20 of the 166 cofilaments interacted with the actin

filament, all of which showed multiple steps. From these results, we

classified three step types: non-successive strokes (Fig. 1 white

arrowheads), first strokes during multisteps (Fig. 1 yellow arrowheads)

and successive steps (Fig. 1 blue arrowheads). The more common

direction of movement was denoted as ‘‘forward.’’ Backward steps

during successive multisteps were sometimes observed (Fig. 1 red

arrowheads).

Step/stroke size of M5SH and M5DH
One mechanical property of frequent interest in myosin motors is

the size of the stroke and step. We analyzed the size of non-

successive strokes (Fig. 2 A–C) and first strokes (Fig. 2 D–F) to

investigate whether they were different. However, the size of

Figure 1. Mechanical steps. Typical traces of time courses for M5SH steps at 100 mM ATP (A) and 10 mM ATP (B), and for M5DH at 100 mM ATP (C)
and 10 (D) mM ATP. Gray dots represent raw data. White arrowheads show non-successive strokes; yellow arrowheads, first strokes during the
successive-multisteps; blue arrowheads, successive steps; red arrowheads, backward steps. Medium: 120 mM KCl, 5 mM MgCl2, 1 mM EGTA, 0.2 mg/
ml calmodulin and 20 mM Hepes (pH 7.8). Trap stiffness, 0.02–0.025 pN/nm. Temperature, 25uC.
doi:10.1371/journal.pone.0012224.g001

Steps of One-Headed Myosin-V
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individual first and non-successive strokes cannot be determined

directly because the actual start positions of the steps are random

due to the Brownian motion of the beads [24]. Therefore, we

determined the mean size of these strokes from a histogram of stroke

sizes based on the plateau position after each stroke. The mean

stroke sizes of non-successive strokes for M5SH and M5DH were

23620 nm (n = 894) and 22616 nm (n = 180), respectively (Fig. 2 A

and B). Those of the first strokes were 20616 nm (n = 164) and

22617 nm (n = 73), respectively (Fig. 2 D and E). The values for

non-successive M5SH strokes and the first strokes of M5DH were

consistent with other groups [13,14]. Furthermore, here we found

no differences in the sizes of first strokes and non successive strokes

for either M5SH or M5DH. Finally, the stroke sizes were

independent of ATP concentration buffer (Fig. 2 C and F).

Since we could observe successive multisteps for M5SH and

M5DH using the cofilament assay system, we next analyzed

stepsizes of successive steps for each (Fig. 3). These stepsizes were

defined as the distance between the forward position averaged for

50 ms after the stepping point and the backward position averaged

for 50 ms before the stepping point (Fig. 1, distance between

consecutive blue and red arrowheads). The histogram of stepsizes for

M5SH successive steps fit to a Gaussian distribution with a

forward value of 32613 nm and backward value of 36615 nm.

Both forward and backward steps for M5SH were the same as

those reported for myosin-V HMM [5,6,13]. The stepsizes of

successive steps were also independent of ATP.

Dwell time distributions
To investigate the relationship between ATP hydrolysis and

step/stroke generation, we estimated the dwell time (time until

detachment for non-successive strokes or the time for the next

step following first strokes or successive steps) (Fig. 4). Assuming

non-successive strokes are the result of the myosin head

detaching from actin independent of ATP hydrolysis, there

should exist a difference in dwell times between non-successive

strokes and first strokes. Fig. 4 shows the dwell times of the two

for M5SH (Fig. 4 A and B). The distributions of the dwell times

at 10 mM ATP show double exponential behavior, indicating

that both were generated by a two rate-limiting transition [6].

