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A B S T R A C T   

Background: Osteoarthritis (OA) is a common chronic joint disease. This study aimed to investi-
gate possible OA diagnostic biomarkers and to verify their significance in clinical samples. 
Methods: We exploited three datasets from the Gene Expression Omnibus (GEO) database, serving 
as the training set. We first determined differentially expressed genes and screened candidate 
diagnostic biomarkers by applying three machine learning algorithms (Random Forest, Least 
Absolute Shrinkage and Selection Operator logistic regression, Support Vector Machine-Recursive 
Feature Elimination). Another GEO dataset was used as the validation set. The test set consisted of 
RNA-sequenced peripheral blood samples collected from patients and healthy donors. Blood 
samples and chondrocytes were collected for quantitative real-time PCR to confirm expression 
levels. Receiver operating characteristic curves were generated for individual and combined 
biomarkers. 
Results: In total, 251 DEGs were screened, where B3GALNT1, SCRG1 and ZNF423 were screened 
by all three algorithms. The area under the curve (AUC) of various biomarkers in our test set did 
not reach as high as that in public datasets. GRB10 exhibited highest AUC of 0.947 in the training 
set but 0.691 in our test set, while the favorable combined model comprising B3GALNT1, GRB10, 
KLF9 and SCRG1 demonstrated an AUC of 0.986 in the training set, 1.000 in the validation set and 
0.836 in our test set. 
Conclusion: We identified a combined model for early diagnosis of OA that includes B3GALNT1, 
GRB10, KLF9 and SCRG1. This finding offers new avenues for further exploration of mechanisms 
underlying OA.  
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1. Introduction 

Osteoarthritis (OA) is a common chronic joint disease that results from a dysregulation of joint homeostasis. In 2019, 528 million 
people worldwide were affected by OA, a 113 % increase from 1990 [1]. Approximately 73 % of people with osteoarthritis were aged 
55 years or older, and 60 % were female [2,3]. The knee is the most typically afflicted joint, followed by the hip and hand [4]. Roughly 
half of those over 45 with knee OA have other associated symptoms, and about 30 % of them have radiographic evidence of the 
condition [5]. Approximately 10 % of people have symptomatic and radiographic hip OA [5]. At present, there are no curative 
treatments available for OA, and management strategies mainly focus on alleviating symptoms through pain relief and total joint 
replacement [6]. 

The absence of curative treatments is explained by the complexity of the disease’s etiology and pathogenesis, as well as the diversity 
of its phenotypes and endotypes. The exact cause of OA is still unknown, though several variables such as advancing age, gender, joint 
malalignment, obesity, and genetic susceptibility have been linked to the development of the disease. The pathophysiology of OA is 
complex and influences a variety of joints and various joint tissues such as ligaments, menisci, cartilage, the subchondral bone, the 
synovial membrane, and the joint capsule [7]. The prevailing pathogenic hypothesis suggests that OA begins with an initial injury, 
often biomechanical, to any of these structures, which then initiates the release of the medium that activates different inflammatory 
pathways, ultimately leading to cartilage damage [8]. Yet given that the etiology and pathogenesis of OA are so poorly understood and 
the phenotypes and endotypes of OA are diverse, the development of disease-modifying therapeutic approaches is challenging [9]. 

Currently, clinical symptoms are used to diagnose OA, which in some countries is supplemented by joint imaging techniques [10]. 
But an absence of alternative diagnostic procedures and a linked propensity for OA patients to present significantly after the onset of 
the condition has led OA to be considered a “silent” disease, in which symptoms and imaging changes often only become apparent once 
significant damage to the articular cartilage has occurred. Unfortunately, any long-term subclinical phase can result in permanent 
damage, and without an established diagnosis at an early stage, the disease tends to advance quickly in most patients, leading to a poor 
prognosis [10]. Therefore, an early and accurate diagnosis of OA is particularly important. 

Biomarkers that indicate articular cartilage degeneration offer great potential in enabling such diagnoses and more effective 
therapeutic interventions for OA. Finding these biomarkers has become easier with recent large-scale, high-throughput gene chip 
analyses of diseased and healthy human specimens. Such analyses facilitate the study of diseases across epigenetic variants, at tran-
scriptome levels, and through somatic mutations [11]. Based on these analyses, recent studies have indicated that the development of 
OA is influenced by several distinct genes. For instance, Liang et al. found that APOLD1 (apolipoprotein L domain containing 1) and 
EPYC (epiphycan) are significant OA diagnostic genes [12]. By analyzing the Genome Expression Omnibus (GEO) database, Deng et al. 
also demonstrated that GRB10 (growth factor receptor bound protein 10) and E2F3 (E2F transcription factor 3) could serve as 
diagnostic markers for OA [13]. While preliminary studies have indicated that a few functioning genes are crucial to the development 
of OA, they have not been fully explored as a diagnostic tool. In addition, most of the datasets used in the above studies were mRNA 
expression datasets derived from articular cartilage or synovial tissue, which limits the relevance of the findings to clinical 

Fig. 1. General study flow chart. This schematic representation outlines the research procedure, consisting of three main steps: (1) screening for 
candidate biomarkers in the training set; (2) evaluation of the model performance in the validation set (GSE114007) and the test set (real-world 
patients from our hospital); and (3) verification of candidate biomarkers by qPCR. 
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applications. 
In this work, we employed three machine learning algorithms, random forest (RF), least absolute shrinkage and selection operator 

