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A B S T R A C T

A gram-positive bacterium, denominated CFA-06, was isolated from Brazilian petroleum in the Campos
Basin and is responsible for the degradation of aromatic compounds and petroleum aromatic fractions.
The CFA-06 strain was identified as Bacillus safensis using the 16S rRNA and gyrase B sequence. Enzymatic
assays revealed the presence of two oxidoreductases: a catalase and a new oxidoreductase. The
oxidoreductases were enzymatically digested and analyzed via ESI-LTQ-Orbitrap mass spectrometry. The
mass data revealed a novel oxidoreductase (named BsPMO) containing 224 amino acids and 89%
homology with a hypothetic protein from B. safensis (CFA-06) and a catalase (named BsCat) with 491
amino acids and 60% similarity with the catalase from Bacillus pumilus (SAFR-032). The new protein
BsPMO contains iron atom(s) and shows catalytic activity toward a monooxygenase fluorogenic probe in
the presence of cofactors (NADH, NADPH and NAD). This study enhances our knowledge of the
biodegradation process of petroleum by B. safensis.
ã 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bacillus is a gram-positive genus of rod-shaped bacteria that are
obligate aerobes or facultative anaerobes and include more than 60
species. Under stress, the cells produce oval endospores and can
remain dormant for extended periods [1,2]. This defence mecha-
nism is associated with a temporary change in gene expression,
causing a phenotypic modification of some cells and protecting the
genetic material [3]. Bacillus spores are exceptionally resistant to
heat, UV radiation and chemical agents (as peroxides and
hypochlorite) impacting public health by surviving in relatively
sterile environments, such as hospital and spacecraft assembly
rooms (Bacillus licheniformis and Bacillus pumilus) [4].

A new Bacillus species was isolated from the spacecraft
assembly facility at NASA and compared with B. pumilus. The
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new species possesses a unique gyrase B gene sequence and is thus
named Bacillus safensis, in reference to the SAF Spacecraft
Assembly Facility, the location of its first isolation and identifica-
tion (FO-36bT). This gram-positive, mesophilic, aerobic and
chemotrophic species produces characteristic oxidoreductases
(oxidase and catalase) and hydrolases (esterase and b-galactosi-
dase) [5–7]. A microbial consortium containing B. safensis strains
found in a wastewater electroplating process showed high
tolerance to free cyanide (F-CN) [8]. Two additional strains of B.
safensis—MS11 and JUCHE1—were isolated from the Mongolia
desert soil and from milk serum, respectively [9,10]. A thermosta-
ble hydrolase (b-galactosidase) was isolated and characterised
from B. safensis JUCHE 1, and its production process, via
fermentation, was tested using distinct carbon sources [11,12]. B.
safensis DVL-43, isolated from a Haryana soil sample (India),
produces a new hydrolase (lipase), which is stable in organic
solvents and is readily applicable for the synthesis of methyl
laurate from lauric acid [13]. Other strains show potential for lipase
production [14,15].
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Oxidoreductases, the second largest class of enzymes applied in
biotechnology, are responsible for strategic redox reactions used
for functional group interconversion [16–18]. These biocatalysts
are cleaner and greener alternatives to traditional methodologies,
reducing the use of solvents and toxic reagents [19,20]. They occur
in natural and engineered microorganisms and can be used free,
immobilized, or in whole cells. Each approach has advantages and
limitations; free enzyme processes are usually regio-and enantio-
selective, but they generally require the addition of cofactors [21–
23].

The genome from a B. safensis strain, harvested from the
rhizosphere of a cumin plant (Cuminum cyminum) from the
Radhanpar saline desert (Gujarat, India), has been described [24].
In addition, a B. safensis CFA-06 strain was recently isolated from
highly degraded petroleum from the Pintassilgo Oil Field, Potiguar
Basin in Rio Grande do Norte, Brazil, and its genome was sequenced
[25]. The enzymatic profile of the B. safensis CFA-06 revealed,
among other enzymes, oxidoreductase activity. Given the impor-
tance of this enzyme class in the petroleum degradation processes,
the objective of this study was to identify oxidoreductases present
in the strain CFA-06 of B. safensis isolated from biodegraded
petroleum from Brazil.

