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Abstract: A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated
liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can
prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation
in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil
(S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by
gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured
as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α),
interleukin (IL)-1β, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C
group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of
monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1
expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes
F4/80, TNF-α, IL-1β, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing
canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced
by a HCD.
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1. Introduction

Hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), one of the
most common diseases worldwide, which can progress to steatohepatitis, fibrosis, cirrhosis, and liver
function failure [1]. NAFLD has also been associated with other disorders, such as obesity and
cardiovascular diseases [2], and occurs due to an imbalance between the synthesis and exportation
of lipids from the liver. The liver lipid accumulation occurs through increased dietary lipid intake,
abnormal repartitioning of triacylglycerol (TAG) from adipose tissue to the liver, and increased de
novo fatty acid (FA) synthesis and lipogenesis (DNL) [3].
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Animals fed a stipulated diet of macronutrient composition provide experimental alternatives
to overcome the limitation of studies in humans, where there is a large variability in the daily diet
composition. In this context, we previously demonstrated that the diet for maintenance of laboratory
adult rodents proposed by the American Institute of Nutrition (AIN-93-M) is more inflammatory and
lipogenic than a high-fat diet in the liver of Swiss mice [4]. The carbohydrate content in the AIN-93 diet
is 72.1% [5] versus 50–55% in the rodent chow diet [6]. Thus, the AIN-93-M diet can be considered a
high-carbohydrate diet [4,7–10]. The n-3 polyunsaturated FAs (n-3 PUFAs) inhibit hepatic lipogenesis
and inflammation, preventing NAFLD [11–13]. In contrast, higher liver levels of saturated FAs (SFAs),
monounsaturated FAs (MUFAs), and elevated n-6:n-3 PUFA ratio have been associated with higher
inflammation state and NAFLD occurrence [14–16].

In the Western diet, vegetable oil consumption as a source of FAs has been increasing [17–19].
One of the most consumed oils in the Western diet is canola oil, a cheaper substitute for olive oil.
Canola oil, when compared to soybean oil, contains lower levels of SFAs and a lower n-6:n-3 PUFA
ratio [19].

Canola oil regulates the lipid profile and can play protective roles against metabolic syndrome,
cardiovascular disease risk, and renal dysfunction caused by type 1 diabetes [20–29].

Despite numerous studies, the potential beneficial effects of canola oil still need confirmation.
For example, the lifespan has been shown to be shorter in stroke-prone spontaneously hypertensive
rats fed canola oil as a sole lipid source than soybean oil [30–34]. One study has reported memory
impairments and reduced synaptic integrity in a transgenic mouse model of Alzheimer’s disease [35].
Rats fed canola oil have shown insulin resistance [17] and higher blood pressure [36], compared to
those fed with soybean oil. In addition, no study has compared the effect of canola oil and soybean oil
based lipid intake on liver FAs’ deposition and inflammation.

A high-carbohydrate diet is a well-established experimental model of liver FA accumulation and
inflammation [4,37,38]. Herein, we evaluate whether canola oil can prevent the liver FA deposition and
inflammation induced by a high-carbohydrate diet. For comparative purposes, the reference group
received soybean oil as the source of lipids.

2. Materials and Methods

2.1. Animals and Diets

The experimental protocol was approved by the Animal Ethics Committee of The State University
of Maringá (CEUA).

We used male Swiss mice (six weeks old) receiving standard rodent chow (Quintia-Nuvilab®,
Colombo city, Brazil) from weaning. The mice were individually housed and maintained at a controlled
temperature (23 ± 1 ◦C), humidity (55 ± 10%), photoperiod (12 h light/12 h darkness), and had free
access to water and food.

We prepared the diets with highly refined ingredients purchased from the Rhoster Company
(Araçoiaba da Serra, SP, Brazil). The diet composition was based on purified diets for the maintenance
of laboratory adult rodents proposed by the American Institute of Nutrition (AIN-93-M). The protein,
carbohydrate, and total fat contents in the diets were 14.0, 72.8, and 4.0 g/100 g, respectively. The main
FA compositions of the diets were measured (Table 1).

Carbohydrate composition was represented by cornstarch (46.6%), dextrinized cornstarch (15.5%),
and sucrose (10.0%) [5]. As soybean oil is the source of lipids in the AIN-93 diet, the control group was
represented by mice fed with the AIN-93 diet (high-carbohydrate diet) with soybean oil as a fat source
(S group). The experimental group received the AIN-93 diet (high-carbohydrate diet) with canola oil
as a fat source (C group).

