
The Next Generation of Transcription Factor Binding Site
Prediction
Anthony Mathelier*, Wyeth W. Wasserman*

Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver,

British Columbia, Canada

Abstract

Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a
transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight
matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for
the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the
corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor
flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can
model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The
availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation
of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding
characteristics. We present a new graphical representation of the motifs that convey properties of position
interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that
they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from
background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA
binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity
measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published
experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated
TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein
interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
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Introduction

Transcription factors (TFs) and their specific binding sites act to

modulate the rate of gene transcription. They are central to key

biological processes, such as organ development and tissue

differentiation, nutrient and environmental stress responses and

physiological signals. Delineating specific positions at which TFs

bind to DNA is of high importance in deciphering gene regulation

at the transcriptional level. Each TF binds a variety of DNA sites

with sequence-specific affinity [1]. As TFs bind to DNA in a

sequence specific manner, computational methods for motif

discrimination have been critically important for the prediction

of transcription factor binding sites (TFBSs). Unfortunately,

TFBSs are usually short and in most cases TFs are tolerant of

sequence variations at many positions of the TFBS. This tolerance

for variation impacts the accuracy of genome-scale prediction of

TFBSs, as suitable TFBS sequences are found frequently. The

accurate prediction of TFBSs is an enduring challenge [2], with

ongoing approaches introduced to decrease the high rate of false

predictions. In a human cell, it appears that most computationally

predicted TFBS are not available for binding, presumably due to

chromatin structure and/or local epigenetic properties. Approach-

es to address the false prediction issue have varied: phylogenetic

methods to focus on sequences conserved during evolution [3],

using experimentally mapped transcription start site data to focus

on promoter proximal regions [4], using histone modification or

DNA accessibility data to highlight likely regulatory sequences [5],

or focusing on locally dense combinations of motifs [6,7] defined

from TFBS enrichment analysis of co-expressed genes.

Classically, computational prediction of TFBSs is based on

models called position weight matrices (PWMs) that reflect the

preferred binding motifs associated to corresponding TFs by

providing an additive score for any sequence. They approximate

the true specificity of a TF and their parameters can be estimated

through different methods (see [8] for a review). The basic PWMs

make the assumption that each nucleotide within a TFBS

participates independently in the corresponding DNA-protein

interaction. Basic PWMs can perform well in modeling TFBS
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properties, but do not account for position interdependencies, that

have repeatedly been observed to exist within TFBS motifs using

crystal structure analyzes [9], biochemical studies [10–12],

statistical analyzes of large collections of TFBS [13–15], or

quantitative analyzes of protein binding microarray (PBM) data

[16–18]. The latter study based on PBM data has demonstrated

that position dependencies are stronger between neighboring

positions than others. Incorporating these dinucleotide dependen-

cies into the binding models has been shown to improve predictive

accuracy [18], albeit with modest impact in most cases. The recent

comparison of several algorithms using PBM binding assays data

in [17] also included models considering dinucleotide composition.

Recently, a new approach called dinucleotide weight matrices

(DWMs) has been developed to extend the basic PWMs by

considering the dinucleotide interactions between all pairs of

positions within the TFBSs [19].

Moreover, basic PWMs are restricted to the detection of motifs

with a fixed length. This constraint has previously led to

alternative heuristic approaches for the modeling of TFBS for

TFs tolerant of variable widths, such as nuclear receptors [20] and

p53 [21,22]. The analysis of variable spacing in the context of

Escherichia coli promoter prediction was an early advance in the

field, with the spacing between elements addressed with either

PFMs [23] or PWMs using logarithms of the probabilities [24] (see

[8] for a review). With the growth in TFBS data, early findings of

variable TFBS configurations [25,26] are not unique [27].

Several efforts have explored more flexible models for the

prediction of TFBSs. Bayesian hierarchical hidden Markov models

(HMMs) have been used to model cis-regulatory modules (CRMs)

in [28] but TFBSs included in the CRMs are predicted using basic

PWMs. In [29], the authors present a Boltzmann chain (i.e. an

HMM generalization) to model the competition between DNA-

binding factors as TFs which TFBSs are predicted using energy

PWMs computed from PBM data. HMMs, which have been

widely used in computationally biology for the prediction of

protein motifs, have also been applied to the identification of TFBS.

Implementations based on HMMs have been made for the detailed

study of specific TFs or classes of TFs [20,25,30], and in a few cases

the methods were generalized as a framework to theoritically

analyze TFBS features [11,31,32]. The MAPPER software was

implemented using HMMs [33,34], but the approach retained the

classic focus on positional independence consistent with the

preponderance of data available at the time. The HMMs approach

used in [35] allows for flexible length motifs through the use of

profile HMMs, with the unconstrained potential for gaps to be

incorporated at any position, as previously introduced for protein

families [36]. To accommodate dependencies between TFBS

positions, [37] introduces a variable-order Bayesian network to

model TFBSs, but suggested that greater training data would allow

HMM-based approaches to model dependencies at all positions.

The growing community interest in the use of HMMs and more

advanced models to discriminate TFBS reflects an underlying

expectation that emerging data can lead to more effective models.

Recently, a new experimental technique has been developed to

study sequences where proteins interact with DNA. This

procedure is a combination of chromatin immunoprecipitation

and massively parallel sequencing technologies - the well-known

ChIP-seq procedure [38]. It gives, with good sensitivity and

specificity, DNA sequences to which proteins of interest bind,

providing the opportunity to precisely map those binding sites

within the genome. Using such data, we can analyze in depth

transcription regulation by focusing on DNA sequences that are

bound by specific TFs. The availability of thousands of exper-

imentally validated DNA-TF interaction sequences coming from

ChIP-seq data and stored in databases such as produced by the

ENCODE project [39] allows researchers to develop new

approaches for the prediction of specific locations of TFBSs with

greater confidence than was previously possible.

We introduce here a novel TFBS model and prediction system

based on HMMs, hereafter referred to as TF Flexible Model

(TFFM). Building upon previously developed models capturing

dinucleotide dependencies and flexible lengths as described

previously (see Table S1 for comparison of TFFMs with previous

HMM-based TFBS predictions), our approach allows for the

capture of these different features within a unique framework. The

availability of thousands of ChIP-seq regions for a TF, potentially

representing the full diversity of TFBS configurations, motivates

the effort to transition to an HMM-based approach to TFBS

prediction. The new HMM framework is flexible, supports

dinucleotide composition analysis and variable lengths to predict

TFBSs. The performance of TFFM was compared to established

TFBS prediction methods through analysis of numerous ChIP-seq

data sets. Most methods are comparable for TFs exhibiting classic

TFBS structures, but TFFMs show distinct performance advan-

tage for the subset of TFs with more diverse binding character-

istics. By evaluating the correlation between TFFM scoring with

ChIP-seq peak signals and experimentally measured DNA-binding

affinities, we found that TFFM scores reflect TF-DNA interac-

tions. Moreover, the probabilistic scheme of the TFFMs allows for

a straightforward calculation of a total occupancy score for a DNA

region. Researchers may construct and apply the TFFMs through

open-source code via an application programming interface at

http://cisreg.cmmt.ubc.ca/TFFM/doc/ or directly through our

web-based application at http://cisreg.cmmt.ubc.ca/TFFM/.

TFFMs build upon the best properties of the established methods,

while offering novel capacities within a unified framework. Every

TF has its own DNA binding characteristics (position dependen-

cies, spacing, variable flanking regions, occupancy) which can be

captured within the unified TFFM-framework.

Author Summary

Transcription factors are critical proteins for sequence-
specific control of transcriptional regulation. Finding
where these proteins bind to DNA is of key importance
for global efforts to decipher the complex mechanisms of
gene regulation. Greater understanding of the regulation
of transcription promises to improve human genetic
analysis by specifying critical gene components that have
eluded investigators. Classically, computational prediction
of transcription factor binding sites (TFBS) is based on
models giving weights to each nucleotide at each position.
We introduce a novel statistical model for the prediction of
TFBS tolerant of a broader range of TFBS configurations
than can be conveniently accommodated by existing
methods. The new models are designed to address the
confounding properties of nucleotide composition, inter-
positional sequence dependence and variable lengths (e.g.
variable spacing between half-sites) observed in the more
comprehensive experimental data now emerging. The new
models generate scores consistent with DNA-protein
affinities measured experimentally and can be represented
graphically, retaining desirable attributes of past methods.
It demonstrates the capacity of the new approach to
accurately assess DNA-protein interactions. With the rich
experimental data generated from chromatin immunopre-
cipitation experiments, a greater diversity of TFBS proper-
ties has emerged that can now be accommodated within a
single predictive approach.