2. Material and methods

2.1. Microorganism isolation, cultivation and monooxygenase
screening

Biodegraded oil from the Potiguar Basin, Pintassilgo Field in Rio
Grande do Norte, Brazil, was inoculated into various cultivation
media (agar nutrient, trypticase soy agar, marine agar and glucose-
yeast extract-malt extract) from Oxoid Ltd., Basingstoke, Hamp-
shire, England, and the cultures were grown for 3 days at 28 �C. The
isolated colonies were classified by color, texture, and type and
identified via the 16S rRNA genomic method. The cells were
inoculated in liquid cultivation media (500 mL) and stirred in an
orbital shaker at 200 rpm for 3 days at 4 �C. The cells were
harvested by centrifugation at 6000 rpm, and the pellets were used
in high-throughput enzymatic screening (HTS).

The HTS assays were performed in 96-well microliter plates,
using the following fluorogenic substrates [26]: 7-(2-oxopropoxy)-
2H-chromen-2-one (1), 7-(2-oxocyclohexyloxy)-2H-chromen-2-
one (3), 7-(2-oxocyclopentyloxy)-2H-chromen-2-one (5) and 7-(3-
oxobutan-2-yloxy)-2H-chromen-2-one (7). The reaction products
(2-oxo-2H-chromen-7-yloxy) methyl acetate (2), 7-(7-oxooxepan-
2-yloxy)-2H-chromen-2-one (4), 7-(tetrahydro-6-oxo-2H-pyran-
2-yloxy)-2H-chromen-2-one (6), 1-(2-oxo-2H-chromen-7-yloxy)
ethyl acetate (8) and 7-(1-hydroxy-3-oxobutoxy)-2H-chromen-2-
one (9) were used as the positive controls. The assay conditions
were as follows: CFA 06 cells in a borate buffer (100 mL,
0.2 mg mL�1), BSA (80 mL, 5.0 mg mL�1), substrate (10 mL, 2 mmol
L�1) and borate buffer (10 mL 20 mmol L�1, pH 8.8). The positive
controls were: CFA 06 cell suspension (100 mL, 0.2 mg mL�1), BSA
(80 mL, 5.0 mg mL�1), product of the enzymatic reaction (10 mL,
2 mmol L�1), and borate buffer (10 mL 20 mmol L�1, pH 8.8). The
negative controls were: BSA (80 mL, 5.0 mg mL�1), substrate (10 mL,
2 mmol L�1) and borate buffer (110 mL, 20 mmol L�1, pH 8.8). The
microbial control was established with CFA-06 cells (100 mL,
0.2 mg mL�1), and BSA (80 mL, 5.0 mg mL�1) in a borate buffer
(20 mL, 20 mmol L�1, pH 8.8) [27].

2.2. Multibioreactions

The biodegradation potential of B. safensis CFA-06 was assessed
using a multibioreaction protocol [28]. The evaluated substrates
were phenanthrene (11) and 4-cholesten-3-one (14). CFA-06 was
inoculated (10 mg) in glucose–yeast extract–malt extract (GYM)
and then incubated for three days at 28 �C, in an orbital shaker at
150 rpm. The cells were harvested by centrifugation (5000 rpm,
20 min, 18 �C). Two grams of cells were resuspended in 40 mL of
Zinder solution [29], with 0.5 mL of vitamins solution, 0.5 mL of
sodium bicarbonate aqueous solution (10% w/w) and 10 mg of
substrate phenanthrene (11), 4-colesten-3-one (14). The resulting
suspension was left in an orbital shaker at 28 �C and monitored
weekly over 28 days. The reactions were extracted with 20 mL of
ethyl acetate (2 � 10 mL), and the organic layer was dried over
anhydrous MgSO4. After derivatisation with diazomethane, the
samples (1 mg mL�1) were transferred to vials containing non-
adecane solution (0.03 mg mL�1) as the internal standard and were
monitored by GC–MS using a Agilent 6890 gas chromatograph
(Santa Clara, CA, USA) coupled to a Hewlett Packard 5975-MSD
(70 eV) spectrometer equipped with a fused silica capillary column
(HP-5MS, 30 m � 25.0 mm � 0.25 mm film thickness). CG–MS
analyses were conducted using a 1 mL min�1 He flow, operating
in split mode (20:1), and the temperature program started at 60 �C,
increasing at 10 �C min�1 to 290 �C.