Increasing ATP concentration made the stepping faster (Fig. 4 A

and B, orange bars), while the reciprocal plot of mean dwell times

for both step types fit well to monophasic Michaelis-Menten

kinetics (Fig. 4 D). Vmax and Km for non-successive strokes

were respectively 11 s21 and 28 mM (Fig. 4 D circle), while those

for the first stroke were respectively 11 s21 and 36 mM (Fig. 4 D

triangle). Unlike our assumption, neither the dwell times nor the

Michaelis-Menten kinetics showed any differences between the

two step types, indicating that detachments needed energy from

ATP hydrolysis in the same manner as taking a second step.

The reciprocal plot of dwell times for successive steps showed

the same distribution and same Michaelis-Menten kinetics

(Vmax of 10 s21 and Km of 30 mM) (Fig. 4 C and D). These

Vmax values are similar to those biochemically obtained in

Table 1. Summary of experiments.

M5SH M5DH

No. of cofilaments tested 509 166

No. of cofilaments interacting with actin filaments 55 20

No. of cofilaments showing successive steps 37 20

Non-successive steps Stepsize (nm) 23620 22616

Dwell time(s)* 0.45, 0.49,

0.10 0.10

Vmax (s21) 11 N.D.

Km (mM) 36 N.D.

First step during successive steps Stepsize (nm) 20616 22617

Dwell time(s)* 0.50, 0.44,

0.10 0.11

Vmax (s21) 11 N.D.

Km (mM) 28 N.D.

Successive steps Stepsize (nm){ 32613 34615

236617 230613

Dwell time(s)* 0.40, 0.39,

0.11 0.18

Vmax (s21) 10 N.D.

Km (mM) 30 N.D.

Load dependency of directionality Energy difference (kBT) 3.7 3.4

Characteristic distance (nm) 5.7 4.5

Stall force (pN) 0.8 2.2

Successivity 0.28 0.5

All errors are SD.
*100 mM ATP, 10 mM ATP, respectively.
{Forward and backward, respectively.
doi:10.1371/journal.pone.0012224.t001

Steps of One-Headed Myosin-V

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12224



solution [25,26] and from myosin-V HMM studies using laser

trap nanometry [5,6], suggesting that each step corresponds to a

single ATP hydrolysis event.

We also analyzed the dwell times of M5DH non-successive, first

strokes and successive step (Fig. 5). Assuming that the two heads

generated steps independently, the dwell times for M5DH should

be half that of M5SH. The distributions of the dwell times for all

showed the same properties and were dependent on ATP

concentration. Each dwell time under low load (,1.5 pN) in the

presence of 10 or 100 mM ATP could be plotted on the same

monophasic Michaelis-Menten kinetics found in the M5SH data.

Therefore, successive steps by two-headed myosin-V are generated

via the same chemical-physical energy transition process as one-

headed ones. This result suggests that the two heads in M5DH

alternately generates steps using cooperativity. One additional

point is that the dwell time at 10 mM ATP (,0.4 s) was a little

higher than that previously reported using myosin-V HMM

(0.28 s) [5]. However, since M5DH used not native coiled-coil but

S-2 fragments of smooth muscle myosin-II, the hand-over-hand

coordination might be disrupted in a manner that delays ADP

release, which in turns increases the dwell time.

Force dependency of stepsize, dwell time, and
unidirectionality of successive steps

Optical trapping nanometry has been used to observe the

stepping of individual motors against constant loads [5]. For

example, the stepsize of one-headed myosin-VI was seen to

depend on the load generated by the laser trap, which was not the

case for two-headed myosin-VI [21,27]. Here we examined the

dependency of stepsize in successive M5SH steps on load (Fig. 6 A

and B, red circles). Plots were limited to 1.5 pN because M5SH

could not take steps at higher loads. Successive M5SH steps were

,36 nm and unaffected by load regardless of being forward or

backward, much like myosin-V HMM [28]. For comparison, we

analyzed M5DH steps and found their stepsize did not depend on

load either (Fig. 6 A and B, blue squares).