After receiving the diets for 0 (before starting the diets), 7, 14, 28, or 56 days, the mice were fasted
from 5:00 p.m. to 8:00 a.m. the following day and then euthanized. We measured blood glucose, TAG,
and cholesterol concentrations, according to the manufacturer’s instructions. The livers were removed,
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weighed, and stored in liquid nitrogen until further analysis. The treatment schedule of the animals is
shown in Figure 1.

Table 1. Fatty acid composition (mg/g) of the American Institute of Nutrition (AIN-93-M) diet with
soybean oil (S group) or canola oil (C group) as a lipid source.

Fatty Acids S Group C Group

Palmitic acid (16:0) 70.01 ± 1.12 40.24 ± 0.37 *
Stearic acid (18:0) 26.25 ± 0.40 20.19 ± 0.13 *

Oleic acid (18:1n-9) 150.88 ± 2.24 420.41 ± 3.85 *
Vaccenic acid (18:1n-7) 8.34 ± 0.16 21.52 ± 0.23 *
Linoleic acid (18:2n-6) 303.97 ± 4.46 136.98 ± 1.19 *

α-Linolenic acid (18:3n-3) 31.27 ± 0.46 61.43 ± 0.72 *
SFA 96.27 ± 1.53 60.43 ± 0.51 *

MUFA 159.23 ± 2.40 441.93 ± 4.09 *
PUFA 336.79 ± 4.94 198.41 ± 1.92 *

n-6 305.52 ± 4.47 136.98 ± 1.19 *
n-3 31.27 ± 0.46 61.43 ± 0.72 *

n-6/n-3 9.76 ± 0.00 2.58 ± 0.00 *

Results are expressed as mean ± standard error. Abbreviations: SFA, total saturated fatty acids; MUFA,
total monounsaturated fatty acids; PUFA, total polyunsaturated fatty acids; n-6, omega-6 PUFAs; n-3, omega-3
PUFAs. p < 0.05 compared with S group *.
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Figure 1. Treatment schedule: All mice received standard rodent chow from weaning and before
starting the diets (time 0). The high-carbohydrate diet containing canola oil or soybean oil as a lipid
source was administered for 0 (before starting the diets), 7, 14, 28, or 56 days.

2.2. Analysis of Liver Fatty Acid Composition

We used triturated samples (100 mg) from frozen livers to determine the total lipid content and
FAs. We transesterified total lipids utilizing the method of Figueiredo et al. (2016) [39]. Methyl ester
tricosanoic acid (23:0me; Sigma, St. Louis, EUA) served as an internal standard. FA methyl esters
(FAME) separation was performed by gas chromatography in a Thermo Scientific™ TRACE™Ultra Gas
Chromatographer (Thermo Scientific™, Waltham, MA, USA). The equipment had a flame ionization
detector (FID), a split/split-less injector, and a fused silica capillary column CP-7420 (Select FAME,
100 m size, 0.25 mm of internal diameter, and 0.25 µm film thickness of the cyanopropyl stationary
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phase). The operational parameters were: the gas flow rates used were 1.2 mL min−1 for the carrier
gas (H2), 30 mL min−1 for the make-up gas (N2), and 30 and 300 mL min−1 for the FID gas H2 and
synthetic air, respectively. The injected sample volume was 1.0 µL, with a split injection ratio of 1:40.
The column temperature was maintained at 165 ◦C for 18 min and then ramped to 235 ◦C (4 ◦C min−1)
for 20 min. The injector and detector temperatures were kept at 230 ◦C and 250 ◦C, respectively.

We identified FAMEs by comparison of the retention times of the sample constituents with
Sigma FAMEs. Retention times and peak areas were determined using the Chrom-Quest™ software
(Thermo Fisher Scientific™, MA, USA). FA levels were calculated according to Visentainer (2012) [40].
FA contents in the diets and livers are expressed as mg/100 mg.