(LASSO) logistic regression, and support vector machine-recursive feature elimination (SVM-RFE), to determine biomarkers that could 
predict OA diagnoses. Specifically, RF was selected for its ability to handle high-dimensional data and its robustness against over-
fitting. LASSO logistic regression was chosen for its capability to perform variable selection and regularization to enhance predictive 
accuracy. SVM-RFE was included for its efficiency in feature selection, particularly in identifying the most relevant features for 
classification tasks. These algorithms complement each other, allowing for a comprehensive and robust identification of candidate 
biomarkers. We first extracted OA microarray datasets from the GEO database, conducted differentially expressed gene (DEG) analysis 
on these datasets, and subsequently performed functional enrichment analyses on the DEGs before submitting the data for machine 
learning algorithmic analysis. We plotted receiver operating characteristic (ROC) curves and calculated areas under the curve (AUCs) 
with a 95 % confidence interval (CI) to evaluate the accuracy and reliability of the candidate biomarkers. For corroboration and to 
maximize the diagnostic value of differential candidate biomarkers, we collected clinical peripheral blood samples from both healthy 
donors and OA patients, as well as chondrocytes from knee OA patients (Fig. 1). The peripheral blood samples enabled us to better 
detect gene expression levels than in damaged cartilage and will be easier to diagnose by combining multiple significant candidate 
biomarkers into a favorable combined model. 

In clinical practice, the absence of early diagnostic biomarkers often leads to a lost opportunity for timely treatment in OA patients, 
consequently resulting in a suboptimal prognosis [14]. Our identification of diagnostic biomarkers in this study therefore has sig-
nificant importance in facilitating early diagnosis and enhancing OA prognoses. 

2. Material and methods 

2.1. Data acquisition and processing 

The gene expression profiling of a total of twenty-seven healthy samples together with thirty OA samples derived from three 
microarray datasets were downloaded from the GEO database [15,16], including the GSE55235 [17], GSE55457 [17] and GSE82107 
[18] datasets. Ten synovial samples from OA patients and ten from healthy subjects were enrolled from both GSE55235 and GSE55457 
datasets, respectively. Seven healthy samples and ten OA samples were acquired from the GSE82107 dataset. Both GSE55235 and 
GSE55457 datasets were annotated using the GPL96 platform and the GSE82107 dataset was annotated using the GPL570 platform. 
When more than one probe was assigned to a single gene, the mean expression value was calculated. After normalization, the three 
datasets were merged together to form the training set, and then batch effects were removed for further analyses. The normalized 
expression data of another dataset, GSE114007 [19], with twenty OA samples and eighteen healthy samples overall, was downloaded 
as well to serve as the validation set. R software (version 4.2.2) was used for data processing, where the “GEOquery” [16], “stringr”, 
“limma” [20], “dplyr”, and “sva” packages were applied during this step. 

2.2. DEG analysis and exploration of candidate diagnostic biomarker 

The “limma” package was used to determine DEGs in the training set between healthy and OA samples [20]. Genes with an adjusted 
P (adj.P) value < 0.05 and a |log2 fold change (FC)| > 1 were classified as DEGs. The “ggplot2” package was used to draw a volcano 
plot displaying the up-regulated or down-regulated genes. The “clusterProfiler” [21] and “ggplot2” packages were used to conduct and 
visualize the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of up- and 
down-regulated DEGs. The RF, LASSO logistic regression, and SVM-RFE algorithms [22] were applied for the identification of OA 
biomarkers. The RF algorithm was conducted with the “randomForest” package, selecting the number of tree nodes that minimized 
training error after training a random forest model containing 500 trees. We used grid search to optimize the number of trees and the 
maximum depth. LASSO regression was executed with the “glmnet” package, employing a ten-fold cross-validation to select the 
optimal lambda value that minimized cross-validated error [23]. The SVM-RFE algorithm was implemented with the “caret” and 
“e1071” packages, employing a ten-fold cross-validation strategy with grid search to select the best set of features. During 
cross-validation, we recorded the average RMSE (Root Mean Squared Error) for various sets of potential genes, and the set with the 
minimum RMSE was selected as the ultimate biomarker set. Additionally, we highlighted the use of k-fold cross-validation to prevent 
overfitting and to ensure robust model performance. The overlapping genes selected by the three algorithms were considered 
promising candidate biomarkers and depicted in a Venn diagram generated using the “venn” and “VennDiagram” packages. ROC 
curves were plotted for each candidate biomarker and combinations thereof, with respective AUCs calculated using the “pROC” 
package to estimate the biomarkers’ predictive properties. The expression of candidate biomarkers in healthy and OA samples was 
visualized using boxplots. 