2.3. Identification of CFA-06

B. safensis CFA-06 was cultivated on agar plates, and the
genomic DNA of the pure culture was isolated using a previously
described protocol [30]. The PCR amplification of 16S rDNA gene
fragments was performed using the primers 27F [31] and 1401R
[32], which were complementary to the conserved regions of the
16S rRNA gene of the Bacteria domain. The 50 mL reaction mixtures
contained 50–100 ng of genomic DNA, 2 U of Taq DNA polymerase
(Invitrogen), 1� Taq buffer, 1.5 mM MgCl2, 0.2 mM dNTP mix (GE
Healthcare) and 0.4 mM each primer. The PCR amplification
program, performed in an Eppendorf thermal cycler, consisted
of the following: 1 cycle at 94 �C for 5 min, 30 cycles at 94 �C for
1 min, 60 �C for 1 min, 72 �C for 2 min and 1 cycle of final extension
at 72 �C for 7 min. Primers gyr B UP-1 and UP-2r were used to
amplify the DNA gyrase subunit B gene of the bacterial isolate [33].
The 25-mL-reaction mixtures contained 50 ng of genomic DNA, 2 U
of Taq DNA polymerase (Invitrogen), 1� Taq buffer, 1.5 mM MgCl2,
0.2 mM dNTP mix (GE Healthcare) and 0.4 mM of each primer. The
PCR amplification program, performed in an Eppendorf thermal
cycler, consisted of the following: 1 cycle at 94 �C for 5 min, 30
cycles at 94 �C for 1 min, 60 �C for 1 min, 72 �C for 2 min and 1 cycle
of final extension at 72 �C for 7 min. The PCR amplification of the
16S rRNA and gyrB gene fragments was confirmed using 1% agarose
gel stained with SYBR Safe (Invitrogen).

The PCR products were purified further using mini-columns
(GFX PCR DNA and Gel Band Purification Kit, GE Healthcare) and
sequenced with an ABI 3500 XL automated sequencer (Applied
Biosystem) according to the manufacturer’s instructions. The
primers used during sequencing were 10F, 1100R [31] and 782R
[34] for the 16S rRNA gene and UP-1 and UP-2r [33] for the gyrase
gene.

The partial gene sequences (16S rRNA or gyrB) obtained with
each primer was assembled into a contig using the phred/Phrap/
CONSED program [35,36]. Positive identification was achieved by
comparing the contiguous 16S rRNA or gyrase sequences obtained
with the sequence data from the reference and type strains
available in the public databases of GenBank (2014) and RDP
(Ribosomal Database Project–Release 10). The sequences were
aligned using the CLUSTAL X program [37] and analysed using the
MEGA software v.4 [38]. The evolutionary distances were derived
from sequence-pair dissimilarities that were calculated as
implemented in MEGA while using Kimura’s DNA substitution
model [39]. The phylogenetic reconstruction was performed using



Fig. 1. Enzymatic oxidation of probes 1, 3, 5, and 7 and release of the fluorescent umbelliferyl anion (10).

Fig. 2. Enzymatic assay of the strain (CFA-06) on the phenanthrene substrates (11)
and the 4-colesten-3-nona (14). After 21 days of reaction the intermediate of the
route of biodegradation (12, 13 and 15) were detected using GC–MS.

154 F.S.A. da Fonseca et al. / Biotechnology Reports 8 (2015) 152–159
the neighbour-joining (NJ) algorithm [40], with bootstrap values
calculated from 1000 replicate runs.

2.4. Purification of B. safensis soluble proteins

Purification of the soluble proteins from two B. safensis cell
cultures grown in GYM liquid media in the presence and absence of
phenanthrene (200 mg) was performed to verify the influence of
this substrate in the enzyme production. For both cultures, the cells
were harvested at 4 �C (15 min at 5000 rpm). Pellets from 25 mL of
the cultivation medium were resuspended in 32 mL of either
sodium phosphate (50 mmol L�1, pH 7.6 for the cation exchange) or
Tris–HCl (50 mmol L�1, pH 7.6 anion exchange). Protease inhibitor
PMSF (0.320 mL, 1 mmol L�1), b-mercaptoethanol (0.128 mL,
2 mmol L�1), EDTA (0.064 mL, 1 mmol L�1) and DTT (1 mmol L�1)
were added to the buffer solutions. The resulting solutions were
sonicated (Cole Parmer 4710, EUA) using 8 cycles of 60 s (60% duty
cycle) with 2 min between each cycle.