To further understand the role of the two-headed myosin-V

structure, we next compared the force-dependency of the dwell

Figure 2. Size of non-successive stokes and first strokes. (A, B) Histogram of non-successive strokes for M5SH (A) and M5DH (B) in 10 mM ATP,
respectively. Lines are Gaussian distribution fits. Arrowheads indicate mean stroke sizes of 23620 nm (A) and 22616 nm (B) (mean 6 S.D). (C) ATP
dependency of size for non-successive stroke. Red circles and blue squares indicate data for M5SH (n = 119–573) and M5DH (n = 108–132),
respectively. Red line is the average M5SH stepsize, 25.3 nm, across all ATP concentrations. (D, E) Histogram of first strokes for M5SH (D) and M5DH (E)
in 10 mM ATP. Lines are Gaussian distribution fits. Arrowheads indicate the mean stroke sizes, 20616 nm (D) and 22617 nm (E). (F) ATP dependency
of the size of first stroke. Red circles and blue squares indicate data for M5SH (n = 26–98) and M5DH (n = 38–56), respectively. Red line is the average
M5SH stroke size across all ATP concentrations. Error bars in C and F indicate standard errors.
doi:10.1371/journal.pone.0012224.g002
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time for successive steps between M5SH and M5DH. Assuming

that the myosin head chemo-mechanical cycle consists of a

series of biochemical steps and a single load-dependent

mechanical transition, the mean dwell is given by a Boltz-

mann-type relation;

t~t1zt2exp
Fd

kBT

� �
ð1Þ

where t1 represents the load-independent transition, d is the

characteristic distance, which describes the load dependency, t2

represents the load-dependent transition for the bead to diffuse d at

zero load, kB is the Boltzmann constant, and T is absolute

temperature [29,30]. Plots for M5SH and M5DH were fitted with

the same single exponential curve, which was very similar to that

used to fit myosin-V HMM (Fig. 6 C) [5]. Fitted values in 100 mM

ATP for t1, t2 and d were 98 ms, 7.7 ms and 5.7 nm, respectively,

while t1/t2 (127.3) was similar to that obtained for myosin-V HMM

by another group [5]. Decreasing the ATP concentration

lengthened t1 (0.38 s for 10 mM ATP), but changed neither t2

(9.8 ms) nor d (6.4 nm), indicating that the ATP dependency of the

dwell time was independent of load. The fact that there were no

observed differences between the load dependency for M5SH and

M5DH dwell times indicates that the external force was not divided

into each of the two M5DH heads; rather only the stepping head

experienced load regardless of the number of heads. Otherwise, d

for M5SH would be half that of M5DH (Fig. 6 C broken line).

Myosin-V stepped not only forward but also backward as

mentioned above (Fig. 1 red arrowheads). The energy difference

between the forward and backward movements by M5SH and

M5DH could be estimated by the load dependence of the

respective stepping direction when assuming an asymmetric

potential like that previously reported for kinesin [31]. After

removing detachments, we counted the number of forward and

backward steps. The ratio of forward to backward steps was

plotted as a function of load (Fig. 6 D) as follows:

NF

NB

~exp {
(EF {EB)zF (dF zdB)