2.3. Collection of blood samples 

The study subjects for this study were patients with OA aged between 52 and 70 years awaiting artificial joint replacement in 
Jishuitan Hospital. Inclusion criteria were as follows: (1) the diagnosis was in accordance with the Orthopaedic Branch of the Chinese 
Medical Association; and (2) the patient was not yet being treated with nonsteroidal anti-inflammatory drugs (NSAIDs). Exclusion 
criteria included: (1) those with a history of severe infection, surgery, or tumor; (2) those with severe cardiac, pulmonary, hepatic, or 
renal dysfunction; and (3) those with a history of autoimmune diseases such as rheumatoid arthritis and ankylosing spondylitis. The 

X. Wang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e35121

4

study also included a control group consisting of healthy volunteers between the ages of 28 and 62 who had not received medical 
treatment in the last 6 months, and who were without any other chronic disease (such as coronary artery disease, diabetes mellitus, or 
hypertension) or osteoarticular diseases (including skeletal fluorosis, gout, or rheumatoid arthritis). All participants were of Chinese 
Han ancestry, detailed in Table 1. Written informed consent forms were signed by all participants. Our trials complied with the 
Declaration of Helsinki and were authorized through the Ethics Committee of Beijing Jishuitan Hospital (ethics code: 201611–03). 

2.4. Cell isolation and culture 

Human chondrocytes were obtained from the OA patients’ knee joints at the time of total joint replacement procedures. The 
chondrocytes were separated from the cartilage fragments of severely damaged tissues on the inner side of the tibial plateau and the 
typically undamaged tissues on the outer side of the tibial plateau, which were separated into normal controls and OA samples based 
on the degree of surface cartilage degradation and relative smoothness. Within an hour of the surgical procedure, all articular cartilage 
samples, namely, subchondral bone together with all cartilage zones (including calcified ones), were taken from the lateral tibial 
plateau. The procedures applied to extract chondrocytes were as below [24]: articular cartilage specimens were cut into pieces (1 
mm3), twice-cleaned in pre-cooled DMEM media, and later enzyme-digested with 0.25 % trypsin in a 5 % CO2 environment at 37 ◦C for 
a maximum of 30 min. Following a 5-min centrifugation at 1000 × g, the supernatant was fully discarded, and the cell suspensions 
were digested in basal medium with 0.2 % type II collagenase added for 3–6 h at 37 ◦C. After separating the chondrocytes and filtering 
them using 70 μm nylon filters, we twice-cleaned the cells through sterile phosphate-buffered saline (PBS), and grew them in culture 
media with 1 % penicillin-streptomycin and 10 % fetal bovine serum in an incubator set at 37 ◦C with 5 % CO2. The cells were digested 
utilizing trypsin (Gibco, USA) and then passaged at a 1:3 ratio when they reached 80–90 % confluency. We only used the first passage 
in our in vitro experiments. 

2.5. RNA sequencing (RNA-seq) assay 

All the collected blood samples were processed on the HiSeq platform, using an Illumina TruseqTM RNA sample preparation Kit. 
After library building, SeqPrep (https://github.com/jstjohn/SeqPrep) was used to analyze the raw data and acquire qualified mRNA 
and lncRNA sequences for subsequent analysis. The candidate biomarkers identified from the training set were verified in our own 
transcriptome sequencing data, which served as the test set. 

Table 1 
The age, gender, and living habits of OA patients and healthy volunteers in the test set.  

Sample Age (years) Gender Alcohol Consumption Smoking Status 

RNA sequencing assay 
Normal 1 49 Female Non-drinker Never smoked 
Normal 2 62 Female Non-drinker Never smoked 
Normal 3 53 Female Non-drinker Never smoked 
Normal 4 53 Male Moderate drinker Current smoker 
Normal 5 58 Female Non-drinker Never smoked 
OA 1 69 Female Non-drinker Never smoked 
OA 2 68 Female Non-drinker Never smoked 
OA 3 58 Female Moderate drinker Never smoked 
OA 4 63 Female Moderate drinker Former smoker 
OA 5 70 Female Non-drinker Current smoker 
OA 6 61 Female Non-drinker Former smoker 
OA 7 68 Male Heavy drinker Former smoker 
OA 8 69 Female Non-drinker Never smoked 
OA 9 63 Female Non-drinker Never smoked 
OA 10 55 Female Non-drinker Former smoker 
OA 11 69 Male Moderate drinker Current smoker 

qPCR 
Normal 1 27 Female Non-drinker Never smoked 
Normal 2 25 Female Non-drinker Never smoked 
Normal 3 26 Female Non-drinker Never smoked 
Normal 4 27 Male Moderate drinker Current smoker 
Normal 5 33 Male Non-drinker Former smoker 
OA 1 60 Male Moderate drinker Current smoker 
OA 2 56 Male Non-drinker Former smoker 
OA 3 52 Female Non-drinker Never smoked 
OA 4 54 Female Non-drinker Never smoked 
OA 5 55 Female Non-drinker Never smoked 

Moderate drinker: up to 1 drink per day for women, up to 2 drinks per day for men. 
Heavy drinker: more than moderate drinking. 
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2.6. Quantitative real-time PCR (qPCR) analysis of cells 

Six-well plates were seeded with chondrocytes, which were subsequently cultured in the full culture media. As directed by the 
manufacturer, the total RNA was extracted from chondrocytes with the MiniBEST Universal RNA Extraction Kit (TaKaRa, China). To 
create cDNA and prevent DNA contamination, the PrimeScript™ RT reagent kit with gDNA Eraser (TaKaRa, China) was used. A TB 
Green Premix Ex Taq (TaKaRa, China) along with an Applied Biosystems 7500 Real-Time PCR System was employed for real-time PCR 
in accordance with the manufacturers’ instructions. The comparative Ct (2− ΔΔCt) approach was used to examine the data and 
determine the relative gene expression. Table 2 includes a list of primer sequences. 