The cell extracts were centrifuged twice at 12,500 rpm and 4 �C
for 40 min. The solution was purified with an ÄKTA-FPLC using a
1 mL HiTrap SP HP column (GE Healthcare). Buffer A (10 mL,
sodium phosphate 50 mmol L�1 pH 7.6) was used to equilibrate the
column. The flow-through fraction was eluted with buffer A
(10 mL), and the remaining fractions (1 mL) were eluted with
buffer A and increasing amounts of buffer B (0–100%, sodium
phosphate 50 mmol L�1pH 7.6 and NaCl 1 mol L�1). The anionic
exchange column (HiTrap Q HP of 1 mL, GE Healthcare) was eluted
with buffered solutions of Tris–HCl (50 mmol L�1, pH 7.6 buffer A)
and Tris–HCl (50 mmol L�1, pH 7.6 with NaCl 1 mol L�1, buffer B).
The resin was equilibrated with 10 mL of buffer A, and the soluble
extract was applied to the FPLC with the superloop. The flow-
through fraction was eluted with 10 mL of buffer A, and the
remaining 1 mL fractions were eluted with buffer A and increasing
amounts of buffer B. Each fraction (50 mL) was subjected to a 12%
polyacrilamide gel (SDS-PAGE, sodium dodecyl sulphate polyacryl-
amide gel electrophoresis) for 2 h (150 V), and then the gel was
stained with a Coomassie Blue solution as previously described
[41].
2.5. Enzymatic screening of FPLC fractions

After purification, the enzymatic activities of all fractions were
immediately assayed with fluorogenic probes using 96-well
microplates: substrate 1 (10 mL, 2 mmol L�1), NADH (10 mL,
4 mmol L�1), NADPH (10 mL, 4 mmol L�1), NAD (10 mL, 4 mmol L�1),
BSA (110 mL, 5 mg mL�1) and fraction (50 mL). The positive control
was as follows: product of the substrate 2 (10 mL, 2 mmol L�1),
NADH (10 mL, 4 mmol L�1), NADPH (10 mL, 4 mmol L�1), NAD
(10 mL, 4 mmol L�1), BSA (110 mL, 5 mg mL�1) and fraction
(50 mL). The control fraction was as follows: substrate 1 (10 mL,
2 mmol L�1), BSA (160 mL, 5 mg mL�1) NADH (10 mL, 4 mmol L�1),
NADPH (10 mL, 4 mmol L�1) and NAD (10 mL, 4 mmol L�1). The
fluorescent intensities of the released umbelliferyl anion (10) were
measured in a plate reader spectrometer (Flashscan 530 Analitic
Jena). Substrate conversion (%) into product was calculated by
comparing fluorescence intensities of the reaction assay and
positive control, considering the latter as 100%. Negative controls
were used to monitor the spontaneous probe oxidation.

The presence of catalase was investigated in the purified
fractions (ion exchange) and in whole B. safensis cells by adding
hydrogen peroxide (200 mL, 30% v/v) [42].



Fig. 3. Phylogenetic analysis based on the partial 16S rRNA sequences (�1000 pb) obtained from the isolate CFA-06 and the related species. Bootstrap values (1000 replicate
runs, shown as %) greater than 70% are listed. GenBank accession numbers are listed after the species names. Pseudomonas stutzeri was used as the outgroup.
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2.6. Metal analyses

FPLC fractions presenting enzymatic activity detected with the
fluorogenic substrate (1) were subjected to metal content analysis
via inductively coupled plasma mass spectrometry (ICP-MS) on an
Elan DRC-E mass spectrometer (PerkinElmer, Norwalk, CT, USA)
equipped with a collision/reaction cell. Each fraction (100 mL) was
diluted to 10 mL with aqueous HNO3 (1% v/v), as shown in
Supplemental Table S1 [43]. The elution buffer used in the
chromatographic analysis (FPLC) was used as control in the
analysis, along with other non-active fractions.

2.7. Determination of the exact mass protein

ESI-QTOF–MS was used to determine the exact mass of BsPMO.
The protein samples were diluted to 10 mmol L�1 in H2O/MeCN 1:1
with 0.1% of formic acid. The samples were introduced with a
syringe pump at 10 mL min�1. The parameters were as follows:
capillary voltage 3 kV, cone voltage 30 V, source temperature
100 �C, desolvation temperature 200 �C, flow gas 30 L h�1, flow gas
of desolvation of 900 L h�1, and trap collision and transfer energies
of 6 and 4 V, respectively (QTOF-MS mode). A solution of
phosphoric acid was used to calibrate the mass range from m/z
90 to 2000 [44,45].