2.3. Gene Expression Measurement

We measured the mRNA expression of F4/80, interleukin 1β (IL-1β), interleukin 6 (IL-6),
interleukin 10 (IL-10), and tumor necrosis factor-alpha (TNF-α) in the livers of mice from the
C and S groups (day 0, 7, 14, 28, or 56). We also measured the liver expression of acetyl-CoA
carboxylase 1 (ACC1) on day 56. Total RNA was extracted using Trizol reagent (Invitrogen
Life Technologies, Waltham, MA, USA) and reverse-transcribed to cDNA (High-Capacity cDNA
kit, Applied Biosystems, Foster USA, Waltham, MA, USA). Gene expression was evaluated by
real-time PCR using SYBR Green as the fluorescent dye (Invitrogen Life Technologies, Waltham,
MA, USA). We performed gene expression analysis using the ribosomal protein lateral stalk
subunit P0 gene (Rplp0) as the internal control. The primer sequence was: F4/80 (NM_010130.4)
sense CCTGAACATGCAACCTGCCAC, antisense GGGCATGAGCAGBCTGTAGGATC, IL-1β
(NM_008361.4) sense GGCAGCTACCTGTGTCTTTCCC, antisense ATATGGGTCCGACAGCACGAG,
IL-6 (NM_001314054.1) sense GGTAGCATCCATCA TTTCTTTG, antisense, CGGAGAGGAGACT
TCACAAGAG, TNF-α (NM_001278601.1) sense TCTTCTCATT CCTGCTTGTGGC, antisense
CACTTGGTGGTTTGCTACGACG, IL-10 (NM_010548.2) sense TGCCAAGCCTTATCGGAAATG,
antisense AAATCGATGACAGCGCCTCAG, ACC1 (NM_133360.2) sense GAGAGGGGTCAAG
TCCTTCC, antisense AAAACATCCACTTCCACACACGA, Rplp0 (NM_007475.5) sense CCACTTA
CTGAAAAGGTCAAGGC, antisense TGGTTGCTTTGGCGGGATTA.

2.4. Statistical Analysis

Results are presented as mean ± standard error, as analyzed by ANOVA (one-way) and Tukey’s
post test. We compared each FA of the S group or C group using unpaired Student’s t-test. We performed
Statistical analyses using the Graph-Pad Prism software. The 95% level of confidence (p < 0.05) was
accepted for all comparisons.

3. Results

3.1. Food Intake, Body Weight, Liver Weight, Serum Glucose, Triacylglycerol, and Cholesterol

The changes from day 0 to day 56 for body weight (S ∆% = 37.1; C ∆% = 33.0), glucose (S ∆% = 6.8;
C ∆% = 16.2), triacylglycerol (S ∆% = 78.5; C ∆% = 89.1), and cholesterol (S ∆% = 38.1; C ∆% = 44.3) did
not differ between the S group and the C group. Food intake, liver weight, and relative liver weight
were higher (p < 0.05) in the C group on day 56 (Table 2).

3.2. Saturated Fatty Acid (SFA) Composition

The S and C groups showed higher (p < 0.05) lauric acid (12:0), myristic acid (14:0), palmitic acid
(16:0), stearic acid (18:0), and arachidic acid (20:0) on day 56 (day 56 vs. day 0). Heneicosanoic acid
(21:0) increased (p < 0.05) and decreased (p < 0.05) between days 0 and 56 in the S and C groups,
respectively (Table 3).

On day 56, the C group exhibited higher (p < 0.05) levels of arachidic acid (20:0) in comparison with
the S group. On the other hand, on day 56, the C group showed lower (p < 0.05) levels of heneicosanoic
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acid (21:0), in comparison with the S group. The contents of lauric acid (12:0), myristic acid (14:0),
palmitic acid (16:0), and stearic acid (18:0) did not differ in C vs. S group (Table 3).

Table 2. Food intake, body weight, liver weight, relative liver weight, serum glucose, triacylglycerol,
and cholesterol, of mice fed with a diet containing soybean oil (S group) or canola oil (C group) as a
lipid source, at 0, 7, 14, 28, or 56 days after starting the diets.

Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

Food intake
(g/day)

S group - 9.54 ± 0.97 10.10 ± 0.57 9.10 ± 0.40 7.71 ± 0.13 -
C group - 10.46 ± 0.74 8.83 ± 0.62 9.04 ± 0.60 8.35 ± 0.14 * -

Body weight (g) S group
34.78 ± 0.42

36.38 ± 1.16 40.55 ± 1.05 51.58 ± 2.41 a,b,c 47.70 ± 2.03 a,b,c 37.1
C group 37.28 ± 0.93 44.46 ± 1.23 * 52.66 ± 3.92 a,b 46.27 ± 3.42 a 33.0

Liver weight (g) S group
1.42 ± 0.02

1.33 ± 0.16 1.45 ± 0.03 1.74 ± 0.07 a,b 1.51 ± 0.04 6.3
C group 1.36 ± 0.10 1.68 ± 0.09 1.97 ± 0.22 a,b 1.73 ± 0.03 * 21.8

Relative liver
weight (g/100g)