2.7. Quantitative real-time PCR analysis of blood 

RNA was extracted from the blood of both OA patients and healthy donors with the TRIZOL reagent (Invitrogen) following the 
supplier’s instructions. Using a HyperScript III RT SuperMix for qPCR with gDNA Remover (NovaBio R202), RNA totaling (1 μg) was 
reverse transcribed into cDNA in a final amount of 20 μl by random primers. In accordance with the supplier’s instructions, the reverse 
transcription procedure was finished for 15 min at 37 ◦C and later for 5 s at 85 ◦C. The qPCR analysis was accomplished using 2 × S6 
Universal SYBR qPCR Mix (NovaBio Q204) following the supplier’s instructions. Data collection and qPCR analysis were carried out 
with an ABI 7900HT device. The comparative Ct (2− ΔΔCt) approach was again used to examine these data and determine the relative 
gene expression. Table 2 presents a list of primer sequences. For accuracy, each specimen underwent three separate analyses. 

2.8. Statistical analysis 

Prism 8 (GraphPad, San Diego, USA) was employed to evaluate all data, which were then exhibited as the mean ± standard de-
viation (SD). To examine differences based on experimental design, a two-tailed t-test with Tukey post hoc testing was employed for 
multiple comparisons. To assure dependability, all experiments were conducted at least three times. Unless otherwise noted, data were 
deemed statistically significant at a significance level of P < 0.05. 

3. Results 

3.1. DEGs between OA and normal samples and enrichment analyses 

Using the criterion set out in the method, 251 genes in total were found to have differential expression. Specifically, 147 genes were 
found to be up-regulated and 104 down-regulated in OA samples in comparison with healthy counterparts. As shown in the volcano 
plot, SCRG1 (stimulator of chondrogenesis 1), B3GALNT1 (beta-1,3-N-acetylgalactosaminyltransferase 1), TNFSF11 (TNF superfamily 
member 11), KDELR3 (KDEL endoplasmic reticulum protein retention receptor 3) and CX3CR1 (C-X3-C motif chemokine receptor 1) 
were identified as the top five up-regulated genes with the minimum P value while GRB10, KLF9 (KLF transcription factor 9), BCL6 
(BCL6 transcription repressor), SIK1 (salt inducible kinase 1) and APOLD1 were identified as the top five down-regulated genes with 
the minimum P value (Fig. 2A). After unmapped genes were removed, it was observed that more than a tenth of the up-regulated genes 
were enriched to leukocyte migration (16/121), followed by collagen-containing extracellular matrix (14/121) and signaling receptor 
activator activity (14/121), etc. (Fig. 2B). The KEGG enrichment results demonstrated that up-regulated genes were mostly associated 
with osteoclast differentiation and rheumatoid arthritis, etc. (Fig. 2C). Conversely, GO enrichment analyses suggested the down- 
regulated DEGs were related to response to nutrient levels (Fig. 2D), while the tumor necrosis factor (TNF) signaling pathway, the 
interleukin-17 (IL-17) signaling pathway, the NF-κB signaling pathway and the NOD-like receptor signaling pathway, etc. were 
enriched by down-regulated DEGs according to KEGG analysis results (Fig. 2E). 

Table 2 
The primers used in quantitative real-time PCR studies.  

Target Sequence (5′-3′) 

GAPDH-F AAGGGTCATCATCTCTGCCC 
GAPDH-R GTGAGTGCATGGACTGTGGT 
SCRG1-F TCACCATTGGGCTAACTTTGC 
SCRG1-R GAAGGTTGTGACAGTTGTGATCT 
B3GALNT1-F CTTCACACTTCGAGAGCATTCA 
B3GALNT1-R CCCCAAGTAACTCTAATGGCCT 
ZNF423-F GGAACAGCGTGACAAGTCAAG 
ZNF423-R ACAGTGATCGCAGGTGTAAATTG 
SIK1–F GCTTCTGAACCATCCACACAT 
SIK1-R GTGCCCGTTGGAAGTCAAATA 
GRB10-F CTCGTGGCAATGGATTTTTCTG 
GRB10-R TCACTGTACTTAGGGTAGAAGGG 
KLF9-F GCCGCCTACATGGACTTCG 
KLF9-R GGATGGGTCGGTACTTGTTCA  
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3.2. Identification of candidate diagnostic biomarkers 