The Next Generation of TF Binding Site Prediction
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Results

HMM-based framework to predict TFBSs
We present a new HMM-based framework to model and

predict TFBSs. HMMs have been extensively used in computa-

tional biology to model DNA sequences [36]. They offer a flexible

probabilistic method that gives us the opportunity to model TFBSs

with their dinucleotide characteristics and that can be extended to

take into consideration flexible motifs. In the context of modeling

DNA sequences, an HMM is composed of a set of hidden states

emitting nucleotides with defined probabilities (corresponding to

the set of emission probabilities) and a set of transition probabilities

from state to state. HMMs conveniently accommodate large data,

deriving an optimal (at least locally) set of probabilities. HMMs

can be trained using different well-established algorithms such as

the Baum-Welch algorithm [36] or the Viterbi [36] algorithm. We

chose the widely used Baum-Welch algorithm since it converges to

a local optimum depending on a set of initialized probabilities.

Recent advances in the prediction of TFBSs have incorporated

inter-positional properties through the analysis of dinucleotide

properties across the sites. To construct models capturing the

dinucleotide compositional properties of TFBSs, we implemented

two HMM-based approaches.

Initially, we constructed standard first-order HMMs as TFFMs

(denoted later as 1st-order TFFMs). In such models, each position p
within a TFBS is represented by a state emitting a nucleotide with

probabilities dependent on the nucleotide found at the prior

position p{1 (see Figure 1A). In 1st-order TFFMs, we considered

nucleotides surrounding the TFBSs (i.e. nucleotides located before

and after a TFBS) by using a specific state modeling the

background. The models developed here are similar to the

probabilistic dinucleotide PWMs used in [40] to model nucleo-

somes. However, the 1st-order TFFMs add the capability to

capture the properties of the surrounding sequences through the

background state, introduce motif length flexibility, and are built

upon HMMs as a more dedicated probabilistic framework to

model stochastic sequences.

In 1st-order TFFMs, starting a TFBS is given by a unique

probability (representing the transition from the background to the

TFBS) whatever the nucleotide found in the surrounding

sequence. To allow for starting a TFBS depending on the

nucleotide emitted in the background state, we implemented a

more detailed and descriptive HMM template as TFFMs (denoted

later as detailed TFFMs) mimicking the theoretical analysis made in

[11] (see Figure 1B). The intrinsic different structures of the 1st-

order and detailed TFFMs lead to different probabilities for going

from the background to the foreground. This is emphasized by the

training through the Baum-Welch algorithm which reaches local

maximum.

A graphical representation of the dinucleotide
dependencies

By constructing models taking into consideration local dinucle-

otide dependencies, we aim to better model, characterize, and

understand TFBS properties. When trying to analyze and

understand a model, a visual representation provides insight into

the underlying properties. Basic PWMs for instance can be

graphically represented using sequence logos [41] where each

position gives the information content obtained for each nucleo-

tide. The greater the height of the letter corresponding to a

nucleotide, the higher the information content and higher the

probability of getting it at this position. Using HMMs, we can

derive the probability of obtaining each nucleotide at each

position, allowing for the generation of sequence logos represent-

ing the TFBSs modeled using what we call a summary TFFM logo

(see Figure 2B). In summary TFFM logos, we use the probability

of each nucleotide at each position to compute the corresponding

information content represented in the logo. But this graphical

representation fails to convey the local dinucleotide dependencies

that motivate the work. To tackle this issue, we introduce a new

graphical representation (which we call a dense TFFM logo)

allowing researchers to perceive the dinucleotide dependencies

captured by the model. As the emission of a nucleotide at each

position depends on the nucleotide emitted at the previous

position, we represent the nucleotide probabilities at position p for

each possible nucleotide at position p{1. Hence, each column

represents a position within a TFBS and each row the nucleotide

probabilities found at that position. Each row assumes a specific

nucleotide has been emitted by the previous hidden state. The

intersection between a column corresponding to position p and

row corresponding to nucleotide n gives the probabilities of getting

each nucleotide at position p if n has been seen at position p{1
(see Figure 2A). For instance, in Figure 2C, we can observe that a

‘‘C’’ is more likely to appear at position 12 if nucleotide ‘‘T’’ was

found at position 11 (green box and arrow) whereas a ‘‘T’’ is more

likely to appear at position 12 if nucleotide ‘‘G’’ was present at

position 11 (orange box and arrow). In order to highlight the most

probable row to be used by the TFFM, we vary the opacity to

represent the sequence logo. The higher the probability of getting

a nucleotide at position p, the higher the opacity of the row

corresponding to this nucleotide at position pz1. Unfortunately,

the current graphical representation does not allow for variable

length or spacing of the motif modelled. One could envision

introducing the variable length HMMs graphical representation

by following the tool specifically developed in [42] for protein

families.

Comparing predictive power of TFFMs with other models
on ChIP-seq data

We provide the TFFM-framework to construct TFFMs from

ChIP-seq data sets and to predict TFBSs within DNA sequences.

When constructing a TFFM from ChIP-seq data, we extract (using

MEME [43,44]) the most over-represented motif out of the top

scoring ChIP-seq sequences and use it to initialize the HMM

probabilities (see Materials and Methods). Then, the final

probabilities are learned using the Baum-Welch algorithm. When

predicting TFBSs within DNA sequences using a TFFM, the

software gives, at each position within the sequence, the

probability of being in a final matching state (corresponding to

the last position of a TFBS) in the underlying HMM. These

probabilities correspond to posterior probabilities given an HMM

and are computed using the well-known forward and backward

algorithms [36]. When assessing the predictive power of the

models, one can vary a threshold through these output probabil-

ities to compute values of sensitivity and specificity. 1st-order and

detailed TFFMs have been constructed using ENCODE [39]

ChIP-seq training data sets. The trained TFFMs were used to

predict TFBSs within test ChIP-seq data sets by following a 10-fold

cross-validation methodology. Finally, the results obtained with

TFFMs were compared to the ones obtained from PWMs and

DWMs constructed from and applied to the same data.

All ChIP-seq ENCODE data sets from human and mouse (with

at least 1800 peaks and a peak max position indicated, i.e. 206

data sets) were used to compare the two types of TFFMs with

PWMs and DWMs. Sequences around the peak max positions (50

nucleotides on both sides) were extracted to construct the models

and make predictions. The rationale for this is that ChIP-seq peak

max positions represent where the maximum amount of ChIP-seq

The Next Generation of TF Binding Site Prediction

PLOS Computational Biology | www.ploscompbiol.org 3 September 2013 | Volume 9 | Issue 9 | e1003214



reads map on the genome of reference and TFBSs are expected to

be strongly enriched in close proximity to the peak max position

[45]. For each data set, the 600 peaks with the highest signal were

used to extract the most over-represented motif within the

sequences and to initialize the model probabilities. To avoid

over-fitting the data when assessing the predictive power of the

different models, we used the remaining sequences to construct

training and testing data sets following a 10-fold cross-validation

approach. Assuming that high quality ChIP-seq data contain at

least one true TFBS within each peak region, we considered the

hit (matching sequence) with the best score per peak as a TFBS

prediction. To assess the level of specificity for each method, we

Figure 1. HMM schemas. (A) 1st-order HMM schema used in 1st-order TFFMs where the first state represents the background and the following
states the consecutive positions within a TFBS. Each state emits a nucleotide with a probability dependent on the nucleotide emitted previously. (B)
HMM schema used in detailed TFFMs where each state in the 1st-order HMM is decomposed into four states (one per nucleotide). Transition
probabilities reflects the emission probabilities of the 1st-order HMM. It allows the start of a TFBS depending on the nucleotide emitted by the
background states.
doi:10.1371/journal.pcbi.1003214.g001

The Next Generation of TF Binding Site Prediction
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generated background data sets by randomly drawing sequences

from mappable regions of the human and mouse genomes by

keeping the same %GC composition distribution as in the ChIP-

seq testing sequences (see Materials and Methods). Another set of

background sequences has been generated from a first-order

HMM reflecting the background dinucleotide composition of each

ChIP-seq testing data set. Across varying thresholds for TFBS

prediction scores for the four different models, we calculate

predictive sensitivity and specificity at each threshold value and

trace the corresponding receiver operating characteristic (ROC)

curves.

For each ENCODE ChIP-seq data set, the area under the

curves (AUC) for the corresponding ROC curves (for all predictive

methods) have been computed. To compare the predictive powers

of the different methods, we focus on ChIP-seq data sets for which

at least one predictive method achieves an AUC§70% when

discriminating ChIP-seq from genomic background sequences (i.e.