S group
4.10 ± 0.06

3.67 ± 0.51 3.58 ± 0.03 3.40 ± 0.11 3.24 ± 0.05 a
−20.9

C group 3.64 ± 0.22 3.63 ± 0.06 3.72 ± 0.21 3.49 ± 0.09 * −14.8

Glucose (mg/dL) S group
108.70 ± 6.43

104.60 ± 11.80 92.26 ± 4.71 91.96 ± 8.15 116.16 ± 7.09 6.8
C group 96.26 ± 4.13 100.23 ± 7.48 101.20 ± 13.41 126.30 ± 9.06 16.2

Triacylglycerol
(mg/dL)

S group
90.18 ± 11.24

173.16 ± 14.22 a 212.08 ± 39.13 a 167.33 ± 13.47 160.99 ± 19.02 a 78.5
C group 248.22 ± 21.37 a,* 315.15 ± 57.84 a 237.90 ± 18.22 a,* 170.55 ± 11.04 c 89.1

Cholesterol
(mg/dL)

S group
132.38 ± 5.87

157.00 ± 8.34 124.60 ± 11.40 163.20 ± 11.32 182.86 ± 9.22 a,c 38.1
C group 151.60 ± 13.81 131.83 ± 20.55 199.20 ± 15.87 a,c 191.13 ± 9.69 a,c 44.3

Results are expressed as mean ± standard error. p < 0.05 as compared with day 0 a, day 7 b, day 14 c, and day 28,
and the S group *. ∆%: percentage change (day 0 vs. day 56).

Table 3. Saturated fatty acid (SFA) composition (mg/100 g of sample) in the livers of mice fed with a
diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0, 7, 14, 28, or 56 days
after starting the diets.

SFA Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

Lauric acid
(12:0)

S group
1.37 ± 0.07

4.23 ± 0.81 a 4.27 ± 0.24 a 2.21 ± 0.08 b,c 2.88 ± 0.43 a 110.2
C group 5.53 ± 0.37 a 2.33 ± 0.12 a,b,* 2.06 ± 0.06 b 2.40 ± 0.30 a,b 75.1

Myristic acid
(14:0)

S group
6.36 ± 0.39

52.58 ± 12.98 a 26.65 ± 1.48 a,b 22.49 ± 0.57 a,b 33.53 ± 0.61 a,b 427.2
C group 36.02 ± 2.38 a 26.58 ± 2.53 a 34.58 ± 1.13 a,* 37.85 ± 3.08 a,c 495.1

Palmitic acid
(16:0)

S group
451.55 ± 31.74

1176.55 ± 68.73 a 1267.90 ± 48.82 a 1245.10 ± 13.58 a 1567.95 ± 44.03 a,b,c,d 247.2
C group 1453.63 ± 4.10 a,* 1312.49 ± 62.84 a 1735.27 ± 12.6 a,b,c,* 1644.88 ± 37.52 a,b,c 264.2

Stearic acid
(18:0)

S group
219.57 ± 16.4

447.56 ± 25.02 a 453.21 ± 11.55 a 404.55 ± 9.46 a 411.70 ± 12.85 a 87.5
C group 469.20 ± 0.59 a 464.50 ± 16.42 a 469.79 ± 2.88 a,* 391.29 ± 8.58 a,b,c,d 78.2

Arachidic acid
(20:0)

S group
3.19 ± 0.19

10.30 ± 0.98 a 6.70 ± 0.72 a,b 7.64 ± 0.21 a 12.15 ± 0.28 a,c,d 280.8
C group 17.37 ± 0.60 a,* 10.37 ± 0.48 a,b,* 9.88 ± 0.39 a,b,* 16.84 ± 1.31 a,c,d,* 427.8

Heneicosanoic
acid (21:0)

S group
6.35 ± 0.41

9.28 ± 0.17 a 3.77 ± 0.59 a,b 5.95 ± 0.09 b,c 8.09 ± 0.45 a,c,d 27.4
C group 10.79 ± 0.52 a 4.64 ± 0.14 a,b 3.56 ± 0.15 a,b,* 4.17 ± 0.17 a,b,* −34.3

Results are expressed as mean ± standard error of three replicates for each group. p < 0.05 as compared with day 0 a,
day 7 b, day 14 c, and day 28 d, and S group *. ∆%: percentage change (day 0 vs. day 56).

3.3. Monounsaturated Fatty Acid (MUFA) Composition

The levels of palmitoleic acid (16:1n-7), 7-hexadenoic acid (16:1n-9), vaccenic acid (18:1n-7),
oleic acid (18:1n-9), and gondoic acid (20:1n-9) increased (p < 0.05) for both groups (day 56 vs. day 0).
Nervonic acid (24:1n-9) increased (p < 0.05) only for the C group but decreased (p < 0.05) in the S group
(day 56 vs. day 0) (Table 4).