kBT

� �
ð2Þ

ln
NF

NB

~
DE

kBT
{

Fd

kBT
ð3Þ

where NF and NB are the number of forward and backward steps,

respectively, EF and EB are the energetic heights of the barrier

maximum at zero load, dF and dB are the characteristic distances

against load F, DE = EB2EF is the energy difference, and d = dB+dF

is the characteristic distance that represents the load dependency

[31,32]. The fitting results from equation 3 gave DE = 3.7 kBT and

d = 19 nm for M5SH (Fig. 6 D, red). Interestingly, the DE for

M5DH (3.4 kBT) was similar to that of M5SH while the d of

Figure 3. Size of successive steps. (A, B) Histogram of successive steps for M5SH (A) and M5DH (B) in 10 mM ATP. Lines are Gaussian distribution
fits. Arrowheads indicate peak values, 32613 and 236617 nm (A), and 34615 and 230613 nm (B) (mean 6 S.D), respectively. (C, D) ATP
dependency for forward (C) and backward (D) stepsize during successive steps. Red circles and blue squares indicate M5SH (C, n = 20–100; D, n = 18–
36) and M5DH (C, n = 60–115; D, n = 19–24), respectively. Red lines are average stepsizes for forward, 36.3 nm, and backward, 236.1 nm, steps. Error
bars in C and D indicate standard errors.
doi:10.1371/journal.pone.0012224.g003
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M5DH (6.2 nm) was 3-fold smaller than that of M5SH. The stall

force (NF = NB), which is the maximum force at zero velocity, was

estimated to be 0.8 pN for M5SH and 2.2 pN for M5DH. The

similar DE indicates the two-headed structure did not contribute to

unidirectionality (NF/NB ratio) whereas the small d for M5SH

suggests the two-headed structure is more stable against load.

Successivity of M5SH and M5DH
Finally, we estimated the average number of successive steps to

investigate whether the two-headed structure stabilizes the long

travel done by myosin-V (Fig. 7). In general, almost immediately

after ATP binds to a myosin head, the head detaches from actin.

In order to achieve multiple steps, M5SH must conform to the

strong binding state in order to step without detaching. We defined

this probability as successivity. In this definition, non-successive

strokes are those that take one step and then detach (Fig. 7 A). The

data in Fig. 7 B were fit with a single exponential curve,

f(n) = exp{P(n21)}, where P is the successivity and n is the number

of total steps before detaching (Fig. 7 C). The values of P were 0.28

for M5SH and 0.50 for M5DH. The number of successive

multisteps by M5SH before detaching (Nenc) is described as follows

Nenc~
X?
n~1

n(1{p)pn{1~
1

1{p
ð4Þ

where p is the successivity. Nenc was calculated to be 1.4. This

indicates that successive steps by M5SH cannot be observed in

bio-chemical assays in solution and/or single molecular imaging

using fluorescent dyes. Furthermore, Nenc for M5DH was 2, which

translates to displacements of about 80 nm, far less than the

thousand nm displacements done by native myosin-V [6-13]. The

successivity of M5DH calculated using the successivity of M5SH

(0.28) is 0.52 = (120.28)2, which nearly equals the experimental

value (0.50), indicating that the two-headed structure did not

contribute the successivity. There were no differences in

successivity between 10 and 100 mM ATP for either M5SH or

M5DH (data not shown).

Discussion

Here we found that the mechanical characteristics of one-

headed myosin-V (M5SH) were very similar to that of a two-

headed myosin-V chimera (M5DH), suggesting that one-headed

myosin-V like its two-headed counterpart can achieve successive

steps. Various parameters determined in the present study are

summarized in Table 1. Although other groups have failed to

observe successive steps by one-headed myosin-V [13,14], we have

reasoned that this is due to the one-head’s successivity being

dependent on the angle of the actomyosin interaction [19]. We

also did a single molecular motility assay in combination with total

internal refraction microscope [3] to investigate the single-headed

myosin steps (Figure S1). While GFP (green fluorescent protein)

fused to double-headed myosin-V moved unidirectionally along an

Figure 4. Dwell time of M5SH. (A, B, C) Histograms of dwell times for non-successive strokes (A), first strokes (B) and successive steps (C) for M5SH.
The successive step was excluded from the analysis for first strokes. Orange bars indicate data for 10 mM ATP; red, 100 mM ATP. Lines indicate fitting
results to the double exponential curve f(t) = {k1?k2/(k12k2)}/{exp(k2t)2exp(k1t)} (solid, 10 mM ATP; broken, 100 mM ATP). The mean dwell times (t)
were calculated as t= [1/k1+1/k2]. (D) ATP concentration dependency of dwell times (red circles, non-successive strokes; blue triangles, first strokes;
and green squares, successive steps). The dwell time represents ATPase rate per second assuming each step corresponds to a single ATP hydrolysis
event. Solid lines indicate fitting results assuming monophasic Michaelis-Menten kinetics. Vmax and Km were 11 s21 and 28 mM for non-successive
strokes, 11 s21 and 36 mM for first strokes, and 10 s21 and 30 mM for successive steps, respectively.
doi:10.1371/journal.pone.0012224.g004
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actin filament with a 250 nm travel distance, single headed

