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The typical indication of radon therapy is rheumatoid arthritis.
Although there are several reports that radon therapy has
regulation effects on Th17 cells, there has been no study
reporting that radon inhalation affects the immune balance
among Th1, Th2, and Th17. The purpose of this study is to
examine the cytokine changes after radon inhalation. BALB/c mice
inhaled radon at 2,000 Bq/m3 for 2 or 4 weeks. SKG/Jcl mice
inhaled radon at 2,000 Bq/m3 for 4 weeks after zymosan
administration. The results showed that radon inhalation for 4
weeks activated the immune response of Th1, Th2, and Th17.
Moreover, the balance among them was not lost by radon
inhalation. Radon inhalation for 4 weeks decreased superoxide
dismutase activity and increased catalase activity in spleen. These
findings suggest that an imbalance of oxidative stress may
contribute to activate the immune response. Although zymosan
administration activated Th17 immune response and decreased
Th1 and Th2 immune response in SKG/Jcl mice, most cytokines
related to Th1, Th2, and Th17 approached the normal level by
radon inhalation. These findings suggested that radon inhalation
has a different action between SKG/Jcl mice and normal
BABL/c mice. This may indicate that radon inhalation has an
immunomodulation function.
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R adon therapy is a traditional therapy. Clinical studies
revealed that radon therapy alleviated pain related diseases,

such as rheumatoid arthritis (RA).(1,2) In recent years, Maier
reviewed the mechanisms of the effects of radon therapy.(3) The
initial action of the proposed mechanisms by radon inhalation is
to increase antioxidant substances such as superoxide dismutase
(SOD),(4,5) which leads to a decrease in reactive oxygen species
(ROS). For example, peaks of SOD activity were observed under
specific conditions in various studies.(4,5) Therefore, activation of
antioxidative functions induced by radon inhalation depends on
the radon concentration or time after radon inhalation.

A further effect of radon therapy is to inhibit inflammation.
ROS play an important role in the development of inflammation.
For example, carrageenan or formalin administration to the
mouse paw induced inflammatory edema or inflammatory pain
due to the production of ROS.(6,7) We have reported that radon
inhalation inhibits inflammation induced by carrageenan(8) and
formalin(9) administration to mice paw via the activation of
antioxidative functions. Similarly, there is a lot of evidence that
oxidative stress is closely related to RA.(10,11) In clinical studies,

radon therapy with RA patients reduces pro-inflammatory
cytokines, such as tumor necrosis factor (TNF)-α, suggesting the
relief of inflammation.(12) The probable mechanism is that radon
therapy increases Treg cells, which regulate Th17 cells.(13) Conse‐
quently, the receptor activator of nuclear factor-kappa B ligands,
which leads to the activation of osteoclast, decreases after radon
therapy.(12) Thus, the activation of antioxidative functions
following radon inhalation may contribute to the alleviation of
inflammation.
Although there are several reports that radon therapy has regu‐

lation effects on Th17 cells,(13) there has been no study reporting
that low-dose radon inhalation affects the immune balance
among Th1, Th2, and Th17. Clarifying the changes in cytokines
by radon inhalation might help understand the mechanisms of
radon therapy. The purpose of the present study is to examine the
cytokine changes by radon inhalation and the difference between
normal BALB/ mice and SKG/Jcl mice, which are RA model
mice derived from BALB/ mice.

Materials and methods

Animals. Eight-week-old male BALB/c mice and 10-week-
old SKG/Jcl mice (CLEA Japan Inc., Tokyo, Japan) were housed
under room temperature and a preset light-dark cycle of 12:12 h.
Ethics approval was obtained from the Animal Care and Use
Committee of Okayama University.

Zymosan administration. Two mg of zymosan was dis‐
solved in 500 ml of saline solution. Mice were subjected to
intraperitoneal injection of zymosan before radon inhalation.

Radon inhalation. BALB/c mice inhaled radon at a concen‐
tration of 2,000 Bq/m3 for 2 or 4 weeks. After zymosan adminis‐
tration, SKG/Jcl mice inhaled radon at a concentration of 2,000
Bq/m3 for 4 weeks using our developed radon inhalation system
for small animals. The control group received sham inhalation
only.