96 ChIP-seq data sets). We plot the ratios of performance between

the best model and the others on the set of ChIP-seq data for

which at least one predictive method is of high quality. In Figure 3,

we show the ratio of performance to the best model for ChIP-seq

data giving a high quality discriminative performance. When

considering a similar performance between models when the ratio

of the AUCs is above 95%, we show that the specificity of the

binding proteins are captured similarly by using weight matrices

(WMs) or TFFMs. Where the performance ratio is below 95%, we

can observe an increase in discriminative power in favour of the

TFFMs when compared to the WMs (compare the right part of

Figure 3 to the left part). When considering the strict difference

between respective performance (i.e. when getting strictly higher

AUC values), the results indicate that the TFFMs are performing

strictly better than both the PWMs and the DWMs in

discriminating ChIP-seq peak sequences from background se-

quences in two thirds of the data sets. Namely, the 1st-order and

the detailed TFFMs are performing strictly better than both the

PWMs and the DWMs for 63 and 65 data sets, respectively, over

the 96 ChIP-seq data sets considered (see Figure 3). Taken

together, the TFFMs perform strictly better than WMs in 67 data

sets over 96 (70%). Similar results (65 over 94, 69%) are obtained

when considering background sequences generated from a first-

order HMM (see Figure S1). Explicit AUC values are plotted in

Figure S2. We can observe that the TFFMs perform as well as or

better than WMs overall on the sets of ChIP-seq data for which at

least one predictive method is of high quality when discriminating

ChIP-seq sequences from genomic background sequences. See

similar results in Figure S3 when considering HMM-generated

background sequences.

Statistical significances of the differences in terms of discrimi-

native power between the different methods has been computed

for each pair of methods using a Wilcoxon signed rank test [46]

assuming the null hypothesis of a symmetric distribution of AUC

differences around 0 when two methods perform similarly. Table 1

contains the Benjamini-Hochberg [47] corrected statistical signif-

icance of the differences between each one of the predictive

methods when considering data sets where at least one method

obtains an AUC§70%. It shows that the performance difference

between the two TFFMs is not significant with a p-value of 0.528.

On the contrary, the difference of performance when comparing

both of the TFFMs with the PWMs and the DWMs is statistically

significant (see Table 1 where the maximal p-value is equal to

3:7|10{6). These p-values indicate that the null hypothesis can

be rejected. PWMs and DWMs have more comparable behavior

Figure 2. Sequence logo representing a TFFM. (A) Graphical representation of a TFFM constructed for the Hnf4A TF. Each column corresponds
to a position within a TFBS. Each row captures the probabilities of each nucleotide to appear depending on the nucleotide found at the previous
position. The opacity of a case represents the probability of hitting this case depending on the probability of appearance of the corresponding
nucleotide at the previous position (the higher the opacity, the higher the probability). (B) The summary logo compacts all the information to
summarize the dense logo in (A). (C) Zooming in on the dense TFFM logo for positions 10 to 13 (corresponding to the box in (A)). We observe that a
‘‘C’’ is more likely to appear at position 12 if nucleotide ‘‘T’’ was found at position 11 whereas a ‘‘T’’ is more likely to appear at position 12 if nucleotide
‘‘G’’ was found at position 11.
doi:10.1371/journal.pcbi.1003214.g002
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since the difference in performance is less statistically significant

(p-value~0:014, see Table 1). Again, similar results are obtained

when considering HMM-generated background sequences (see

Table S2).

To understand whether the TFFMs perform better than the

PWMs because of the model or because of the training method (as

both differ), we introduce a 0-order TFFM which is basically a

PFM modeled by an HMM and trained using the Baum-Welch

algorithm (see Figure S14). We used the 0-order TFFMs to

discriminate ChIP-seq sequences from background sequences on

the same data sets as previously and computed the corresponding

AUCs. In Figure 4A, we observe that the 1st-order and detailed

TFFMs outperform the 0-order TFFMs (best AUC of the 1st-

order or detailed TFFMs in 90 data sets out of 96, i.e. 94%)

emphasizing the need to consider dinucleotide dependencies in the

models. In Figure 4B, we compare the 0-order TFFMs to the

WMs. The discriminative power of the WMs is higher than the 0-

order TFFMs (WMs obtain strictly better AUCs than 0-order

Figure 3. Performance comparison between TFFMs and weight matrices. For the 96 ChIP-seq data sets obtaining an AUC§70% for at least
one method (using a genomic background), the ratio between the AUC value using a specific model and the best AUC obtained is plotted. The four
types of models were used (1st-order TFFM, detailed TFFM, PWM, and DWM). By considering a similar performance between two methods when the
AUC ratio is §95%, we plot at the top of the figure the region where the weight matrices (WMs) best perform, where the TFFMs best perform, and
where they are similar. AUC ratios are ranked from the least to the most favourable to the TFFMs.
doi:10.1371/journal.pcbi.1003214.g003

Table 1. Statistical significance for discriminative power
differences between the predictive methods.

1st-order TFFM detailed TFFM DWM

detailed TFFM 0:528 - -

DWM 7:1|10{8 3:7|10{6 -

PWM 6:4|10{8 9:1|10{7 0:014

The table contains the Benjamini-Hochberg corrected p-values of the
differences (using a Wilcoxon signed rank test) between each pair of methods.
1st-order and detailed TFFMs are likely to perform similarly and so between
PWM and DWM. Results are obtained using data sets for which at least one
method obtains an AUC§70% when discriminating ChIP-seq data from
genomic background sequences. Results obtained with HMM-generated
background sequences are given in Table S2.
doi:10.1371/journal.pcbi.1003214.t001
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TFFMs in 67 data sets out of 96, i.e. 70%, and PWMs perform

strictly better than 0-order TFFMs in 63 out of 96 data sets, i.e.

66%) showing that the good performance of the 1st-order and

detailed TFFMs does not directly arise from the training

methodology since PWMs are performing better, overall, than 0-

order TFFMs. Similar results are obtained when using HMM-

generated background sequences (see Figure S4).

This analysis shows that the TFFMs perform better than PWMs

and DWMs more often, with a statistically significant difference,

and lead us to hypothesize that the TFFMs are, overall, better at

capturing TFBS features found in the experimental data. To

further evaluate this property, we analyzed how TFFM scoring

correlates with the biological signal found in ChIP-seq data.

Correlation between prediction scores and ChIP-seq peak
scores

An attractive feature of PWMs is that they can produce scores

that are correlated with the energetic binding affinity between a

protein and a DNA sequence [48–50]. We sought to confirm this

property using ChIP-seq data and estimate whether the TFFMs

similarly exhibit this capacity. From ChIP-seq experiments, we will

assume that the maximum number of reads mapping a peak is

representative of the DNA-binding affinity of the corresponding

TF to the corresponding DNA sequence (while recognizing the

limitations of this assumption). We assess whether the different

tested scoring models correlate with the peak signal (corresponding

to the level of enrichment for TF-binding within the region) when

ranking the peaks with respect to their ChIP-seq signal values

compared to ranking with respect to the scores of their best hit.

For each data set used in the previous AUC analysis (note that the

600 best peaks are not considered in the 10-fold cross-validation),

we extracted the predicted scores associated with each ChIP-seq

peak on the foreground testing sets for each of the four predictive

methods. ENCODE ChIP-seq data also contain a ChIP-seq signal

value associated with each one of the peaks. A potential

relationship between prediction scores and peak signal values

has been evaluated by separating the ChIP-seq peaks into twenty

5-percentile groups using ChIP-seq peak signal values. Spearman’s

rank correlation coefficients [51] were computed using the

percentiles as the x-axis and the median of prediction scores as

the y-axis. The density distribution of Spearman’s rank correlation

coefficients for each predictive method is given in Figure 5A. The

correlation between the prediction scores (for all of the four

methods) and the signal value of the corresponding ChIP-seq

peaks is mainly located around 1 (with WMs giving slightly better

results, see Figure 5A), corresponding to a correlation between the

scoring of the methods and ChIP-seq peak signal values.