On day 56, the C group exhibited higher (p < 0.05) levels of palmitoleic acid (16:1n-7), 7-hexadenoic
acid (16:1n-9), vaccenic acid (18:1n-7), oleic acid (18:1n-9), gondoic acid (20:1n-9), and nervonic acid
(24:1n-9) in comparison with the S group (Table 4).

3.4. Polyunsaturated n-6 Fatty Acid (PUFA) Composition

Linoleic acid (18:2n-6),γ-linolenic acid (18:3n-6), 11,14-eicosadienoic acid (20:2n-6), and arachidonic
acid (20:4n-6) increased (p < 0.05) in both groups (day 56 vs. day 0). On day 56, the C group exhibited
lower (p < 0.05) levels of linoleic acid (18:2n-6), γ-linolenic acid (18:3n-6), and arachidonic acid
(20:4n-6) in comparison with the S group. In contrast, the C group showed higher (p < 0.05) levels of
11,14-eicosadienoic acid (20:2n-6) on day 56 (Table 5).
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Table 4. Monounsaturated fatty acid (MUFA) composition (mg/100 g of sample) in the livers of mice
fed with a diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0, 7, 14, 28,
or 56 days after starting the diets.

MUFA Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

Palmitoleic acid
(16:1n-7)

S group
20.82 ± 1.45

121.40 ± 6.32 a 186.67 ± 10.21 a 205.95 ± 4.01 a,b,c 308.54 ± 6.63 a,b,c,d 1381.9
C group 168.55 ± 1.01 a,* 183.85 ± 12.39 a 265.35 ± 9.80 a,b,c,* 355.62 ± 10.61 a,b,c,d,* 1608.0

7-hexadecanoic acid
(16:1n-9)

S group
7.84 ± 0.42

21.42 ± 1.00 a 21.63 ± 1.50 a 26.53 ± 0.72 a,b,c 42.50 ± 1.18 a,b,c,d 442.0
C group 40.48 ± 0.62 a,* 48.13 ± 1.35 a,* 157.33 ± 8.77 a,b,c,* 69.90 ± 2.18 a,b,c,d,* 791.5

Vaccenic acid
(18:1n-7)

S group
31.72 ± 2.24

92.76 ± 3.17 a 116.16 ± 4.76 a 140.88 ± 1.90 a,b,c 225.60 ± 9.28 a,b,c,d 611.2
C group 133.74 ± 0.59 a,* 144.52 ± 6.14 a,* 250.94 ± 1.55 a,b,c,* 271.54 ± 6.02 a,b,c,d,* 756.0

Oleic acid
(18:1n-9)

S group
225.55 ± 13.84

1283.73 ± 157.30 a 1197.56 ± 71.24 a 1222.64 ± 18.93 a 1789.55 ± 49.59 a,b,c,d 693.4
C group 1633.75 ± 12.65 a 1766.14 ± 77. 38 a,* 3402.46 ± 5.38 a,b,c,* 2814.65 ± 80.90 a,b,c,d,* 1147.9

Gondoic acid
(20:1n-9)

S group
3.31 ± 0.22

9.00 ± 0.79 a 12.70 ± 0.78 a,b 12.98 ± 0.21 a,b 23.78 ± 1.01 a,b,c,d 618.4
C group 16.37 ± 0.13 a,* 16.30 ± 0.92 a,* 27.06 ± 0.19 a,b,c,* 35.66 ± 2.48 a,b,c,d,* 977.3

Nervonic acid
(24:1n-9)

S group
14.23 ± 0.72

12.11 ± 0.08 12.70 ± 2.16 12.91 ± 0.05 12.25 ± 0.60 −13.9
C group 20.01 ± 1.18 a,* 17.01 ± 0.45 b 16.50 ± 0.27 * 21.67 ± 0.53 a,c,d,* 52.2

Results are expressed as mean ± standard error of three replicates for each group. p < 0.05 as compared with day 0 a,
day 7 b, day 14 c, and day 28 d, and S group *. ∆%: percentage change (day 0 vs. day 56).