myosin-V proved incapable of displacing such long distances. The

single bead trapping assay [6] and three beads dumbbell assay [5]

also failed to observe successive steps by single-headed myosin-V.

The cofilament assay we performed here might create preferable

conditions for such steps by constraining M5SH, most likely a

consequence of myosin-V’s rigid neck region and the helical

structure of the actin filament. Experiments using single-headed

constructs of other myosins that lack a cofilament system like

myosin-VI and myosin-IX have also observed successive steps, but

these myosins have much more flexible necks than myoins-V likely

making the angle dependency between the myosin and actin in

those circumstances negligible [21,22].

One report has suggested that the stepsize of myosin-V depends

on the neck region length [33]. Furthermore, successive large steps

have to date been explained by a hand-over-hand model where

tilting of the long neck domain of the lead head biases the

Brownian motion of the rear head forward [9–13,34]. The rear

head detaches upon ATP binding and rapidly moves forward

,72 nm to bind to actin [9,10,12]. That means the lead head

generates the step direction by titling its neck such that the rear

head rebinds at a forward actin binding site. According to this

model, the stepsize and neck length are proportional and one-

headed myosin are incapable of successive steps. However, we

have previously reported that short-necked myosin-V can produce

successive large steps, challenging this model [23]. So too, of

course, do our results here. Ultimately, an alternative model is

needed to explain one-headed successivity. We assume that M5SH

when in a weak binding state does not completely dissociate from

actin but rather diffuses along the actin filament using Brownian

energy. In the double trapping nanometry (dumbbell assay),

preferred binding sites on an actin filament appear every 36-nm

along the helix [35]. Myosin-V binds to these preferred sites while

diffusing along the filament. A change in strain on the head causes

Pi release, which conforms the head into a strong binding state

[28,36].

The size and kinetics (dwell time) of the M5SH steps/strokes are

consistent with M5DH and myosin-V HMM [5,6,13,28]. To

confirm therefore that the M5SH results were actually due to

single heads and not two heads that were within such proximity

that they could not be resolved by our equipment, we examined

the properties of M5DH. While the stepsize and dwell time were

the same, the load dependence between M5SH and M5DH was

different. If we assume that successive steps by M5SH were

actually due to two adjacent heads taking non-successive strokes,

then the stepsize and dwell time for M5SH should be half that of

M5DH and no differences in load dependence would be observed.

Therefore, the results indicate that the observed mechanical

activities of M5SH were due to one myosin-V head while M5DH

functioned with some level of cooperativety between the two heads

to prevent the two heads from simultaneously stepping, which

would result in detachment. This may also be in part a

consequence of our cofilament assay system, may generate two-

headed structures that are geometrically constrained when

interacting with actin in a manner that reduces the likelihood of

successive steps.