Sample collection. The spleens of BALB/c mice and lungs
of SKG/Jcl were removed quickly after euthanasia using CO2.
The blood was collected from the heart and centrifuged at 3,000
× g for 5 min at 4°C. The upper aqueous layers were collected for
the assay of cytokines.

Cytokine assay. The level of cytokines, such as interleukin
(IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p70), IL-13,
IL-17A, interferon (IFN)-γ, the granulocyte macrophage colony-
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stimulating factor (GM-CSF), and TNF-α, was determined using
an assay kit (Bio-Plex Pro, Bio-rad, CA). The assay was
consigned to Okayama University Hospital Biobank.

Biochemical assays. For SOD, catalase (CAT), and total
glutathione (t-GSH) assays, samples spleens (BALB/c mice) and
lungs (SKG/Jcl mice) were homogenized in 10 mM phosphate-
buffered saline (PBS; pH 7.4), and homogenates were used for
analyses. The activity of SOD and CAT and t-GSH contents were
measured following the method described in our previous
studies.(14,15)

Assessment of Arthritis Score. The Arthritis Score was

determined based on the method by Hata et al.(16) The scores
showed the following; 0: no joint swelling, 0.1: swelling of one
finger joint, 0.5: mild swelling of the wrist or ankle, and 1.0:
severe swellings of the wrist or ankle.

Statistical analyses. The data values are presented as the
mean ± SEM. The statistical significance of differences was
determined by an unpaired t test for comparison between two
groups or one-way repeated-measures analysis of variance
(ANOVA) and Tukey’s test for multiple comparisons, where
appropriate. P values <0.05 were considered significant.
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Fig. 1. Changes in (A) Th1-, (B) Th2-, and (C) Th17-related cytokines in serum of BALB/c mice. The number of each experimental group is 7. Data
are presented as mean ± SEM. *p<0.05 vs Sham.
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Results

Changes in Th1 related cytokines in serum of BALB/c
mice. Radon inhalation at a concentration of 2,000 Bq/m3 for
2 weeks did not change the levels of IL-12(p70), IL-2, IFN-γ,
and IL-1β. However, radon inhalation significantly increased
the levels of IFN-γ and IL-1β after 4 weeks of radon inhalation
(Fig. 1A).

Changes in Th2 related cytokines in serum of BALB/c
mice. Radon inhalation at a concentration of 2,000 Bq/m3 for
2 weeks did not change the levels of IL-4, IL-5, IL-9, IL-10, and
IL-13. However, radon inhalation significantly increased the
levels of IL-4, IL-9, IL-10, and IL-13 after 4 weeks of radon
inhalation (Fig. 1B).

Changes in Th17 related cytokines in serum of BALB/c
mice. Radon inhalation at a concentration of 2,000 Bq/m3 for
2 weeks did not change the levels of IL-6, IL-17A, TNF-α, and
GM-CSF. However, radon inhalation significantly increased the
levels of TNF-α and GM-CSF after 4 weeks of radon inhalation
(Fig. 1C).

Changes in antioxidative substances in spleen of BALB/c
mice. Radon inhalation at a concentration of 2,000 Bq/m3 for
2 weeks did not change the levels of SOD, CAT, and t-GSH in
spleen. However, radon inhalation significantly decreased SOD
activity and significantly increased CAT activity after 4 weeks of
radon inhalation (Fig. 2).