Spearman’s rank correlation coefficients indicate that the higher

the ChIP-seq peak score, the higher the score we expect to get

from the different predictive methods, which is in agreement with

the models reflecting the energetic binding affinity between a

protein and a DNA sequence. We used 5-percentile groups of

sequences (using ChIP-seq peak signal values) to compute

Spearman’s rank correlation coefficients. The Spearman’s rank

correlation coefficients computed using all the ChIP-seq peak

signal values would result in low correlation values due to the

variation of the values from the average trend. Hence, using

percentiles gives the general trend that shows the average

behaviour of the correlation. We can see from Figure 5A that

the trends show a positive correlation. The statistical significance

of the trends is assessed by computing the p-values of getting a

regression line (corresponding to the general trend of correlation)

Figure 4. Performances comparison between 0-order TFFMs, other TFFMs, and weight matrices. For the 96 ChIP-seq data sets used in
Figure 3 (using genomic background), the ratio between the AUC value using a specific model and the best AUC obtained is plotted. (A) The three
types of TFFMs were used (1st-order, detailed, and 0-order TFFMs). AUC ratios are ranked from the least to the most favourable to the 1st-order and
detailed TFFMs. We observe that the 1st-order and detailed TFFMs outperform the 0-order TFFMs when discriminating ChIP-seq sequences from
genomic background sequences. (B) 0-order TFFMs and WMs were used. AUC ratios are ranked from the least to the most favourable to the 0-order
TFFM. We observe that the WMs outperform the 0-order TFFMs when discriminating ChIP-seq sequences from genomic background sequences.
doi:10.1371/journal.pcbi.1003214.g004
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for the observed slope. Figure S5 plots the distribution of the

computed p-values. We observe that the p-values are, overall, close

to 0 and indicate that the average behaviour of the correlation

given by a linear regression is far from a horizontal line. These

results show that all of the predictive methods have the tendency to

correlate with ChIP-seq peak signal values. To further analyze the

property of correlation between TFFM scores and binding

affinities, we considered experimentally measured binding affini-

ties between a TF and DNA sequences and compared these values

to the predictive scores obtained from the different models.

Correlation between prediction scores and experimental
DNA-binding affinities

In the previous section, we hypothesized that the signal values

from ENCODE ChIP-seq peaks reflected the affinity of the TF

protein to bind to DNA sequences. In [52], Maerkl and Quake

measured experimentally the binding affinities of two isoforms of

the human Max TF to DNA sequences by testing sequence

permutations. The Max TF binds to a core consensus motif of the

form CACGTG. As the motif is palindromic, they measured the

binding affinities of the Max proteins for all the possible mutated

sequences of the first half of the core motif (namely nucleotides N{4

to N{1 from the consensus sequence, see Figure S6) and conserving

the second half of the consensus core binding sites (GTG). We

compared these experimental measures to the predictive scores

obtained on the Max K562 ChIP-seq data, selected from the

available Max ChIP-seq data as it exhibits the highest AUCs in the

10-fold cross-validation experiments for all tested methods. Five

different models (0-order TFFM, 1st-order TFFM, detailed TFFM,

PWM, and DWM) were constructed from the top 600 peaks for the

initialization step and all ChIP-seq sequences were used to train the

models. The sequence logo obtained using MEME on the top 600

peaks is given in Figure S6 for reference. We can see that the

CACGTG palindromic motif is captured by MEME using the

ENCODE ChIP-seq data set. The trained models were then

applied to the mutated sequences to get their corresponding

predicted scores. Note that the models are trained here on a data set

that is independent of the testing data set used in [52].

Figure 5. Correlations between prediction scores and ChIP-seq peak scores or binding affinities. (A) ChIP-seq signal values obtained
from ENCODE data sets were compared to prediction values obtained with the four different predictive methods. The distribution of Spearman’s
correlation values from all data sets are given for 1st-order TFFMs, detailed TFFMs, PWMs, and DWMs. An over-representation of Spearman’s
correlations around 1 (perfect correlation) is found for the four methods. (B) Pearson correlation between scores obtained using the different
predictive methods and DNA-binding affinities from [52].
doi:10.1371/journal.pcbi.1003214.g005

The Next Generation of TF Binding Site Prediction

PLOS Computational Biology | www.ploscompbiol.org 8 September 2013 | Volume 9 | Issue 9 | e1003214



For each predictive model, we computed the correlation

between the predicted scores and the DNA-binding affinity values

measured experimentally. Since some mutated sequences can no

longer be bound by the Max TF (or with very weak affinity), it is

interesting to focus on the sequences to which the TF can actually

bind. Hence, we analyzed the correlation between predicted and

experimentally measured DNA-binding affinity values by first

focusing on the sequences lying in the top 10-percentile affinity

values, then the top 20-percentile, and up to including all the

sequences using 10-percentile steps. The results of higher interest,

corresponding to stronger DNA-binding affinity values, are the top

percentiles but all percentiles were computed for completeness.

Using such a methodology, we expect the predicted scores

obtained from the models to better correlate with high DNA-

binding affinity values than with low values. Figure 5B gives the

Pearson correlation coefficients with respect to the top percentiles

of DNA-binding affinity values for both isoforms of the Max TF.

We observe that all the TFFMs (whatever the order) correlate well

with the experimental data with a Pearson correlation coefficient

over 0.6 up to the top 80-percentiles. Coefficients obtained when

considering the top 10- and 20-percentiles (when TF-DNA

interaction is the strongest) are around 0.7, showing the high

correlation between TFFM scoring and experimental values. In

contrast, scores obtained from PWMs and DWMs give Pearson

correlation coefficients in the range of 0.45–0.55. Analysis of the

Max data indicates that the TFFMs reflect the DNA-binding

affinities measured experimentally for the Max TF.

To understand what characteristic(s) the TFFMs are capturing

that is not represented by either the PWMs or the DWMs, we

examined the DNA sequences obtaining the highest DNA-binding

affinity values. We looked at the motifs for which the DNA-

binding affinities are the highest by considering the top-scored 25,

50, 75, and 100 sequences (see Figure S7). Figure S8 contains the

sequence logos corresponding to the TFFMs and the PWM (no

such representation has been made available for the DWM in

[19]). One can observe that the TFFMs better capture the C/T

pattern at position 7 that is found strongly at position 4 of the top

DNA-binding affinity sequences (Figure S7). To a lesser extent, the

same can be observed at position 6 with the A/G captured by the

TFFMs. These patterns are not captured by the PWM since the

CAC is strictly expected at positions 5–7, this coming from the

construction and training of the PWMs made from the over-

represented motif with a strict CAC. Hence, the PWM does not

reflect the needed flexibility captured by the TFFMs through the

training step, which is captured by the 0-order TFFM (concep-

tually the same as a PWM but with a different method of training).

In [52], binding affinity differences between the optimal

sequence (with a core CACGTG motif) and the mutated

sequences were computed. We performed the same analysis using

the predictive scores for the different models in order to compare

the results. Table 2 summarizes the comparison in which we

observe that the TFFMs perform better than both the PWM and

the DWM. Pearson correlation coefficients for TFFMs are §0:74
whereas the PWM and the DWM obtain at most a coefficient of

0.66. As a conclusion, these results emphasize the capacity of the

TFFM scores to correlate with DNA-binding affinity.

Allowing for flexible length motifs using TFFMs
In the previous sections, the TFFMs were used to model TFBSs

with fixed length by taking into consideration the dinucleotide

composition of the sequences. Another feature of the TFBSs that

can be accommodated by TFFMs is flexible length.

A subset of TFs bind to the DNA with different structural

conformations, leading to TFBSs of different lengths [25–27]. In

order to model a binding site with a flexible length, we can use the

transition probabilities of the underlying HMMs of the TFFMs.

For instance, a 1st-order HMM state corresponding to position p
of a TFBS can transition to state at position pz1 and to state at

position pz2 to allow pz1 to be omitted for some TFBSs of

smaller length. The same applies to HMMs of detailed TFFMs

where the probabilities are decomposed for each nucleotide in

positions p to pz2. To assess the capacity of the TFFMs to model

flexible length TFBSs, we applied the 1st-order and detailed

TFFMs to ChIP-seq data corresponding to three TFs with

potentially flexible DNA-binding motifs (JunD, STAT4, and

STAT6) and compared their discriminative power with fixed

length TFFMs, PWMs and DWMs following the cross-validation

methodology used previously. We compared the methods to

GLAM2 which was first developed to find motifs in proteins with

arbitrary insertions and deletions but which can also be applied to

DNA sequences [53].

The example of the JunD TF. The first TF analyzed is JunD

which has been previously shown to bind to motifs of flexible

length using protein binding microarrays in mouse [1]. Badis et al.

showed that JunD can bind to a core motif composed of either

TGACGTCA or TGAC/GTCA where C/G stands for C or G.