Figure 5. Dwell time of M5DH. (A, B, C) Histograms of dwell times for non-successive strokes (A), first strokes (B) and successive steps (C) for
M5DH. The successive steps were excluded from the analysis for first strokes. Cyan bars indicate data for 10 mM ATP; blue, 100 mM ATP. Lines indicate
fitting results with a double exponential curve (solid, 10 mM ATP; broken, 100 mM ATP). t are the mean dwell times. (D) ATP concentration
dependency of dwell times (red circles, non-successive strokes; blue triangles, first strokes; and green squares, successive steps). The green solid
square was obtained from data under a low load (,1.5 pN). Gray symbols and lines indicate M5SH results (see Fig. 4 D).
doi:10.1371/journal.pone.0012224.g005
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Figure 6. Force dependencies for stepsize, dwell time, and unidirectionality. (A, B) Force dependencies of forward (A) and backward (B)
successive steps. Red circles indicate data for M5SH (n = 15–59 in A, 9–18 in B), blue squares indicate data for M5DH (A, n = 19–31; B, n = 12–16). Broken
lines are average values (A, 35.4 nm; B, 236.5 nm). All data were obtained at 10 mM ATP. (C) Force dependencies for dwell time of M5SH (red circles) and
M5DH (blue squares). Each point represents the average dwell time at 100 mM ATP (solid: n = 15–59 for M5SH; 20–67 for M5DH) and 10mM (open: n = 30–
37 for M5SH; 18–37 for M5DH). The curves were obtained from equation (1). (D) Ratio of forward to backward movements for M5SH (red circles: n = 14–
47) and M5DH (blue squares: n = 36–47). The solid lines were obtained from equation (3). NF is the number of forward steps; NB, backward steps.
doi:10.1371/journal.pone.0012224.g006

Figure 7. Probabilities of successive steps. (A) How to count successive steps. Backward steps were included within successive steps. Total
number of steps before detachment make up ‘number of steps’ in B. (B) Number of steps by M5SH (red circles; n = 373) and M5DH (blue squares;
n = 182) in 100 mM ATP. Solid lines are the fitting results with a single exponential curve. (C) Explanation of probability P. Myosin heads generated the
next successive step with a probability of P and detached with that of (12P).
doi:10.1371/journal.pone.0012224.g007
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M5SH and M5DH showed no differences between the dwell

time force dependencies (Fig. 6 C) or between the energy barriers

for the direction of movement (Fig. 6 D). These results lead us to

think that only one of the two heads in M5DH strongly interacts

with the actin filament, which would enable large steps without

applying the hand-over-hand mechanism. It should be noted that

M5DH was dimerized with the myosin-II S2-fragment, not the

coiled-coil region of myosin-V, which may account for a different

mechanism. Still, while M5DH and M5SH shared some

properties, they differed in other important ones. For example,

M5DH had a higher stall force (Fig. 6 D) and lower probability for

detachment (Fig. 7). This was also seen when comparing two-

headed and one-head muscle myosin-II [37], suggesting that the

dimerized heads in our M5DH cooperate in a manner more

similar to muscle myosin-II than native myosin-V. Therefore, it is

possible that the coiled-coil region and/or the long neck length of

native myosin-V is critical for stepping in a hand-over-hand

manner, which would achieve long travel distances. This would

explain why the distance travelled as estimated from the M5DH

successivity (0.5) was shorter (80 nm) than that seen in myosin-V

HMM (Fig. S1). Another point of interest is the bias between

forward and backward steps, a point we discuss in more detail

below, which was 3.5 kBT and is similar to that estimated for

myosin-II (2–3 kBT) [38]. This may suggest that despite different

behavior, the mechanism for directional bias might be the same

among different myosins.

The process for M5SH steps following the strong binding state is

thought to be ATP binding dependent, as there were no

differences in the stepping kinetics for non-successive strokes, first

strokes and successive steps (Fig. 4). Since the cofilament assay

constrains the geometry of the acto-myosin interaction, it is

possible that an observed successive step was actually a quick

detachment and reattachment by the myosin-V head. Even if this

is the case, for a second successive to be the same, the probability

of a second reattachment 36 nm from the previous spot was

estimated to be approximately 38% by using the trap stiffness

(0.02 pN/nm) and Gaussian distribution of the trapped bead

position. Moreover, for a third step successive step, the probability

would be 3.8%, one-tenth the experimental value (30%).