The SVM-RFE algorithm characterized 22 DEGs as promising diagnostic predictive biomarkers, as verified by the ten-fold cross- 
validation to have the lowest RMSE (Fig. 3A). These 22 candidate biomarkers included GRB10, B3GALNT1, SCRG1, ZNF423 (zinc 
finger protein 423), KLF9, and SIK1, etc. The LASSO method filtered out 21 DEGs that could predict the diagnosis of OA with the lowest 
binomial deviance (Fig. 3B). This set of 21 biomarkers included GRB10, KLF9, B3GALNT1 and ZNF423, etc. The RF algorithm 
discovered that 25 biomarkers could predict the clinical diagnosis with high accuracy (Fig. 3C). Among these biomarkers, KLF9 may 
have the highest importance due to its greatest mean decrease in Gini value. SDC1 (syndecan 1), LTC4S (leukotriene C4 synthase) and 
LST1 (leukocyte specific transcript 1) followed closely in terms of importance (Fig. 3D). Collectively, the Venn plot indicated three 
overlapping identified biomarkers, namely B3GALNT1, ZNF423 and KLF9. These three biomarkers were consistently identified by the 
SVM-RFE, LASSO and RF three algorithms, highlighting their significance in predicting clinical diagnosis (Fig. 3E). We then checked 
the expression levels and AUCs in the training set for the three identified biomarkers, as well as other DEGs that were identified by at 
least two of the algorithms. The results demonstrated that B3GALNT1, SCRG1 and ZNF423 were all significantly up-regulated in OA 
samples (Fig. 4A–C) while GRB10, KLF9 and SIK1 were all significantly down-regulated (Fig. 4D–F). Among these, GRB10 exhibited 
the largest AUC of 0.947 (95 % CI: 0.883–0.991), indicating its strong diagnostic potential (Fig. 4G) whereas ZNF423 had the lowest 
AUC of 0.886 (95 % CI: 0.789–0.962) (Fig. 4H). The AUCs for the other four factors were all above 0.9, indicating their value for high 
diagnostic accuracy (Fig. 4I–L) (Table 3). 

3.3. Preliminary evaluation of candidate biomarkers in the validation set 

B3GALNT1, SCRG1 and ZNF423 expression levels in the validation set (Fig. 5A–C) were remarkably higher in OA samples versus 
the healthy control samples. However, the GRB10 expression showed no significant difference between the two groups (Fig. 5D). On 
the other hand, KLF9 and SIK1 were remarkably higher in healthy control samples (Fig. 5E–F). Overall, other than GRB10, the 
remaining candidate biomarkers had consistent expression levels between the validation and training sets (Table 3). The performance 
of GRB10 alone in the validation set, was not as good as that in training set, with an AUC of only 0.558 (95 % CI: 0.361–0.744) 
(Fig. 5G). A slight drop in the AUCs of ZNF423 and SCRG1 was also observed, but both AUCs were above 0.8 (0.808 for SCRG1 and 
0.828 for ZNF423) (Fig. 5H and J). Similar to that of GRB10, the AUC of B3GALNT1 was sharply dropped to 0.728 (95 % CI: 

Fig. 2. DEGs between normal and OA samples and results of enrichment analyses. (A) Volcano plot of DEGs between normal and OA samples. 
Healthy samples serve as the control group. Up-regulated and down-regulated DEGs in the OA samples are indicated by red and blue dots, sepa-
rately. The top five up-regulated and down-regulated DEGs are labelled. (B) Bubble plots describing GO enrichment analysis and (C) KEGG 
enrichment analysis of up-regulated DEGs in OA samples. (D) Bubble plots presenting the GO enrichment analysis and (E) KEGG enrichment analysis 
of down-regulated DEGs in OA samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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Fig. 3. Identification of candidate diagnostic biomarkers. (A) Candidate biomarkers identified by the SVM-RFE algorithm. All 251 DEGs are 
screened by SVM-RFE algorithm to find the feature set with the lowest RMSE (Root Mean Squared Error). (B) Candidate biomarkers filtered out by 
the LASSO method. The optimal lambda value represented by the dashed line on the left minimizes cross-validated error. (C) Candidate biomarkers 
discovered by the RF algorithm. The red dashed line represents the optimal tree number with the maximum depth. (D) Candidate biomarkers ranked 
by importance according to the mean decrease in Gini value as determined by the RF algorithm. (E) Venn diagram displaying the overlap of 
candidate diagnostic biomarkers derived from three algorithms. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 4. Determination of candidate diagnostic biomarkers. (A–F) Expression levels of B3GALNT1, SCRG1, ZNF423, GRB10, KLF9 and SIK1 from the 
training set. The y axis indicates the expression level. (G–L) ROC curves of B3GALNT1, SCRG1, ZNF423, GRB10, KLF9 and SIK1. The x axis indicates 
false positive rate, calculated by 1-specificity, while the y axis indicates the specificity. 
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0.550–0.881) (Fig. 5I). The performance of KLF 9 (AUC: 0.928; 95 % CI: 0.828–0.997) remained almost unchanged in the validation set 
(Fig. 5K). Conversely, SIK1 had the largest AUC of 0.961 (95 % CI: 0.900–0.997) among all candidate biomarkers in the validation set 
(Fig. 5L) (Table 3). 

3.4. Verification of candidate biomarkers in the test set by RNA-seq assay 

The results of the peripheral blood RNA-seq assay suggested that there appeared to be no obvious differences in the expression 
levels of the six candidate biomarkers. However, subtle differences could still be observed. It appeared that the expression of 
B3GALNT1, SCRG1, GRB10 and ZNF423 showed a slight, albeit not significant, upregulation in OA samples (Fig. 6A–D). The other two 
biomarkers, KLF9 and SIK1, demonstrated no significant difference (Fig. 6E–F). However, except for KLF9, the expression levels of the 
remaining biomarkers were generally low by the RNA-seq assay. The ROC curves indicated that the AUC of B3GALNT1 was 0.636 (95 
% CI: 0.291–0.927) (Fig. 6G), which was similar to SCRG1 (95 % CI: 0.345–0.891) (Fig. 6H). GRB10 exhibited the largest AUC of 0.691 
(95 % CI: 0.364–1.000) (Fig. 6I). ZNF423 possessed an AUC of 0.528 (95 % CI: 0.327–0.773) (Fig. 6J), which was slightly higher than 
that of KLF9 (0.527; 95 % CI: 0.255–0.800) (Fig. 6K). In addition, SIK1 exhibited an AUC of 0.618 (95 % CI: 0.273–0.927) (Fig. 6L), 
ranking the second highest among the six biomarkers. These biomarkers have shown some diagnostic efficacy in real-world patients to 
some extent. 