When applying MEME to the whole JunD K562 ENCODE

ChIP-seq data set, we observed the enrichment of the two

patterns. We used the data set exhibiting the greatest enrichment

of the patterns to train and test the different models. We can see

from the ROC curves in Figure 6 that introducing a spacer into

TFFM for the JunD motif improves the discriminative power of

the TFFMs. GLAM2 also performs better than the fixed-length

TFFMs, but not as well as the flexible-length TFFMs. The TFFMs

using a flexible length outperform the fixed TFFMs, PWMs,

DWMs, and GLAM2. Hence, the flexible length TFFMs are able

to capture the flexible length motif thanks to the adapted transition

probabilities.

The examples of STAT4 and STAT6 TFs. STAT TFs bind

with a flexible length motif [25,26,54]. STAT4 and STAT6 TFs

have been specifically analyzed [54] using ChIP-seq. Even though

they were shown to bind to two motifs of different length (STAT4

Table 2. Pearson correlation coefficients between
experimentally measured and predicted changes in affinity
correlations.

Isoform Method Pearson correlation coefficient

isoA PWM 0.65

DWM 0.66

0-order TFFM 0.76

1st-order TFFM 0.74

detailed TFFM 0.75

isoB PWM 0.60

DWM 0.61

0-order TFFM 0.77

1st-order TFFM 0.75

detailed TFFM 0.75

The table contains the Pearson correlation coefficients computed between the
experimentally measured and predicted changes in DNA-binding affinity
between the optimal sequence and mutated ones. Correlations have been
computed for both Max TF isoforms and all the predictive methods. Associated
p-value have been computed for each Pearson correlation coefficient value and

are v2:2|10{16 .
doi:10.1371/journal.pcbi.1003214.t002
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preferentially binding to a TTCCNGGAA core motif and STAT6

to a TTCCNNGGAA core motif), genes bound by both STAT4

and STAT6 were extracted in different conditions. From such an

overlap, one can hypothesize that the TFs can bind to the same

motifs when allowing for a flexible spacing between the two halves

TTCC and GGAA. To assess this assumption, we constructed 1st-

order and detailed TFFMs by allowing for a flexible length in the

motif between the two halves. We observe in Figure 7 that

introducing a spacer does not improve significantly the AUC of

the ROC curves (we observe a small decrease for STAT4 and

small increase for STAT6) when compared to the fixed-length

TFFMs. All TFFMs perform better than PWMs, DWMs, and

GLAM2. Allowing for different spacing within STAT binding

motifs and assessing their predictive power has been tested in a

previous study without success [27]. This might be due to co-

occurrences of binding sites with both 1 nt and 2 nt spacers in a

subset of the ChIP-seq data as hypothesized in [27] when looking

at STAT5a and STAT5b. This is also supported by [54] (where

the ChIP-seq data used are originated) showing that 37% of the

genes bound by both STAT4 and STAT6 contain the two types of

motifs. The use of TFFMs simplifies the analysis, allowing for a

single unified model to capture both motif lengths at no cost for

the underlying predictive power.

Flexible spacing in the flanking regions of a motif. In the

previous examples of flexible length binding motifs, we focused on

motifs where a spacer was found between the two halves of a core

motif. One can also consider motifs containing a flexible edge at

the outer edges of a core motif. When analyzing MEME output for

ENCODE ChIP-seq data, we observed that a MafK data set

showed a weak motif on its edge separated by a 1 nt spacer from

the core motif (see Figure S9). We hypothesized a potential flexible

edge in the binding motif that could be explained by different

biological phenomena as a binding event with or without a co-

factor. We assessed this hypothesis by allowing this edge to be

present or not when predicting a binding site in the 1st-order and

detailed TFFMs. Following the cross-validation methodology used

before, we constructed the corresponding ROC curves and

compared the results with the previous models. TFFMs outper-

formed PWMs and DWMs (see Figure 8). We can see from the

ROC curves in Figure 8 that introducing a flexible edge gives an

improvement to the AUC when compared to the full-length

TFFMs. Even though the improvement is not strong, allowing the

capture of different types of binding events through a flexible edge

gives insight into the binding of MafK. For instance, the flanking

portion of motifs might be explained by different conformations of

the protein or a potential partnership with a co-factor when

binding to the DNA.

Using TFFMs to compute probabilities of occupancy of a
TF

In the previous sections, TFFMs have been used to predict

specific TFBS positions. We extended the TFFM-framework to

compute an integrated TF occupancy score across a DNA

Figure 6. ROC curve analysis of JunD ChIP-seq data. TFFMs allowing a flexible length motif have been compared to PWMs, DWMs, GLAM2, and
fixed-length TFFMs. Flexible TFFMs outperform the other models since the corresponding ROC curves are above ROC curves corresponding to other
models.
doi:10.1371/journal.pcbi.1003214.g006
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sequence using the TFFM scores. Using the TFFMs, the

probability of occupancy (Pocc) of a TF within a defined DNA

sequence is obtained by multiplying the TFBS probabilities at each

position (see Material and Methods section for details). This is a

simpler approach than the physico-chemical models used in tools

like GOMER [55] and TRAP [56], and somewhat similar in

concept to the approach of OHMM [57] which uses HMMs to

predict occupancy of TFs with self-overlapping binding motifs. To

observe whether Pocc can improve the discriminative power of the

TFFMs, Pocc have been computed from TFFMs and assessed for

Figure 7. ROC curve analysis of STAT4 and STAT6 ChIP-seq data. TFFMs allowing a flexible length motif have been compared to PWMs,
DWMs, GLAM2, and fixed-length TFFMs on STAT4 (A) and STAT6 (B) ChIP-seq data. Flexible TFFMs do not significantly perform better than fixed-
length TFFMs. DWMs, PWMs, and GLAM2 produce a lower discriminative power than the TFFMs.
doi:10.1371/journal.pcbi.1003214.g007

Figure 8. ROC curve analysis of MafK ChIP-seq data. TFFMs allowing a motif with a flexible edge have been compared to PWMs, DWMs,
GLAM2, and fixed-length TFFMs. Flexible TFFMs perform slightly better than fixed-length TFFMs and both outperform the other models.
doi:10.1371/journal.pcbi.1003214.g008
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their capacity to discriminate between ChIP-seq data and

background sequences and compared to original TFFMs using

the best site per ChIP-seq peak to discriminate between ChIP-seq

data and background sequences. When analyzing data sets for

which at least one method obtains an AUC§70% (97 with a

genomic background and 100 with an HMM-generated back-

ground), we found that using Pocc values improves discrimination

as measured by AUC for 62 out of 97 (i.e. 64%) data sets when

considering genomic background and 63 out of 100 (i.e. 63%)

when considering HMM-generated background (see Figure S14).

Discussion

In this report, we have introduced a flexible HMM-based

framework for TFBS prediction. The new models are demon-

strated to perform as well as classic methods for most data, while

exhibiting improved performance for a subset of TFs. The new

approach retains the desirable attribute of producing scores

correlated with the binding energy of TF-DNA interactions. A

new graphical representation is introduced to illustrate the

properties of the models, complementing the classic and widely

used sequence logos. In applications, the TFFM models have been

shown to handle variable spacing between half sites, and to allow

for the incorporation of flanking sequence properties into TFBS

analysis. With a convenient software package and a breadth of

opportunities for improvement, TFFMs are a suitable foundation

for the next generation of TFBS prediction.

The new TFFM-framework provides an opportunity for

researchers to analyze more deeply the features of TF-DNA

binding interaction by looking at local dinucleotide dependencies

captured by the TFFMs and represented by the new logos. One

can see the TFFMs as the probabilistic analog of the energetic

BEEML models developed in [18]. Unfortunately, the two

modeling approaches cannot be directly compared since they

are elaborated from two different types of data sets (PBM data for

the BEEML tool [18] and ChIP-seq data for the TFFMs). BEEML

software cannot use ChIP-seq data (personal communication with

the authors) and the TFFMs have not been developed to consider

PBM data information in their current form but both models are

able to capture TFBS features with good specificity.

For TFFMs, the greatest utility is in handling the growing subset

of TFs with complex binding properties. Such complex binding

characteristics of TFs may be decomposed into four categories [1]

based on the structure of their corresponding motifs: position

interdependence (i.e. the probability of observing a nucleotide at

one position is informed by the nucleotide observed at another

position), variable width, multiple effects where we can observe a

combination of position interdependence and variable length, and

alternate recognition interface where bound DNA segments

cannot be accounted for using models of either variable length

or position interdependence. The models we used in these

analyzes aim at addressing the three first categories of TFBS

characteristics using only one framework, while the framework

provides sufficient flexibility to incorporate the fourth, such as

subtle flanking sequence properties.