Table 5. Polyunsaturated n-6 fatty acid (n-6 PUFA) composition (mg/100g of sample) in the livers of
mice fed with a diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0, 7, 14,
28, or 56 days after starting the diets.

n-6 PUFA Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

Linoleic acid
(18:2n-6)

S group
525.33 ± 32.43

1534.81 ± 153.60 a 1411.13 ± 67.48 a 964.554 ± 11.09 a,b,c 1330.23 ± 43.46 a 153.2
C group 1731.06 ± 25.28 a 827.076 ± 33.06 a,b,* 677.56 ± 9.56 a,b,c,* 830.28 ± 30.48 a.b,d,* 58.0

γ-linolenic acid
(18:3n-6)

S group
14.26 ± 0.82

30.98 ± 1.64 a 32.65 ± 1.95 a 24.18 ± 0.58 a,c 33.77 ± 1.93 a,d 136.8
C group 50.34 ± 2.50 a,b,* 21.85 ± 0.85 a,b,* 17.18 ± 0.44 b,* 21.93 ± 1.89 a,b,* 53.7

11,14-eicosadienoic acid
(20:2n-6)

S group
1.26 ± 0.10

3.81 ± 0.07 a 1.68 ± 0.23 b 6.62 ± 0.26 a,b,c 5.36 ± 0.20 a,b,c,d 325.3
C group 8.37 ± 0.22 a,* 10.50 ± 0.19 a,b,* 16.37 ± 0.33 a,b,c,* 13.69 ± 0.42 a,b,c,d,* 986.5

Arachidonic acid
(20:4n-6)

S group
259.06 ± 19.06

435.25 ± 4.67 a 454.75 ± 4.23 a 460.06 ± 10.96 a 479.56 ± 18.85 a 85.1
C group 416.30 ± 0.47 a,* 395.02 ± 12.34 a,* 349.73 ± 5.49 a,b,* 316.38 ± 3.57 a,b,c,* 22.1

Results are expressed as mean ± standard error of three replicates for each group. p < 0.05 as compared with day 0 a,
day 7 b, day 14 c, and day 28 d, and S group *. ∆%: percentage change from day 0.

3.5. Polyunsaturated n-3 Fatty Acid (PUFA) Composition

α-linolenic acid (18:3n-3), dihomo-α-linolenic acid (20:3n-3), eicosapentaenoic acid (EPA, 20:5n-3),
and docosahexaenoic acid (DHA, 22:6n-3) increased (p < 0.05) in both groups (day 56 vs. day 0).
On day 56, the C group exhibited higher (p < 0.05) levels of α-linolenic acid (18:3n-3), eicosapentaenoic
acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) in comparison with the S group.
However, dihomo-α-linolenic acid (20:3n-3) content was similar between the groups (Table 6).

Table 6. Polyunsaturated n-3 fatty acid (n-3 PUFA) composition (mg/100g of sample) in the livers of
mice fed with a diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0, 7, 14,
28, or 56 days after starting the diets.

n-3 PUFA Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

α-linolenic acid
(18:3n-3)

S group
16.37 ± 0.96

57.46 ± 4.27 a 55.85 ± 3.97 a 34.53 ± 0.66 a,b,c 42.33 ± 1.83 a,b,c 158.5
C group 82.63 ± 1.21 a,* 47.12 ± 2.13 a,b 42.73 ± 0.99 a,b,* 74.23 ± 6.04 a,c,d,* 353.4

Dihomo-α-linolenic acid
(20:3n-3)

S group
15.23 ± 1.07

26.60 ± 0.34 a 30.45 ± 0.33 a 36.16 ± 0.75 a,b 44.19 ± 3.48 a,b,c,d 190.1
C group 28.09 ± 1.10 a 36.35 ± 1.43 a,b,* 47.69 ± 0.67 a,b,c,* 49.09 ± 1.44 a,b,c 222.3

Eicosapentaenoic acid
(20:5n-3)

S group
3.97 ± 0.34

3.87 ± 0.61 a 10.39 ± 1.15 a 8.97 ± 0.21 a 11.71 ± 0.56 a,b 194.9
C group 17.00 ± 0.49 a,* 27.35 ± 0.97 a,b,* 36.70 ± 0.99 a,b,c,* 48.11 ± 1.01 a,b,c,d,* 1111.8

Docosahexaenoic acid
(22:6n-3)

S group
188.79 ± 12.06

228.63 ± 3.43 a 283.76 ± 7.76 a,b 273.89 ± 6.12 a,b 259.47 ± 5.15 a 37.4
C group 297.89 ± 5.55 a,* 314.45 ± 12.18 a 295.23 ± 2.63 a,* 313.31 ± 3.03 a,* 65.9

Results are expressed as mean ± standard error of three replicates for each group. p < 0.05 as compared with day 0 a,
day 7 b, day 14 c, and day 28 d, and S group *. ∆%: percentage change from day 0.