3.5. Intracellular and peripheral levels of candidate biomarkers 

We performed qPCR to detect the expression of B3GALNT1, SCRG1, ZNF423, KLF9, SIK1, and GRB10 in knee chondrocytes from OA 
patients. The findings suggested that ZNF423 (P < 0.0001), SCRG1 (P < 0.0001), B3GALNT1 (P = 0.0002), GRB10 (P < 0.0001), SIK1 
(P < 0.0001) and KLF9 (P < 0.0001) expression levels were evidently higher in OA samples versus normal samples (Fig. 7A–F). The 
results demonstrated that the relative expression of these three key biomarkers, namely B3GALNT1, SCRG1, and ZNF423, in OA cells 
were consistent with the findings from the bioinformatic analyses. We next performed qPCR analysis to examine the expression of the 
six candidate biomarkers in the peripheral blood of both healthy individuals and those with OA. Our findings revealed that SCRG1 (P 
< 0.0001), B3GALNT1 (P < 0.0001), GRB10 (P = 0.0001), and ZNF423 (P = 0.0014) expression levels were significantly higher in OA 
samples compared to healthy samples (Fig. 8A–C, 8F). However, KLF9 (P < 0.0001) and SIK1 (P < 0.0001) were significantly lower in 
OA samples compared to healthy samples (Fig. 8D–E). 

3.6. Efficacy evaluation of different diagnostic models with combined biomarkers 

Given these results, especially the performance of single candidate biomarkers, we tested several combinations of different 
candidate biomarkers. The results obtained from the training set demonstrated that the AUCs of a combination of two biomarkers, for 
example, B3GALNT1+SCRG1, GRB10+SCRG1, and GRB10+KLF9, were all above 0.95 (Fig. 9A–C), showing a favorable diagnostic 
ability. However, the combination of three or four candidate biomarkers could not significantly improve the diagnostic ability of the 
model in the training set (Fig. 9D–G). In the validation set, B3GALNT1+SCRG1 (AUC: 0.886; 95 % CI: 0.769–0.970) (Fig. 9H) per-
formed relatively poorly, though most combination models could well verify the diagnostic capabilities of candidate biomarkers 
(Fig. 9I–N). Surprisingly, the combination of GRB10+KLF9+SIK1 exhibited an AUC of 1.000 (95 % CI: 1.000–1.000) (Fig. 9L). Finally, 
in our test set, the combination of two candidate biomarkers seemed ineffective. The AUCs of B3GALNT1+SCRG1 and GRB10+SCRG1 
were 0.764 (95 % CI: 0.491–0.982) (Figs. 9O) and 0.782 (95 % CI: 0.509–1.000) (Fig. 9P), separately. Nevertheless, the addition of one 
more biomarker could not change the situation (Fig. 9Q–R). Therefore, four candidate biomarkers were therefore incorporated into the 
final model. Among all, the comparatively favorable model included B3GALNT1+GRB10+SCRG1+ZNF423. The AUC of the afore-
mentioned model was 0.836 (95 % CI: 0.600–1.000) (Fig. 9S), and could be raised to 0.855 (95 % CI: 0.600–1.000) when ZNF423 was 
replaced by KLF9 (Fig. 9T), which owned the greatest AUC. 

Table 3 
The results of expression levels and AUCs of six candidate biomarkers.   

Training set Validation set Test set 

Expression AUC Expression AUC Expression in blood by 
RNA-seq 

AUC Expression in chondrocytes 
by qPCR 

Expression in blood by 
qPCR 

B3GALNT1 High 0.935 High 0.728 Ns 0.636 High High 
GRB10 Low 0.947 Ns 0.558 Ns 0.691 High High 
KLF9 Low 0.938 Low 0.928 Ns 0.527 High Low 
SCRG1 High 0.933 High 0.808 Ns 0.636 High High 
SIK1 Low 0.907 Low 0.961 Ns 0.618 High Low 
ZNF423 High 0.886 High 0.828 Ns 0.582 High High 

Ns: not significant. 
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Fig. 5. Preliminary validation of candidate biomarkers in the validation set. (A–F) Expression levels of B3GALNT1, SCRG1, ZNF423, GRB10, KLF9 
and SIK1 in the validation set. The y axis indicates the expression level. (G–L) ROC curves of B3GALNT1, SCRG1, ZNF423, GRB10, KLF9 and SIK1. 
The x axis indicates false positive rate, calculated by 1-specificity, while the y axis indicates the specificity. 
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Fig. 6. Verification of candidate biomarkers in the test set. (A–F) Expression levels of B3GALNT1, SCRG1, ZNF423, GRB10, KLF9 and SIK1 in 
peripheral blood samples by RNA-seq assay. The y axis indicates the expression level. (G–L) ROC curves of B3GALNT1, SCRG1, ZNF423, GRB10, 
KLF9 and SIK1. The x axis indicates false positive rate, calculated by 1-specificity, while the y axis indicates the specificity. 
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4. Discussion 