The TFFM-framework creates new opportunities for innovation

in TFBS bioinformatics analysis. Drawing from the initial studies

here, it is apparent that refined approaches can be pursued for the

identification of TFs capable of binding to motifs of variable width

and the analysis of the role of TFBS flanking sequence on TF

binding. While the number of cases of TFs tolerant of variable

width binding sites has grown with access to high-throughput

TFBS data, the TFFM-framework could be extended to enable a

comprehensive survey of ChIP-seq data collections to identify

additional cases. As observed in the analysis of MafK TFBS

flanking sequences, TFFMs are sufficiently flexible to incorporate

additional information represented in TFBS proximal sequences.

There have been some indications that such sequences may specify

interactions with co-factors [58]. TFFMs offer advantages over

past methods for the detection of such weak signals with variable

positions. It is our plan to expand the TFFM-framework to

automatically look for variable-length motifs.

Beyond the analysis of non-canonical TF binding motifs, there is

a significant scientific opportunity to develop a new computational

approach for the prediction of functionally significant DNA

variations within cis-regulatory sequences. The global relationship

of TFBSs and nucleotide variations is largely unknown [59].

Recent studies have shown extensive genetic variations on human

TFBSs often correlated with differences in gene expression [60]

and identified TFBSs as genetic determinants of retroviral

integration in the human genome [61]. TFFMs have the capacity

of modeling the impact of mutations on the TF-DNA binding

affinity, as demonstrated for the Max TF. These early results show

the promise for using TFFMs to score the impact of nucleotide

variations on TF-DNA interactions.

A key to the long-term development and adoption of TFFMs is

the access of researchers to both the binding models and the

software for their generation. It is our plan to generate a collection

of TFFMs trained on ChIP-seq data sets from ENCODE, as well

as other sources compiled into the PAZAR repository [62,63].

Models shall also be incorporated in the next release of the

JASPAR collection [64], with a parallel release of PWMs

constructed from the same data. Analysis of DNA sequences will

be supported through both a web application and a standalone

version using already trained TFFMs directly downloadable from

JASPAR. For bioinformatics research, we have provided the code

of the TFFM package and its documentation (accessible at http://

cisreg.cmmt.ubc.ca/TFFM/doc/) to allow others to refine the

approaches and make further innovations to broaden the use of

TFFMs.

The new TFFMs described in this report are designed to

address the confounding properties of position inter-dependencies

in site composition and variable lengths observed in experimental

data. These two challenges have emerged as an increasing issue

with the availability of large-scale ChIP-seq data, which reveals

greater complexity of TFBSs than could be observed in the past.

The TFFM graphical motif representation conveys properties of

position inter-dependence, allowing researchers to visually analyze

the features captured by the model. TFFMs have been assessed on

human and mouse ChIP-seq data sets coming from ENCODE,

revealing a higher discriminative power than established methods.

TFFMs produce scores consistent with observed protein-DNA

affinities measured experimentally and have the capacity to predict

the impact of TF binding site mutations on TF-DNA binding

affinities.

The analysis of TFBS is a central challenge in bioinformatics.

TFFMs provide a powerful and flexible framework within which a

broad range of problems can be addressed. While many motif

discrimination methods are available, it is our perception that

TFFMs will emerge as a preferred approach for TFBS analysis.

Materials and Methods

ChIP-seq data sets
Comparisons between the different predictive methods were

done using ChIP-seq data sets from the ENCODE project [39].

We used ChIP-seq data sets from human (hg19 assembly) and

mouse (mm9 assembly) containing at least 1800 peaks for which
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the peak max position is known (i.e. narrowPeak-formatted data),

representing 206 ChIP-seq experiments. In limiting to sets with at

least 1800 peaks, we ensure that at least two times the number of

peaks used to search for an over-represented motif by MEME (top

600 peaks used, see below) will be used during the 10-fold cross-

validation procedure as explained below. As DNA-binding events

should be located around the peak max area (corresponding to the

highest coverage of ChIP-seq reads) of the ChIP-seq peaks [45],

we extracted 50 nt on each side of the peak max position. Hence,

each peak is composed by 101 nt centered at the peak max

position and is associated to a signal value corresponding to the

enrichment for TF binding in the region of the peak.

For assessing the performance of TFFMs allowing for flexible

length motifs, we used the following ChIP-seq data sets: human

ENCODE JunD TF from K562 cells by the University of

Chicago, mouse ENCODE MafK TF from Ch12 cells by Stanford

University, and STAT4 and STAT6 TFs from [54].

HMMs
1st-order HMMs used in 1st-order TFFMs are composed of a

state modeling the background sequences surrounding TFBSs and

one state per position p within the TFBSs. The use of a 1st-order

HMM allows the model to capture the dinucleotide dependencies

through emission probabilities at position p dependent on the

nucleotide found at position p{1 (see Figure 1A). One can move

from the background state to the first ‘‘matching state’’ (i.e. the first

position within a TFBS) with a defined probability, whatever the

nucleotide generated by the background state. Figure 1A gives a

representation of the 1st-order HMM template where the first state

corresponds to the background state representing the nucleotides

surrounding TFBSs. Following states correspond to the matching

states where each one corresponds to a position within a TFBS. Each

state emits a nucleotide with probabilities dependent on the nucleotide

emitted by the previous state. Within matching states, moving from

one TFBS position to the next is given by transition probabilities equal

to 1. Probabilities are learned using the Baum-Welch algorithm on

ChIP-seq sequences, starting from initialized values.

HMMs used in detailed TFFMs decompose each state of the

1st-order HMM with four corresponding states in the detailed

HMM, each one emitting a nucleotide (A, C, G, or T) with a

probability equal to 1 (see Figure 1B). Dinucleotide dependencies

are modeled by four transition probabilities getting out of each

state at position p and directing to each state at position pz1 (see

Figure 1B).

HMMs used in 0-order TFFMs are constructed with the same

set of states as the ones used for the HMMs of the 1st-order

TFFMs. The emission probabilities are different since no

dependency between positions is captured. Hence, each state is

associated to only four emission probabilities for the four

nucleotides (see Figure S14).

Probability of occupancy scores computation
The TFFMs provide, at each position i within a DNA sequence,

the probability Pi of being in a final matching state (corresponding to

the last position of a TFBS). Directly following the spirit of [55], the

probability of occupancy (Pocc) of a TF, which TFBSs are modeled

by a TFFM, on a DNA sequence of length L can be computed as:

Pocc~1{P
L

i~1
(1{Pi)

where (1{Pi) represents the probability of a TF not occupying the

DNA sequence at position i.

Model comparisons
The different model predictive powers were compared using a

10-fold cross-validation methodology on human and mouse ChIP-

seq ENCODE data sets.

Data sets construction for cross-validation. Given a

ChIP-seq data set C, we constructed different sets of sequences

that are used to train and test the predictive models. The set S is

defined by the top (highest signal-values) 600 ChIP-seq peaks. The

remaining sequences (C{S) are used to construct the 10 training

(T ) and 10 testing data sets (F ) that are used for the 10-fold cross-

validation, where T is 9 times larger than F .

Ten background data sets (B1) are generated by selecting randomly

the same number of sequences from mappable sequences. Mappable

regions of the human and mouse genomes have been derived from the

ENCODE CrgMappability 36mer track (ftp://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode

CrgMapabilityAlign36mer.bigWig). They were generated from contig-

uous 36mers, and keeping regions greater than 200 bp. These regions

were split into 100 bp pieces. The background for each dataset was then

drawn randomly by matching %GC composition of the foreground

sequences.

Finally, we generate 10 additional background data sets (B2) by

using a one-state 1st-order HMM constructed from the matching

sequences from F .

When predicting TFBSs using a TFFM, input sequences are

scored at every positions for both strands. Corresponding scores

are the posterior probabilities of being at the final state of the

underlying HMM computed by the forward and backward

algorithms [36].

Model construction for cross-validation. Data sets de-

scribed in the previous section were used to initialize, train, and

test the predictive methods through a cross-validation methodol-

ogy. The procedure was as follows:

1. Apply MEME [43,65] on S and extract the top over-

represented motif (default parameters).

2. Use the motif to initialize the 0-order, 1st-order, and detailed

TFFMs (emission probabilities, for the 0-order and 1st-order

TFFMs, and transition probabilities, for the detailed TFFM,

are derived from nucleotide frequencies at each position of the

motif).

3. Train TFFMs on the 10 training sets from T .

4. Apply the TFFMs on matching F and Bi and extract the

highest scored hit per sequence.

5. Compute the corresponding ROC curve.

6. Apply MAST [44,65] on the 10 training sets from T using the

motif from MEME (default parameters).

7. Construct corresponding PWMs (i.e. log-odds weight matrices

derived from the PFMs [8]) and DWMs using the results from

MAST by aligning matched sequences.