2.8. Protein identification

The excised protein bands were digested as previously
described [46]. The mixtures of peptides were analysed using an
HPLC-LTQ Orbitrap XL (Thermo Fischer Scientific) with a
150 � 0.075 mm column packed with C18 (Reprosil) at 80 mL min�1
Fig. 4. Phylogenetic analysis based on partial gyrase gene sequences obtained from the 

replicate runs, shown as %) greater than 70% are listed. The GenBank accession numbe
over 90 min with 0–95% acetonitrile/water gradient; both solvents
contained 0.1% formic acid. The concentrations of the samples
were 1.0 mg mL�1 in methanol:water (4:1) and 0.1% of formic acid.
The analyses were performed using nanoelectrospray, the spray
voltage was 1.5 kV, the capillary temperature 200 �C and the
capillary voltage 35 V. The MS1 spectra were acquired using an
Orbitrap analyser (400–1800 m/z) at a resolution of 60,000 (FWHM
at m/z 445.1200). For each spectra, the 5 most intense ions were
submitted to CID fragmentation (minimum signal required of
1000.0; isolation width of 2.00; normalized collision energy of
35.0; activation Q of 0.250 and activation time of 30 s) followed by
MS2 acquisition on the linear trap analyzer [47].

2.9. Data analysis by PEAKS 6.0 software

The tandem mass spectra were extracted from the RAW files
and compared to those in the NCBI and SwissProt databanks using
PEAKS version 6.0 build 20120620 (Bioinformatics Solutions Inc.,
Canada) [48]. The raw files were initially subjected to data refining
for precursor mass correction, peak centroiding, charge deconvo-
lution and deisotoping. For further analysis, we used accuracy
tolerances of 10.0 ppm for the precursor ions and 0.5 Da for the
fragment-ions. The enzymatic digestion was semi-tryptic, with a
maximum of two missed enzymatic cleavages per protein. All data
were subjected to an initial De Novo search, allowing variable
modifications for cysteine (+57.02 Da—carbamidomethylation),
methionine, histidine and tryptophan (+15.99 Da—oxidation), with
a maximum of two modifications per peptide allowed [49].

The next step was a search using the PEAKS DB tool, setting the
mass of the precursor as monoisotopic and allowing variable
modification of cysteine (+57.02 Da) with up to two modifications
isolate CFA-06 and Bacillus safensis/Bacillus pumilus strains. Bootstrap values (1000
rs are listed after the species names. Bacillus anthracis was used as the outgroup.



Fig. 5. SDS-PAGE containing the first channel of the comb molecular weight marker
(protein ladder broad range) followed by the soluble extract (S) and the flow
through collected fractions (1–13) of cation exchange.
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per peptide. All searches were performed against the taxon
bacteria (B. safensis and B. pumilus) in the NCBI non-redundant
public database (downloaded on May 01, 2014). The last search was
performed using the SPIDER tool; this coverage search was
dedicated to finding novel peptide sequences that are not present
in the protein database. Finally, the data from all of the searches
were consolidated, and only results whose estimated false
discovery rate (FDR) was less than or equal to 1% were considered
reliable.

3. Results and discussion

3.1. Microorganisms isolation, cultivation and monooxygenase
screening

B. safensis CFA-06 was isolated from biodegraded petroleum.
This strain was subjected to high-throughput enzymatic screening
using four distinct substrates for monooxygenases detection.
Oxidation of probes 1, 3, 5 and 7 produces compounds 2, 4, 6, 8 and
9, respectively, which spontaneously release the fluorescent
umbelliferyl anion (10). Reaction conversions using probes 3
and 7 did not reach the minimum acceptable conversion of 5%
within the 96 h period. The fluorescent signals were most intense
with fluorogenic probes 1 (11% conversion) and 5 (7% conversion),
indicating the presence of monooxygenases (Fig. 1). Therefore, the
performance of B. safensis strain enabled better characterization of
its monooxygenase activities.
Fig. 6. Deconvoluted mass spectrum of fractio
These enzymes can act by incorporating one (monooxygenases)
or two (dioxygenases) oxygen atoms into different organic
substrates. However, the transformation of 1 and 5 into 2 and 6,
respectively, is related to the presence of a Baeyer–Villiger
monooxygenase (BVMO), and the transformation of 1 into 9
signalled the presence of cytochrome P450 and peroxidases
activities. Thus, this test revealed that CFA-06 strain produced
oxidoreductases that could oxidise two different fluorogenic
substrates (1 and 5).