OA is a major health burden globally that results in severe pain, disability, and financial hardship for sufferers. The epidemiology of 
the disease is complex and influenced by various factors such as genetic, biological and biomechanical factors. OA was long considered 
an “abrasive” disease, but is now considered to have a complex pathophysiological process that impacts multiple joints and joint 
structures [5]. The International Association for the Study of Osteoarthritis finds that OA initially presents as a molecular disorder 
caused by abnormalities in the metabolism of joint tissue. This is subsequently followed by anatomical and/or physiological disorders, 
which are characterized by degeneration of cartilage, joint inflammation, bone redundancy, remodeling of bone, and the loss of normal 
joint function. Ultimately all of these factors contribute to the development of the disease [25]. Despite the fact that total joint 
arthroplasty is a valid treatment for end-stage OA, it does not always yield satisfactory outcomes, and the longevity of the prosthesis is 
limited [10]. In short, the current clinical diagnostic process falls short in adequately addressing the patients’ need to minimize the risk 
of worsening of the disease, and in facilitating the development of innovative disease-modifying drugs for OA [26]. As a result, re-
searches on OA have shifted the focus towards early diagnosis and treatment for the disease. In traditional treatment approaches, 
clinicians primarily rely on imaging and clinical symptoms to make a diagnosis. However, conventional imaging techniques are limited 
in their ability to detect early stages of the disease, although they are more effective in identifying advanced diseases. Additionally, 
there is not always a strong correlation between pain and pathologic changes in joint structures [27,28], which hinders detection of 
early stages of the disease. And in the early stages, the timely initiation of treatment with disease-relieving drugs may yield better 
therapeutic results. Thus, advancements in the early diagnosis of OA hold promise for the development of new and improved treatment 
methods. 

This study is one such effort, aiming to identity diagnostic biomarkers for OA that could be used as a non-invasive tool for early 

Fig. 7. Intracellular levels of candidate biomarkers in OA samples compared to the control group. (A–F) Quantitative real-time PCR analyses of 
B3GALNT1, SCRG1, ZNF423, KLF9, SIK1 and GRB10. ***P < 0.001; ****P < 0.0001. 
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diagnosis of OA, along with ongoing disease surveillance. To achieve this, we initially searched the relative datasets of GEO public 
database to determine the DEGs associated with OA in a training set. Then, the identified DEGs were feature selected using three 
independent algorithms, where LASSO tends to select sparse models, Random Forest is able to deal with non-linear relationships, and 
SVM-RFE is suitable for feature ranking and selecting the most relevant set of features. Thus, a total of six genes, B3GALNT1, SCRG1, 
ZNF423, KLF9, SIK1, and GRB10, were recognized as promising candidate diagnostic biomarkers for OA. Subsequently, boxplots and 
ROC curves were generated to assess the expression level and efficacy of these candidate biomarkers. Then another independent GEO 
dataset, GSE114007, was used as a validation set for further confirmation of the diagnostic capability of the candidate biomarkers. To 
confirm the above findings from the public database, the RNA sequencing profiles of blood samples of OA patients and healthy donors 
in our hospital were used as a test set. We found the combination of B3GALNT1+GRB10+KLF9+SCRG1 showed the best diagnostic 
potential across the test, validation and training sets. 

The qPCR expression verification was divided into two parts: intracellular and peripheral blood validation. In the intracellular 
qPCR validation, we observed that the differences in expression levels of B3GALNT1, SCRG1 and ZNF423 between normal and OA 
samples were consistent with the bioinformatics analysis. In addition, the qPCR verification using peripheral blood samples showed 
the expression levels of B3GALNT1, SCRG1, ZNF423, KLF9, and SIK1, were consistent with the bioinformatic analysis. 

Due to the potential impact of various factors on expression results, our qPCR verification using chondrocytes yielded conclusions 
that were inconsistent with results of RNA-seq assay. For example, the properties of chondrocytes can be influenced by differences in 
cell sources, varying from donor to donor. Furthermore, cell characteristics can undergo changes under diverse in vitro culture 
conditions, potentially influencing the outcomes of expression verification. Additionally, the intricate biological processes of chon-
drocytes involve numerous cell signaling pathways and molecular mechanisms, making it challenging to precisely replicate them 
during expression verification, which could affect the verification results. In our verification experiments, the limited availability of 

Fig. 8. Peripheral levels of candidate biomarkers in OA patients compared to the control group. (A–F) Quantitative real-time PCR analyses of 
B3GALNT1, SCRG1, ZNF423, KLF9, SIK1 and GRB10. **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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chondrocyte samples may have had an impact on the expression verification results. Nevertheless, the qPCR results from blood samples 
in the test set remained consistent with both the training and validation sets, thereby providing support for our conclusions. 