3.6. Analysis of Fatty Acids (FAs) Family Composition and n-6:n-3ratio

The liver lipid deposition (calculated by the sum of all FAs) and liver deposition of SFA, MUFA,
n-6 PUFA, and n-3 PUFA were intensified (p < 0.05) during the experimental period (day 0 vs. day 56) for
both groups: SUM (S ∆% = 229.5; C ∆% = 272.3), SFA (S ∆% = 195.5; C ∆% = 204.6), MUFA (S ∆% = 689.5;
C ∆% = 1072.4), n-6 PUFA (S ∆% = 131.3; C ∆% = 47.9), and n-3 PUFA (S ∆% = 59.4; C ∆% = 116.0)
(Table 7).
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Table 7. Fatty acids family composition (mg/100 g of sample) and n-6:n-3 PUFA ratio in the livers of
mice fed with a diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0, 7, 14,
28, or 56 days after starting the diets.

Fatty Acids Day 0 Day 7 Day 14 Day 28 Day 56 ∆%

SFA
S group

690.66 ± 49.46
1694.58 ± 110.10 a 1767.14 ± 61.13 a 1691.58 ± 22.29 a 2041.59 ± 56.74 a,b,d 195.5

C group 1998.79 ± 8.37 a 1824.68 ± 82.56 a 2259.49 ± 13.78 a,b,c,* 2104.20 ± 51 a,c 204.6

MUFA
S group

305.02 ± 19.07
1555.54 ± 167.30 a 1551.91 ± 87.71 a 1625.98 ± 25.26 a 2408.39 ± 64.61 a,b,c,d 689.5

C group 2017.12 ± 12.99 a,* 2179.19 ± 99.01 a,* 4124.39 ± 5.66 a,b,c,* 3576.26 ± 103.00 a,b,c,d,* 1072.4

PUFA
S group

1024.32 ± 66.86
2325.86 ± 168.70 a 2280.69 ± 75.50 a 1809.00 ± 18.63 a,b,c 2206.65 ± 62.31 a 115.4

C group 2631.73 ± 27.35 a 1679.74 ± 63.16 a,b,* 1483.22 ± 17.60 a,b,* 1667.06 ± 36.96 a,b,* 62.7

n-6
S group

799.33 ± 52.42
2004.87 ± 160.00 a 1900.23 ± 71.01 a 1455.42 ± 13.77 a,b,c 1848.93 ± 54.55 a 131.3

C group 2206.09 ± 26.50 a 1254.44 ± 46.44 a,b,* 1060.85 ± 13.96 a,b,c,* 1182.30 ± 31.24 a,b,* 47.9

n-3
S group

224.38 ± 14.44
320.99 ± 8.66 a 380.46 ± 8.84 a 353.57 ± 6.57 a 357.72 ± 9.11 a 59.4

C group 426.23 ± 3.31 a,* 425.30 ± 16.72 a 422.37 ± 4.15 a,* 484.75 ± 6.79 a,b,c,d,* 116.0

SUM
S group

2020.12 ± 135.40
5408.39 ± 272.70 a 5599.73 ± 38.21 a 5126.56 ± 51.41 a 6656.63 ± 180.60 a,b,d 229.5

C group 6647.63 ± 38.21 a,* 5683.60 ± 244.70 a,b 7867.11 ± 28.08 a,b,c,* 7522.60 ± 132.00 a,b,c,* 272.3

n-6/n-3 S group
3.56 ± 0.00

6.22 ± 0.33 a 4.99 ± 0.16 a,b 4.11 ± 0.06 b,c 5.16 ± 0.08 a,b,d 44.9
C group 5.18 ± 0.06 a,* 2.95 ± 0.00 a,b,* 2.51 ± 0.01 a,b,c,* 2.43 ± 0.04 a,b,c,* −31.7

Results are expressed as mean ± standard error of three replicates for each group. Abbreviations: SFA, total saturated
fatty acids; MUFA, total monounsaturated fatty acids; PUFA, total polyunsaturated fatty acids; SUM, the sum of all
fatty acids evaluated. p < 0.05 as compared with 0 a, day 7 b, day 14 c, and day 28 d; and S group *. ∆%: percentage
change from day 0.

On day 56, the C group showed a higher (p < 0.05) value for the sum of all fatty acids evaluated.
The C group also exhibited higher (p < 0.05) levels of MUFA and n-3 PUFA. In contrast, the C group
showed lower (p < 0.05) levels of n-6 PUFA, while the SFA levels were similar (C group vs. S group)
(Table 7).

The n-6 PUFA:n-3 PUFA ratio increased (p < 0.05) in the S group (∆% = 44.9) and decreased
(p < 0.05) in the C group (∆% = −31.7) from day 0. The C group showed a lower (p < 0.05) n-6 PUFA:n-3
PUFA ratio from day 7 until day 56, in comparison with the S group(Table 7).