8. Apply the PWMs and the DWMs on F and Bi and extract the

best hit per sequence.

9. Compute the corresponding ROC curves for each method.

ROC curves
Construction of the ROC curves and AUC

computation. For each ChIP-seq data set and predictive

model, the best hits from F and Bi were merged and ranked by

their scores (the highest to the lowest). By varying a threshold on

the score, we iteratively constructed sets of predicted sequences as

TFBSs (i.e. with a score above the threshold). Sequences predicted
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as TFBSs coming from F (resp. Bi) are considered as true (resp.

false) positive. On the contrary, true negatives (resp. positive) are

sequences coming from Bi (resp. F ) and not predicted as TFBSs (i.e.

with a score below the threshold). Each threshold value gives a pair

of specificity-sensitivity values used to construct the ROC curve.

The area under the ROC curve (AUC) can be computed using the

sensitivity as the y-axis and 1 minus the specificity as the x-axis.

Computation of the p-values. The statistical significance of

a difference between two predictive methods has been assessed

through a p-value computation using the two-paired-samples

Wilcoxon signed rank test [46] assuming a null hypothesis of

symmetric distribution of AUC differences around 0 (function

wilcox.test of the stats R package [66]). p-values were corrected using

a Benjamini-Hochberg correction for multiple testing [47].

To assess the statistical significance of the trend of correlation

between model scores and ChIP-seq signal values, we computed the

p-values of getting a regression line (corresponding to the general

trend of correlation) with the corresponding slope. The regression

lines and the corresponding p-values are obtained through the lm

function of the stats R package [66]. The p-value assesses the

probability of getting a slope so far from 0 (horizontal line).

TFFM logos
The summarized features captured by the TFFMs are represent-

ed through a sequence logo similar to the ones used for basic PWMs.

To construct the sequence logos, the probability of getting each one

of the four nucleotides is computed at each position starting from an

equiprobability of A, C, G, and T in the background. Let P(lp1) be

the probability of letter l[(A,C,G,T) at position p1. We compute

P(np2) as equal to
P

l[(A,C,G,T) E(np2Dlp1)|P(lp1) where E(np2Dlp1)

corresponds to the emission probability of the nucleotide n at

position p2 when nucleotide l was found at position p1. When

considering the 1st-order TFFMs, we use the emission probability

values whereas the transition probability values give the information

for the detailed TFFMs.

The classic sequence logos do not give any information about

the dinucleotide dependencies captured by the TFFMs. We

introduce a new graphical representation of the TFBSs modelled

by the TFFMs that is able to capture this feature (see Figure 2). As

for a regular sequence logo, each column corresponds to a position

within a TFBS. Each row captures the probabilities of each

nucleotide knowing the nucleotide at the previous position (one

row per nucleotide A, C, G, and T). It follows the same

computation as explained above but considering a specific

nucleotide found at the previous position. For instance, the

probability of emitting n at position p2 for row A (so A was found

at position p1) is equal to P(np2DAp1). As for the summary logo, the

emission probabilities are used for the 1st-order TFFMs whereas

the transition probabilities are used for the detailed TFFMs. The

height of the letters reflect their probability (the greater the height,

the higher the probability). In order to highlight the preferred

rows, the opacity of a case (intersection of a row and a column)

represents the probability of finding the nucleotide corresponding

to this specific row at the previous position of the TFBS (the higher

the opacity, the higher the probability).

Given the probabilities of finding each nucleotide at each TFBS

position, we compute the information content (IC) of a TFFM by

summing the IC of all the positions computed as
P

l[(A,C,G,T) 2{

P(lp)|log2(P(lp)).

Max experimental DNA-binding affinities
DNA-binding affinities between human Max transcription

factor (isoforms A and B) and DNA sequences have been obtained

experimentally by using the MITOMI method and reported in

[52]. Absolute affinity measures were calculated by varying four

nucleotides in the first half of the core binding-motif with the

preferred GTG second half-site kept. The changes in the energy

between the optimal sequence and mutated ones were also

computed in [52] by subtracting the energy associated with the

mutated sequences to the energy of the optimal sequence. Both

absolute affinity measures and changes in the binding energy were

compared to predicted values obtained with the different models.

Score correlations
Prediction scores vs ChIP-seq peak scores. By applying

the 10-fold cross-validation methodology to the ChIP-seq data sets

(note that the 600 best/top peaks are not considered in the 10-fold

cross-validation), we obtained a score for each one of the peaks

(corresponding to the score of the best hit per peak). The

ENCODE data associate a signal value to each one of the peaks.

The signal value is a measure of the enrichment for the overall

peak region (usually, average). As the peak scores coming from

ENCODE may be unevenly distributed, we computed the median

of the distribution of prediction scores for the sequences within

each 5-percentile of the peak scores. Hence, each peak score 5-

percentile is associated to a predictive score corresponding to the

median of their distribution within the percentile. A Spearman’s

rank correlation coefficient has been used to compare prediction

scores and ChIP-seq peak scores for these latter data using the

cor.test function of the stats R package [66].

Prediction scores vs experimentally measured DNA-

binding affinity. We compared experimental DNA-binding

affinities from [52] to prediction scores computed using the

different models on all the permuted sequences defined in [52].

The models derived from ChIP-seq data are 11 nt long (see Figure

S6) and comparisons focussed on sequences corresponding to

positions N{4 . . . N3 (corresponding to nucleotides NCACGTG

in the consensus sequences), see Figure S6. As TFFMs need to

incorporate a background context, we generated all the 12 nt long

sequences preserving GTG at positions N1, N2, and N3.

Prediction scores obtained by the models were compared to the

experimental values corresponding to the sequence with the same

nucleotides at positions N{3, N{2, and N{1. Note that a single

value coming from [52] is associated with multiple predictive

values for a given model. Results are given in Figure 5B.

Experimental scores were iteratively divided using top percentiles

(ten by ten) and the Pearson correlation coefficient between

experimental values and prediction scores was computed for each

set (see Figure 5B).

The detailed methodology used is as follows:

1. Construct all 12 nt-long sequences conserving nucleotides

GTG at positions 9, 10, and 11 (a nucleotide A is used at the

very beginning for the 1st-order TFFM with no impact on the

scores).

2. Construct TFFMs, PWM (i.e. log-odds weight matrices), and

DWM using an initialization from the top 600 peaks and

trained on the whole ENCODE human Max K562 ChIP-seq

data set.

3. Compute the prediction scores on all the sequences using the

different methods (only one strand is used for the score

computations here).

Score associations between experimental values and results

obtained using the above methodology are given in Figure 5B and

Table 2.
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Starting from the optimal binding site containing CACGTG, we

also compared the changes in prediction scores between a mutated

site and the optimal sequence with the changes using the experimental

DNA-binding affinities for the same sequences. A Pearson correlation

coefficient between the two scores is then computed using the function

cor.test of the stats R package [66] (see Table 2).

Flexible length models
JunD TFFMs. The first over-represented motif found by MEME

in the JunD data set used for the flexible motif analysis is 14 nt-long

with a G/C (G or C) at the centre of the core motif (see position 9 in

Figure S10A). The second most over-represented from MEME shows

a CG (C followed by a G) at the centre of the core motif (see positions

7–8 in Figure S10B). When initializing the flexible length TFFMs, we

added to the 14 nt-long ones the possibility of having either the G/C

like pattern at position 9 or a CG like one. Transition probabilities were

initialized to allow both motif with 50% probability each. The

corresponding TFFMs were then trained on the training data sets

following the same 10-fold cross-validation methodology as before.

STAT4 and STAT6 TFFMs. To construct a flexible length

TFFM modelling STAT4 TFBSs, a gap position has been

manually added to the original initialized models between position

5 and 6 (see Figure S11) with equal probabilities for the four

different nucleotides. At the initialization step, the probability of

using the added gap is set to 50%. Final probabilities have been

learned starting from these initialized models using the 10-fold

cross-validation methodology on the training sets.

STAT6 TFFMs. To construct a flexible length TFFM

modelling STAT6 TFBSs, position 5 from the original motif (see

Figure S12) was allowed to be ignored. Namely, the transition

probability between positions 4 and 5 has been manually set to

50% and a new 50% transition probability between positions 4

and 6 has been added. Hence, the TFFMs were able to model

10 nt- to 11 nt-long motifs. Corresponding initialized TFFMs

were trained during the 10-fold cross-validation analysis.

MafK TFFMs. Using the original initialized TFFM modelling

MafK TFBSs, we allowed the motif to end at position 14 in order

to model a flexible edge (see Figure S9). Namely, a 50% transition

probability between position 14 and the background state has been

added and transition probability between the positions 14 and 15

has been set to 50%. Corresponding initialized TFFMs were

trained during the 10-fold cross-validation analysis.