In summary, GRB10 showed a consistent trend in the qPCR expression verification, albeit opposite to the bioinformatic analysis. 
SIK1 and KLF9 exhibited expression levels in blood that were consistent with the bioinformatic analysis. Only three biomarkers, 
B3GALNT1, SCRG1 and ZNF423, consistently showed increased expression in OA samples, suggesting their potential as reliable 
biomarkers of OA and possible therapeutic targets for OA disease. Considering all the results, the combination of B3GALNT1, GRB10, 
KLF9, and SCRG1 biomarkers appeared to be a preferable diagnostic model. This conclusion was supported by both RNA-seq assay and 
qPCR of blood samples. 

For the four identified biomarkers, we discovered that GRB10 and SCRG1 are reported to be correlated with synovial and cartilage 
inflammation. For instance, it has been discovered that human articular cartilage expresses SCRG1 exclusively during cartilage 
degeneration. SCRG1 overexpression has been exhibited to promote cartilage production in C3H10T1/2 cells, which are mesenchymal 
cells derived from mouse embryos, possessing the ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. 
Additionally, SCRG1 overexpression has been found to suppress the proliferation of human mesenchymal stem cells (hMSCs). These 
results in combination with our findings imply that SCRG1 could be very significant for cartilage growth [29]. On the other hand, 
GRB10 has been identified to have an accurate diagnostic role in several spinal disorders, particularly in degenerative lumbar disc 
disease [30]. Additionally, both SCRG1 and GRB10 have been reported as potential therapeutic targets for human synovitis [13,31]. 
What’s more, a previous bioinformatics study concluded that increased KLF9 expression was associated with the development of 
osteoarthritis, considering KLF9 as a signature gene of osteoarthritis [32]. B3GALNT1 is a gene that encodes an enzyme involved in 
glycosylation, which is the process of adding glycan molecules to proteins and lipids. The B3GALNT1 enzyme catalyzes the addition of 
N-acetylgalactosamine (GalNAc) to glycan chains, which is an important step in the synthesis of complex glycans. This glycosylation 
process can affect the structure and function of various glycoproteins and glycolipids. Altered B3GALNT1 expression or activity has 
been associated with cancer [33]. These results provide support for the significance of those biomarkers in the context of cartilage and 
synovial inflammation. One study released earlier this year discovered four macrophage polarization-related biomarkers, including 
CSF1R, CEBPB, CX3CR1, and TLR7, for the diagnosis of OA based on machine learning. The AUCs of these four were all above 0.980 
while three achieved 1.000, suggesting an overfitting problem. In their validation dataset, the AUCs were still greater than 0.75 [34]. 
Data from real world patients were not available in their study, whereas in our study, samples from healthy people and OA patients 
were used, making our conclusions more reliable. 

Although our findings support that B3GALNT1, GRB10, KLF9 and SCRG1 have high potential for clinical application, this work has 
its limitations. Firstly, the expression level of these biomarkers were not significantly different in our validation cohort, possibly due to 
the limited number of samples. We acknowledge the demographic limitations and sample size constraints of the datasets used, as well 
as the variability in disease stages. Furthermore, we note that the datasets mainly include samples from specific populations, which 
may affect the generalizability of our findings to other demographic groups. A larger sample is required to verify these findings more 
robustly. In addition, potential biases may be introduced during model training and validation, such as the effects of overfitting and 
inherent biases in the dataset. Some limitations do exist for each algorithm while there are some strengths though. RF’s strength lies in 
handling high-dimensional data and being less sensitive to overfitting, while its limitation is its sensitivity to outliers. LASSO is 
proficient in variable selection but may struggle with high-dimensionality. SVM-RFE is great for feature selection but is computa-
tionally intense. Further research is required to investigate the distinct biological roles of these four biomarkers, and to establish the 
efficacy of the four-biomarker-combined diagnostic model in larger independent cohorts. 

5. Conclusion 

In this study, with the help of bioinformatics analyses and experimental validation, we successfully identified four diagnostic 
biomarkers of OA, namely B3GALNT1, GRB10, KLF9 and SCRG1. Together, these biomarkers hold great potential as a diagnostic model 
for predicting osteoarthritis, providing novel insights for OA diagnosis and thus its treatment in clinical practice. Identification of these 
biomarkers promises a deeper understanding of this debilitating disease and with further research, much-improved therapies and 
clinical outcomes could be achieved. 
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Fig. 9. Evaluation of the efficacy of different diagnostic models using combined biomarkers. (A–G) ROC curves of B3GALNT1+SCRG1, GRB10+SCRG1, 
GRB10+KLF9, B3GALNT1+SCRG1+ZNF423, B3GALNT1+GRB10+SCRG1+ZNF423, B3GALNT1+GRB10+KLF9, B3GALNT1+GRB10+KLF9+SCRG1 
in the training set. (H–N) ROC curves of B3GALNT1+SCRG1, GRB10+SCRG1, KLF9+SIK1, GRB10+KLF9, GRB10+KLF9+SIK1, KLF9+SIK1+ZNF423, 
B3GALNT1+GRB10+KLF9+SCRG1 in the validation set. (O–T) ROC curves of B3GALNT1+SCRG1, GRB10+SCRG1, B3GALNT1+GRB10+SCRG1, 
B3GALNT1+KLF9+SCRG1, B3GALNT1+GRB10+SCRG1+ZNF423, B3GALNT1+GRB10+KLF9+SCRG1 in the test set. The x axis indicates false positive 
rate, calculated by 1-specificity, while the y axis indicates the specificity. 
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