3.7. Gene Expressions

The gene expression of IL-1β and ACC1 increased (p < 0.05) in the C group (day 56 vs. day 0).
On day 56, the C group had higher (p < 0.05) gene expressions of F4/80, TNF-α, IL-1β, IL-6, IL-10,
and ACC1, in comparison with the S group (Figure 2).Nutrients 2020, 12, x FOR PEER REVIEW 9 of 13 
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Figure 2. mRNA expression of inflammatory genes and acetyl-CoA carboxylase 1 (ACC1) in the livers
of mice fed with a diet containing soybean oil (S group) or canola oil (C group) as a lipid source, at 0,
7, 14, 28, or 56 days after starting the diets. Abbreviations: TNF-α, tumor necrosis; IL, interleukin.
Results are expressed as mean ± standard error. p < 0.05 as compared with day 0 a, day 7 b, day 14 c,
day 28 d, and S group *.
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4. Discussion

The health benefits of canola oil, compared with soybean oil, are usually expected, as the
former has a lower n-6:n-3 ratio [19]. However, canola oil’s potential beneficial effects still face many
controversies [19–36], and little is known about its effects on liver FAs deposition and inflammation.

The levels of PUFAs and MUFAs, particularly the levels of α-linolenic acid and oleic acid in the
livers of the C group reflected the lipid composition of canola oil in the diet. The C group showed
lower liver concentrations of γ-linolenic acid and arachidonic acid (synthesized from linoleic acid),
and higher liver levels of dihomo-α-linolenic acid, EPA, and DHA (synthesized from α-linolenic acid).

The total amount of FAs between days 0 and 56, in the livers of the S and C groups
increased by 229.5% and 272.3%, respectively. The mechanisms by which a high-carbohydrate
diet increases lipid deposition involve the intensification of the generation of acetyl-CoA from glucose.
Acetyl-CoA activates the transcription factors sterol regulatory element-binding proteins (SREBP-1c)
and carbohydrate response element binding protein (ChREBP), which regulate key genes involved in
the lipid synthesis, such as ACC1 [41–43].

The higher concentrations of n-3 PUFAs in the livers of the C group could prevent liver DNL via
downregulation of SREBP-1c and ChREBP gene expression and stimulation of FA oxidation [44,45].
However, in this study, the diet containing canola oil as a lipid source did not prevent liver
lipid accumulation.

The higher liver lipid accumulation in livers from the C group could be explained by the greater
amount of MUFAs in the C diet. In agreement with this affirmation, Duwaerts et al. [46] reported that
an MUFA-enriched diet is more steatogenic than an SFA-enriched diet, particularly when combined
with complex carbohydrates such as starch. In addition, mice fed with diets rich in oleic acid have
shown high liver lipid deposition [47,48]. Oleic acid, the main MUFA in the C group’s diet and
liver, promotes liver steatosis, oxidative stress, apoptosis, and the increased production of TNF-α and
IL-6 [47–49].

Higher levels of n-3 PUFAs, such as EPA (20:5n-3) and DHA (22:6n-3), are expected to prevent
liver inflammation, as they are precursors to anti-inflammatory mediators [50]. However, the livers
of the C group exhibited higher inflammation, as suggested by the higher gene expressions of F4/80,
TNF-α, IL1-β, and IL-6. The cytokines TNF-α, IL1-β, and IL-6 are involved in the inflammatory
process by producing other cytokines that promote chronic inflammation [51]. Moreover, F4/80 is a
marker of the liver recruitment of macrophages from resident Kupffer cells and circulating monocytes,
which play a central role in the progression of NAFLD [52]. Furthermore, the simultaneous increase of
gene expression of IL-10 (an anti-inflammatory cytokine) represents a negative feedback mechanism,
in an attempt to protect the liver against an exacerbated inflammatory response [53].

In agreement with our results, other reports have also demonstrated that canola oil promotes
higher oxidative stress and inflammation than soybean oil, safflower oil, or flax oil [30,54]. It is
likely that other components of canola oil, which were not investigated in this study, could influence
oxidative stress and inflammation; for example, the production of cyclic FAs monomers and/or the loss
of phenolic compounds during the industrial refining of canola oil [55–57].

The main limitation of this investigation was the restricted time period of evaluation (56 days).
Additional limitations of the study included a reduced number of biomarkers of lipogenesis and
inflammation. Despite these limitations, we can conclude that the replacement of soybean oil by
canola oil as a lipid source did not prevent the liver FA accumulation and inflammation induced by a
high-carbohydrate diet in mice.
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