Changes in Th1, Th2, and Th17 related cytokines in
serum of SKG/Jcl mice. Zymosan administration significantly
decreased IL-12(p70), which was related to Th1 differentiation,
and IL-4, which was related to Th2 differentiation. In contrast,

0

20

40

60

80

Sham Rn

S
O

D
 a

ct
iv

ity
(U

/m
g 

pr
ot

ei
n)

2 weeks

*

0

20

40

60

80

Sham Rn

S
O

D
 a

ct
iv

ity
(U

/m
g 

pr
ot

ei
n)

4 weeks

0

20

40

60

Sham Rn

t-
G

S
H

 c
on

te
nt

(n
m

ol
/m

g 
pr

ot
ei

n)

0

20

40

60

Sham Rn

t-
G

S
H

 c
on

te
nt

(n
m

ol
/m

g 
pr

ot
ei

n)

0

2

4

6

8

10

Sham Rn

C
AT

 a
ct

iv
ity

(U
/m

g 
pr

ot
ei

n)

*

0

2

4

6

8

10

Sham Rn

C
A
T 

ac
tiv

ity
(U

/m
g 

pr
ot

ei
n)

Fig. 2. Changes in antioxidative functions in spleen of BALB/c mice.
The number of each experimental group is 7. Data are presented as
mean ± SEM. *p<0.05 vs Sham.

IL-6, which was related to Th17 differentiation, increased by
zymosan administration. Radon inhalation at a concentration
of 2,000 Bq/m3 after zymosan administration significantly
decreased IL-9 levels. Sham or radon inhalation after zymosan
administration significantly decreased the levels of TNF-α and
GM-CSF (Fig. 3).

Changes in antioxidative substances in lungs of SKG/Jcl
mice. No significant changes were observed in the activities of
SOD and CAT and t-GSH contents in lungs (Fig. 4).

Arthritis score of SKG/Jcl mice. On day 21, the arthritis
scores of zymosan-administrated mice without radon inhalation
were significantly higher than those of control mice. On day 28,
the arthritis scores of zymosan-administrated mice with/without
radon inhalation were significantly higher than those of control
mice (Fig. 5).

Discussion

IL-12 is an inducer of Th1 immune response, which leads to
cell-mediated immunity. Moreover, the activation of Th1 immune
response results in the production of natural killer T (NKT) cells
by cytokines, such as IL-2 and IFN-γ.(17) A report showed that
low-dose γ-irradiation enhances NKT activity via the increase of
reduced glutathione.(18) Another report suggests that radon hot
spring drinking modulates the immunity balance by activating
cell-mediated immunity in DNP-Ascaris-immunized mice.(19) In
the present study, radon inhalation for 4 weeks increased the
Th1-related cytokines, suggesting this inhalation increased the
Th1 immune response. Although we did not assay NKT activity,
it could be speculated that the effects of radon inhalation were
similar to those of γ-irradiation.
IL-4 is an important cytokine to promote Th2 cell differentia‐

tion. Moreover, Th2 induces humoral immune response and is
closely related to the production of immunoglobulin E (IgE).(20)

A report suggests that oxidative stress promotes differentiation
toward Th2.(21) We have reported that low-dose (0.25 Gy) X-
irradiation increased plasma cells in the spleen of mice, while
high-dose (15 Gy) X-irradiation decreased plasma cells.(22) These
findings indicate that Th2 immune responses depend on the
radiation doses. Since it is well known that radiation is also a
source of oxidative stress, radon inhalation probably affects the
Th2 immune response. Our results showed that radon inhalation
for 4 weeks significantly increased Th2-related cytokines,
suggesting that this inhalation activated the Th2 immune
response. However, radon inhalation for 2 weeks did not increase
these cytokines. These findings indicate that radon inhalation
for 4 weeks may activate the Th2 immune response, similar to
low-dose X-irradiation.
Transforming growth factor-beta (TGF-β) and IL-6 play an

important role in Th17 cell differentiation.(23–25) In the present
study, radon inhalation increased the IL-6 level, suggesting the
promotion of the Th17 immune response. In fact, the levels of
Th17-related cytokines increased by radon inhalation. Taken
together, radon inhalation activated the immune response of Th1,
Th2, and Th17. Moreover, the balance among them was not lost
by radon inhalation. These are important findings of the present
study.
Mitogen-activated protein kinase 1 works as an oxidative-

stress sensor, which results in the production of IL-6 under oxida‐
tive stress conditions.(26) Another report suggests that ROS
induces cytokines, such as IL-6, TNF-α, and macrophage inflam‐
matory protein-2.(27) On the other hand, we have reported that
radon inhalation activates antioxidative functions in mouse
organs.(5) For example, radon inhalation at 2,000 Bq/m3 for 1 day
inhibited carbon tetrachloride-induced hepatopthy via activation
of antioxidative functions.(28) Similarly, radon inhalation at 2,000
Bq/m3 for 7 days inhibited colitis in mice induced by dextran
sulfate sodium administration.(29) Thus, radon inhalation can