B. safensis CFA-06 oxidoreductase activity was confirmed by
multibioreaction an assays using substrates 11 and 14 (Fig. 2).
Biodegradation of these compounds can be initiated by the action
of monooxygenases (mono- or di-oxygenases), which promotes
the oxidation of the substrate forming diols, followed by the ring
cleavage and formation of catechol [50].

Analyses using the BLAST algorithm revealed that the highest
similar sequences in the databases were represented by B. safensis
and B. pumilus strains, with sequence identity ranging from 99 to
100% and e-values of 0.0. A phylogenetic reconstruction based on
the 16S rRNA gene allowed the recovery of the CFA-06 isolate in a
tight cluster that was supported by a high bootstrap value (100%)
with B. pumilus and B. safensis strains, including the type strains of
these species (Fig. 3).

Because of the conserved nature of the 16S rRNA gene for the B.
safensis/B. pumilus group, the gyrB gene was used as an alternative
phylogenetic marker [6] when identifying the CFA-06 isolate at the
species level. A phylogenetic reconstruction based on the gyrase
gene revealed that the CFA-06 isolate grouped with B. safensis
(100% bootstrap value) (Fig. 4), defining the identification of the
isolate at the species level. These two species are closely related,
and laborious techniques were used to differentiate them. Because
of the industrial importance of these two species, the mass
spectrometry technique (MALDI-TOF–MS) has been used to reveal
biomarkers to facilitate their identification [51].

To characterize this monooxygenase, cell lysates from B. safensis
cultivated in the presence and absence of phenanthrene (Supple-
mental Fig. S1) were purified by fast protein liquid chromatogra-
phy (FPLC) with ion-exchange resins (anionic and cationic). The
fractions and cell lysates were monitored by SDS-PAGE, as shown
in Fig. 5.

The screening assays of the FPLC fractions (anion and cation
exchange columns) and cell lysates were performed in 96-well
plates using fluorogenic substrate 1 and three cofactors (NADH,
NADPH and NAD). The choice of 1 was based on the best conversion
yields obtained during the whole-cell enzymatic screening assays.
n 6 BsPMO (ACN:H2O (1:1), 0.1% HCOOH).



Fig. 7. Amino acid sequence of hypothetical protein CFA-06 (B. safensis), with mutations derived from the “De Novo” sequence analysis performed using the SPIDER algorithm
from PEAKS 6.0.
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Cofactors were added because the protein might have eluted
without cofactors. No activity was detected in the anion exchange
fractions; however, some activity was detected in the cell lysate
and fractions 3–9 from the cation exchange purification. This result
was obtained in the presence and absence of phenanthrene. These
fractions revealed the presence of a predominant protein (SDS-
PAGE, Fig. 5), with a molecular mass between 18 and 21 kDa. This
protein was named BsPMO, and its molecular weight is 21 kDa,
according to ESI(+)-QTOF/MS (Fig. 6).

Cation exchange fractions 3–9 were analysed by mass
spectrometry using an inductively coupled plasma source (ICP-
MS Elan DRC-e, PerkinElmer), revealing the presence of iron. These
fractions were also analyzed in the presence of carbon monoxide
and sodium dithionite, revealing that BsPMO protein was not a
cytochrome P450. This test is specific for this class of enzymes and
is considered positive only when the absorption band occurs at
450 nm due to the formation of an irreversible complex (Fe–CO).
However, the P450 activity cannot be completely excluded since
the protein may be inactive under the experimental conditions.

Additionally, the presence of peroxidases in the purified
fractions of B. safensis lysate was investigated using H2O2 as a
substrate. The release of oxygen was detected only in the flow-
through fractions and the soluble extract. The addition of hydrogen
peroxide directly on the culture plate also releases oxygen, which
confirms the existence of a catalase (BsCat) in B. safensis.