Therefore, successive M5SH steps are not the result of a quick

detachment and reattachment. Assuming a myosin-V head

diffuses along an actin filament when weakly bound, if the

myosin-head finds an adjacent actin binding site during this

diffusion period, it can release Pi and step forward; if not, it

detaches. Under this assumption, M5SH can bind to 3 sites:

forward, backward and the same position. Since the bias between

forward and backward steps was 3.5 kBT, the probabilities of the

three bindings are 83.0% (forward), 14.6% (same position) and

2.4% (backward). Taking into consideration successivity (Fig. 7),

the probabilities that second forward or backward steps occur are

25% ( = 0.3683%) and 0.7% ( = 0.362.4%), respectively. The

remaining 74.3%, including the probability for binding to the

same position (4.3% = 0.3614.6%), is the probability of non-

successive strokes.

A possible model for explaining how M5SH develops its

successive large steps is shown in supplemental Fig. S2. M5SH in

the ADP.Pi state diffuses back and forth over the actin filament via

thermal stretching of its neck region and repeated dissociations

and associations to an actin filament. When releasing Pi to take a

strong binding state, the head tilts its long neck forward (23 nm

stroke) and then releases ADP. When a subsequent ATP binds to

the head, the head again diffuses along the actin filament. This

time, should the head completely dissociate from actin, a non-

successive stroke is observed. If, however, the head diffuses to a

favorable binding site (13 nm forward), the head strains backward

and thus accelerates strong binding in the forward target region

based on the search-and-catch model [36]. After rebinding,

another 23 nm stroke occurs, enabling successive steps to be

observed.

The behavior of M5DH can be explained by a similar model

shown in supplemental Fig. S3. One head strongly interacts with

actin while the other weakly interacts. Therefore, only one head

waiting for ATP binding senses a load, which explains why we saw

no difference in the force dependency on dwell time between

M5SH and M5DH (Fig. 6C). After ATP binding, both heads take

the ADP.Pi state and diffuse on the actin filament. The two heads

alternate strong binding and swing their respective necks. At this

time, load is exerted on both heads, resulting in force dependencies

on successivity and unidirectionality that decreased two-fold

compared to M5SH (Fig. 6D and 7).

The geometry of the acto-myosin interaction is very important

for the successive steps taken by myosin-V, as it influences the

search-catch behavior made by the myosin-V head. In cells,

myosin-V transports cargo toward the pointed end of actin

filament, which is the direction of the membrane. Since actin

filaments make up a meshwork that regularly overlays filaments on

top of one another, myosin-V often switches filaments during its

motility. However, such switching is likely inefficient for transport.

Assuming the successivity of the myosin-V head depends on the

acto-myosin geometry, myosin-V can preferentially select an actin

filament without switching. The hand-over-hand mechanism,

along with regulating movement, may also regulate the geometry

in order to optimize transport.

Materials and Methods

Proteins
Actin and myosin rods were obtained and purified from rabbit

skeletal muscle [19,20]. To visualize under an optical fluorescence

microscope, actin filaments were labeled with rhodamine-phalloi-

din (Molecular Probes) and myosin rods with TRITC (Amersham

Biosciences, Piscataway, NJ). Recombinant calmodulin from

Xenopus oocytes was expressed in Escherichia coli as described

[39]. Alpha-actinin was obtained from chicken gizzard and

purified [40].

Recombinant one-headed myosin-V (M5SH) and two-
headed myosin-V (M5DH)

Myosin smooth muscle rod having no head (SMrod) and

myosin-V subfragment 1 (M5S1) SMrod chimera constructs were

produced as previously reported [19,23]. M5SH heterodimers

were made by coinfecting Sf9 cells with viruses expressing M5S1-

SMrod fused to His tag, FLAG-SMrod, and calmodulin,

respectively, and then purifying both the His and FLAG affinities

as previous reported [19]. M5DH was produced by coinfecting Sf9

cells with M5S1 SMrod and calmodulin expressing viruses,

respectively, and purified as previously described [19,23].