GLAM2. GLAM2 [53] has been used on JunD, STAT4, and

STAT6 ChIP-seq data sets to predict flexible length motifs. For

comparison purposes with the TFFMs, the parameters used were

optimized for the search of motifs of the same lengths. Namely,

GLAM2 was used to search for 14 nt- to 15 nt-long motifs on the

JunD data set, and 11 nt- to 12 nt-long motifs on the STAT4 and

STAT6 data sets.

TFFM-framework
The TFFM-framework is available at http://cisreg.cmmt.ubc.

ca/TFFM/doc with a web-based application available at http://

cisreg.cmmt.ubc.ca/TFFM/. The software have been implement-

ed in Python using the Biopython tools [67] and the General

Hidden Markov Model library [68]. The web-based application

has been developed using the Python cgi_app (https://pypi.python.

org/pypi/cgi_app/1.3) and the Python port of the Template

Toolkit (http://template-toolkit.org/python/index.html).

Supporting Information

Figure S1 Performances comparison between TFFMs
and weight matrices. For the 94 ChIP-seq data sets obtaining

an AUC§70% for at least one method (using the HMM-

generated background), the ratio between the AUC value using a

specific model and the best AUC obtained is plotted. The four

types of models were used (1st-order TFFM, detailed TFFM,

PWM, and DWM). By considering a similar performance between

two methods when the AUC ratio is §95%, we plot at the top of

the figure the region where the weight matrices (WMs) best

perform, where the TFFMs best perform, and where they are

similar. AUC ratios are ranked from the least to the most favorable

to the TFFMs.

(EPS)

Figure S2 ROC curves analysis. Comparison of the AUCs

corresponding to the ROC curves analysis of the subgroup of 96

ENCODE ChIP-seq data sets for which at least one predictive

method generated an AUC§70% using the genomic back-

ground. The y-axis represents the AUC for the ROC curves

corresponding to the different ChIP-seq data sets. The x-axis

indicates the number of hits found by MEME in the top 600

sequences of the corresponding ChIP-seq data sets. (A) Each point

represent a predictive method applied to a ChIP-seq data set (blue

for 1st-order TFFMs, red for detailed TFFMs, black for PWMs,

and grey for DWMs). (B) Regression lines obtained from the points

in (A) for the four different models. The regression lines

corresponding to the TFFMs indicate that higher AUC values

have been obtained using TFFMs compared to PWMs and

DWMs, overall.

(EPS)

Figure S3 ROC curves analysis. Comparison of the AUCs

corresponding to the ROC curves analysis of the subgroup of 94

ENCODE ChIP-seq data sets for which at least one predictive

method generated an AUC§70% using the HMM-generated

background. The y-axis represents the AUC for the ROC curves

corresponding to the different ChIP-seq data sets. The x-axis

indicates the number of hits found by MEME in the top 600

sequences of the corresponding ChIP-seq data sets. (A) Each point

represent a predictive method applied to a ChIP-seq data set (blue

for 1st-order TFFMs, red for detailed TFFMs, black for PWMs,

and grey for DWMs). (B) Regression lines obtained from the points

in (A) for the four different models. The regression lines

corresponding to the TFFMs indicate that higher AUC values

have been obtained using TFFMs compared to PWMs and

DWMs, overall.

(EPS)

Figure S4 Performances comparison between 0-order
TFFMs, other TFFMs, and WMs. For the 94 ChIP-seq data

sets used in Figure S1 (using the HMM-generated background),

the ratio between the AUC value using a specific model and the

best AUC obtained is plotted. (A) The three types of TFFMs were

used (1st-order, detailed, and 0-order TFFMs). AUC ratios are

ranked from the least to the most favorable to the 1st-order and

detailed TFFMs. We observe that the 1st-order and detailed

TFFMs outperform the 0-order TFFMs when discriminating

ChIP-seq sequences from HMM-generated background sequenc-

es. (B) 0-order TFFMs and WMs were used. AUC ratios are

ranked from the least to the most favorable to the 0-order TFFM.

We observe that the WMs outperform the 0-order TFFMs when

discriminating ChIP-seq sequences from HMM-generated back-

ground sequences.

(EPS)

Figure S5 Statistical significance of the trend of corre-
lation between ChIP-seq peak scores and the different
predictive scoring methods. The statistical significance of the
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trend plot in Figure 5A is assessed by computing the p-value of

getting a regression line (between ChIP-seq peak scores and TFFM

or WM predicted scores) with an slope that far away from 0. We

observe that the p-values are, overall, close to 0 and indicate that

the average behaviour of the correlation given by a linear

regression is far from an horizontal line.

(EPS)

Figure S6 Max sequence logo. Sequence logo corresponding

to Max binding sites. Max binds to the DNA with the core site

allowing for CACGTG nucleotides at positions N{3, N{2, N{1,

N1, N2, and N3.

(EPS)

Figure S7 Sequence logos of the top DNA-binding
affinity values. Sequence logos obtained from the top (A) 25,

(B) 50, (C) 75, and (D) 100 scoring sequences using DNA-binding

affinities measured experimentally.

(EPS)

Figure S8 Sequence logos for Max TF. Sequence logos

obtained from the two TFFMs and the PWM after training on all

the ChIP-seq data for human Max TF from the K562 cell line. (A)

Summary TFFM logo for the 1st-order TFFM. (B) Summary

TFFM logo for the detailed TFFM. (C) Sequence logo for the

PWM.

(EPS)

Figure S9 Sequence logo for MafK TF. Sequence logo from

the motif found over-represented with MEME. We observe a weak

motif on the edge of the motif, starting at position 15, is separated

by a 1 nt spacer from the core motif.

(EPS)

Figure S10 Sequence logos for JunD TF. Sequence logos of

the top two motifs found over-represented with MEME. (A) The

first over-represented motif found by MEME in the JunD data set

is 14 nt-long with a G/C (G or C) at the centre of the core motif

(see position 9). (B) The second most over-represented from

MEME shows a CG (C followed by a G) at the centre of the core

motif (see positions 7–8).

(EPS)

Figure S11 Sequence logos for STAT4 TF. Sequence logos

of the top motif found over-represented with MEME.

(EPS)

Figure S12 Sequence logos for STAT6 TF. Sequence logos

of the top motif found over-represented with MEME.

(EPS)

Figure S13 Discriminative power of the probability of
occupancy. Using 1st-order and detailed TFFMs, the ratio

between the AUC value obtained from the best site per sequence

or the probability of occupancy (Pocc) and the best AUC obtained

is plotted. (A) For the 97 ChIP-seq data sets for which at least one

method obtains an AUC§70% using a genomic background,

results from the two kinds of methods (best site per sequence or

Pocc) are plotted. AUC ratios are ranked from the least to the most

favorable to the usage of the Pocc computation. (B) For the 100

ChIP-seq data sets for which at least one method obtains an

AUC§70% using a HMM-generated background, results from

the two kinds of methods (best site per sequence or Pocc) are

plotted. AUC ratios are ranked from the least to the most

favorable to the usage of the Pocc computation. We observe that

using the Pocc computed on the DNA sequences perform better,

overall, than using the best score per sequence obtained with the

TFFMs on both sets of background sequences.

(EPS)

Figure S14 0-order HMM schema. 0-order HMM schema

used in 0-order TFFMs where the first state represents the

background and the following states the consecutive positions

within a TFBS. Each state emits a nucleotide with an independent

probability for the previously emitted nucleotides.

(EPS)

Table S1 HMM-based tools for TFBS prediction com-
parison. Different HMM-based tools (names and references are

given in the first and second columns) have been developed to

predict TFBSs. The table compares different features of the tools.

The third column indicates whether the models capture the

dependencies between TFBS positions. The fourth column

indicates whether the implemented HMMs allow for flexible

length motifs. The fifth column indicates which tools implement

the computation of probability of occupancy (Pocc) of a TF on

DNA sequences. The sixth and seventh columns indicate whether

the source-code of the tools is freely available for download and

whether there is a corresponding online documentation. Finally,

the last column indicates the tools for which a web-based

application is available.

(PDF)

Table S2 Statistical significance for discriminative
power differences between the predictive methods. The

table contains the Benjamini-Hochberg corrected p-values of the

differences (using a Wilcoxon signed rank test) between each pair

of methods. 1st-order and detailed TFFMs are likely to perform

similarly and so between PWM and DWM. Results are obtained

using AUC values when discriminating ChIP-seq data from

HMM-generated background sequences.

(PDF)
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