156 doi: 10.3164/jcbn.21-91
©2022 JCBN



inhibit ROS-induced damages, such as inflammation. Therefore,
the evaluation of antioxidative functions may give a hint why
radon inhalation increased cytokines. While radon inhalation for
2 weeks did not change the activities of SOD and CAT and
t-GSH contents, radon inhalation for 4 weeks significantly
decreased SOD activity and significantly increased CAT activity.

These findings might suggest that active oxygen is dispropor‐
tionate and detoxified.
The development of RA is closely related to the Th17 immune

response.(30) Zymosan administration significantly decreased
IL-12(p70), which was related to Th1 differentiation, and IL-4,
which was related to Th2 differentiation. In contrast, this
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Fig. 3. Changes in (A) Th1-, (B) Th2-, and (C) Th17-related cytokines in serum of SKJ/Jcl mice. The number of each experimental group is 6–7. Data
are presented as mean ± SEM. *p<0.05, **p<0.01.
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increased IL-6, which was related to Th17 differentiation, and
this suggested that zymosan administration resulted in a loss of
the balance among Th1, Th2, and Th17 and promoted the Th17
immune response, which leads to RA. On the other hand, the
levels of most cytokines approached the control level after radon
inhalation. Interestingly, the phenomenon was completely
different for normal mice. This may suggest that radon inhalation
has an immunomodulatory effect, and this may be the mechanism
by which effects of RA are alleviated, which is an autoimmune
disease. Although the arthritis scores of zymosan-administrated
mice with/without radon inhalation on day 28 were almost the
same, the scores of mice that inhaled radon was lower than
that of zymosan-administrated mice on day 21. This finding
suggested that radon inhalation for 3 weeks was much more
effective in inhibiting RA.
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Fig. 4. Changes in antioxidative functions in the lungs of SKG/Jcl mice.
The number of each experimental group is 6–7. Data are presented as
mean ± SEM.

ROS play an important role in developing RA.(31) In fact,
gelatin-conjugated SOD, which is a scavenger of superoxide
anion, suppresses collagen-induced arthritis.(32) A report suggested
that RA is associated with the development of oxidative stress in
lungs.(33) Although there were no significant differences in
antioxidative functions in lungs among each group in the present
study, radon therapy clearly alleviates RA symptoms.(1,2) There‐
fore, optimization of radon inhalation conditions may be needed.

In this regard, we previously reviewed the enhancement of
antioxidant functions by low-dose radiation and its applicability
to the treatment of ROS-related diseases.(34) We further reviewed
recent research for the efficacy, mechanism, and new indications
of radon therapy.(35) Moreover, we reported that the DNA damage
in mouse organs due to excess ROS was suppressed by radon
inhalation.(36) On the other hand, it has been suggested that the
amount of melanin-derived radicals in the skin may be an
endogenous marker for the health effects of long-term low-dose
radiation.(37) In the future, it may be necessary to consider this
method to confirm the safety of the long-term use of radon
therapy.

In conclusion, radon inhalation activates the immune response
of Th1, Th2, and Th17 in normal BALB/c mice probably due to
an imbalance of the redox state. In contrast, radon inhalation has
immunomodulation effects in SKG/Jcl mice, which are RA
model mice. In this way, the action of radon inhalation between
SKG/Jcl mice and BABL/c mice was different. This may indicate
that radon inhalation has an immunomodulation function because
RA is an autoimmune disease. Further studies are needed to
clarify the alleviation mechanisms for RA by radon inhalation. It
is also important to consider the relationship between the RA
remedy agent used as a treatment for COVID-19 and the typical
indication for radon therapy, i.e., RA.
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