Cofilaments for M5SH and M5DH single molecules
M5SHs were copolymerized into long (6.6 mm on average)

filaments with rabbit skeletal muscle myosin rods without heads.

The total protein concentration was set to 0.15 mM. The molar

ratio of the M5SH to myosin rod in the mixture was adjusted to be

1:2000 so that only a small number of M5SHs was incorporated

into a cofilament [19]. The presence of SMrods in the preparation

was not a problem in this assay because M5SH/SMrod

cofilaments contained a large excess of skeletal muscle myosin

rods. M5DH/SMrod cofilaments were prepared the same way. To
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visualize cofilaments, a small amount of TRITC-labeled myosin

rods were included [20,23]. The number of the M5SH or M5DH

molecules mixed with a cofilament was estimated and discussed in

a previous report [19].

Single-Molecule Mechanical Assay
To attach beads to the two ends of an actin filament, the surface

of polystyrene latex beads (0.945 mm in diameter) was coated with

a-actinin as previously described [19]. Cofilaments applied to a

flow chamber with pedestals on a glass slide surface were adsorbed

onto the pedestal surface [19,20,23]. The pedestal surface was

coated with casein to prevent a-actinin-coated beads from

nonspecific binding to the glass surface. An assay buffer

(120 mM KCl buffer containing 1–1000 mM ATP, 0.2 mg/ml

calmodulin) containing rhodamine phalloidin-labeled actin fila-

ments and a-actinin-coated beads was introduced into the

chamber. The actin filament and myosin cofilament were

visualized under an epifluorescence microscope. The two ends of

an actin filament were attached to optically trapped beads through

a-actinin. The suspended actin filament was then brought into

contact with a cofilament on the pedestal. Angles between the

actin filament and cofilament were chosen to be 65,80u for

M5SH and 45,60u for M5DH, as these are ideal angles for

successive steps [19]. A bright image of a bead, which was

captured by optical tweezers and illuminated by a halogen lamp,

was projected onto a quadrant photodiode detector. Displacement

of the bead was determined with nanometer accuracy [41]. The

assay was carried out at 25uC. To reduce photobleaching, an

oxygen scavenger system was added to the assay buffer [42].

Position data were obtained at a sampling rate of 24 kHz and

filtered and decimated through a 200 Hz Chebyshev filter since

the corner frequency of the position measurements was 200 Hz.

Supporting Information

Figure S1 Single molecular motility assay of GFP (green

fluorescent protein) labeled myosin-V. (A) Sequential images of a

single myosin-V HMM fused to GFP moving along an actin

filament in 1 mM ATP. Green spots are myosin-V HMM; red

lines are the actin filament. Scale bar is 500 nm. (B) Histogram of

the GFP labeled myosin-V HMM travel distance. (C) Histogram

of GFP label myosin-V S-1 (red) travel distance and orthogonal

axis (green) along the actin filament. The histograms in B and C

were fitted to a single exponential function with travel distances of

250 nm (B, blue line), 98 nm (C, red line) and 58 nm (D, green

line), respectively.

Found at: doi:10.1371/journal.pone.0012224.s001 (2.66 MB TIF)

Figure S2 A possible working model for M5SH. An explanation

is provided in the text. ‘D.Pi’ and ‘D’ indicate ADP.Pi and ADP

states, respectively.

Found at: doi:10.1371/journal.pone.0012224.s002 (6.06 MB TIF)

Figure S3 A possible working model for M5DH without

applying the hand-over-hand mechanism. An explanation of the

model is provided in the text. ‘D.Pi’ and ‘D’ indicate ADP.Pi and

ADP states, respectively. Red arrows indicate a loaded force; the

length of the arrow represents the strength of the load.

Found at: doi:10.1371/journal.pone.0012224.s003 (2.37 MB TIF)
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