Catalases have a significant role in oxidative stress processes in
various species of Bacillus [52–54]. The catalases belong to a group
Fig. 8. Amino acid sequence of BsCat, with mutations derived from the “De Novo
of peroxidases that use hydrogen peroxide as an electron acceptor.
The oxygen transfer reactions catalyzed by peroxidases are among
the most relevant oxidative transformations [55,56]. These
reactions are compared with the P450 monooxygenase-type
reactions because of the versatility and similarity of the mecha-
nisms, but have the advantage of being self-sufficient regarding
cofactors [57].

3.2. Protein identification

To identify the primary sequence of BsPMO (gel fractions 3–9,
Fig. 5), we used the “bottom-up” methodology with trypsin. The
peptides generated were separated using liquid chromatography
and analyzed using a mass spectrometry LTQ-Orbitrap-XL (Thermo
Scientific, Germany). The equipment was operated using data-
independent acquisition mode switching between MS and LTQ-
Orbitrap-MS/MS, allowing isolation of the most intense peptide
ions and sequencing using collision-induced dissociation (CID) as
the fragmentation technique [58].

The fragmentation spectra for the BsPMO peptides were
compared with those in the NCBI database (National Center for
Biotechnology Information) and SwissProt using PEAKS 6.0. The
primary sequence of BsPMO showed 89% coverage with a putative
protein of unknown function based on the B. safensis (CFA-06)
database. Analysis of the primary sequence of BsPMO has enabled
predictions (Protparam program) [59] that in some cases have
been confirmed by experimental data. The theoretical isoelectric
” sequence analysis performed using the SPIDER algorithm from PEAKS 6.0.



Fig. 9. BsPMO and BsCat genomic localisation. (A) The BsPMO locus was identified in contig 20, between nucleotide positions 17714 and 18388 in the anti-sense direction. (B)
The BsCat locus was identified in contig 46, between nucleotides 42007 and 43482 in the anti-sense direction. Only a fragment of each contig is shown. The charts were
obtained by means of the IMG/ER tool.
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point (9.96) of the BsPMO is relevant to the type of separation. The
Signal P 4.1 software [60] indicated the presence of a signal peptide
in the primary sequence of BsPMO. This sequence was cleaved
between amino acids 25 and 26 (between two alanines, which is
not a trypsin site), suggesting that this protein is produced, cut and
transported by extracellular environment. This evidence was
demonstrated by mass spectrometry, which observed the absence
of 1–25 peptide (Fig. 7) in all acquired data, therefore most of the
produced protein has its signal peptide cleaved after the secretion
process. Several species of the genus Bacillus are known as “cell
factories”, based on the amount and stability of the enzyme
produced and secreted into the extracellular environment [61].

To improve the amino acid coverage in B. safensis BsPMO,
sequencing was also performed using the PEAKS 6.0 program. This
program constructed a theoretical mass spectrum with amino acid
sequences from the mass spectra (MS/MS), containing the peptide
fragments generated by CID [62,63]. The program calculated the
best combination, predicting the theoretical sequence. In addition,
the program enabled mutations in the amino acid sequence,
replacing residues with the same functionalities on the side chain
(SPIDER) [64,65]. Consequently, 94% coverage was achieved (Fig. 7;
Supplemental Table S2).

The BsCat detected in fraction 3 eluted with other 14–116 kDa
proteins. Therefore, bands containing the proteins were excised
from the gel and trypsinized. The peptides were separated using
liquid chromatography and analyzed using a mass spectrometry
LTQ-Orbitrap-XL (Thermo Scientific, Germany). A search in the
NCBI database (National Center for Biotechnology Information)
and SwissProt using PEAKS 6.0 software identified a catalase
containing 491 amino acid residues that was 60% similarity with
the catalase KatX2 from B. pumilus (SAFR-032). BsCat sequencing
was also performed using PEAKS 6.0 (Fig. 8; Supplemental
Table S3).

Nucleotide sequences of both BsPMO and BsCat are available at
GenBank (accession no. JNBO00000000) and IMG Database
(project ID Gi23929) and approximate genomic localizations are
presented in Fig. 9.

In conclusion, a new B. safensis (CFA-06) strain isolated from
petroleum degrades aromatic compounds and expresses two
distinct oxidoreductases (BsPMO and BsCat). These two enzymes
were isolated and identified. BsPMO is a novel enzyme with a
signal peptide that allows excretion into the extracellular
environment and has iron but no haem group covalently linked
to its structure. The second enzyme, BsCat, has 60% similarity with
the catalase of the B. pumilus and is different from other enzymes
previously described.
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