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Abstract

The genetic underpinnings of traits are rarely simple. Most traits of interest are instead the 
product of multiple genes acting in concert to determine the phenotype. This is particularly true for 
behavioral traits, like dispersal. Our investigation focuses on the genetic architecture of dispersal 
tendency in the red flour beetle, Tribolium castaneum. We used artificial selection to generate 
lines with either high or low dispersal tendency. Our populations responded quickly in the first 
generations of selection and almost all replicates had higher dispersal tendency in males than in 
females. These selection lines were used to create a total of 6 additional lines: F1 and reciprocal 
F1, as well as 4 types of backcrosses. We estimated the composite genetic effects that contribute 
to divergence in dispersal tendency among lines using line cross-analysis. We found variation 
in the dispersal tendency of our lines was best explained by autosomal additive and 3 epistatic 
components. Our results indicate that dispersal tendency is heritable, but much of the divergence 
in our selection lines was due to epistatic effects. These results are consistent with other life-history 
traits that are predicted to maintain more epistatic variance than additive variance and highlight the 
potential for epistatic variation to act as an adaptive reserve that may become visible to selection 
when a population is subdivided.
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Complex traits are notoriously difficult to study, and dispersal be-
havior, which plays a significant role in life history, gene flow, and 
invasive species dynamics is no exception (Ronce 2007; Clobert 
et al. 2012; Travis et al. 2013). The genetics of dispersal tendency 
has been studied in a handful of birds and insects with narrow-
sense heritability estimates encompassing the full range of herit-
ability from 0 to 1 and an average of 0.35 (Clobert et al. 2012; 
Drangsholt et al. 2014; Saastamoinen et al. 2018). However, the 

number of genes associated with this behavior has only been 
studied in a few species with a range of results (Saastamoinen 
et  al. 2018). In the pea aphid, there is only one gene on the X 
chromosome that controls dispersal behavior, but this does not 
seem to be the case for most species (Pereira and Sokolowski 
1993; Caillaud et  al. 2002; Edelsparre et  al. 2014). Butterflies 
show an oligogenic pattern (a small number of genes of large ef-
fect), in the form of an epistatic interaction between just 2 loci 
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(Wheat et al. 2011; Niitepõld and Saastamoinen 2017). However, 
Jordan et  al. (2012) showed that variation in locomotor behav-
iors in Drosophila melanogaster is associated with 192 genes, 
indicating a polygenic pattern.

Tribolium castaneum is an ideal system for understanding the 
genetic architecture of dispersal behavior. Tribolium castaneum is 
a cosmopolitan human commensal stored product pest. These bee-
tles live in a variety of processed grains and frequently disperse to 
find new mates and resources. Previous studies have shown that 
dispersal behavior responds rapidly to selection and that males are 
more likely to disperse than females (Naylor 1961; Ritte and Lavie 
1977; Lavie and Ritte 1978). Dispersal in T. castaneum has, also, 
been positively correlated with density dependence and fecundity 
(Naylor 1961; Ritte and Lavie 1977; Lavie and Ritte 1978). In 
contrast, resource availability is negatively correlated with dis-
persal tendency (Naylor 1961; Lavie and Ritte 1978). Dispersal 
tendency has even been shown to be impacted by interactions be-
tween species (higher emigration when the population size of other 
species is high) (Goodnight 1990a, 1990b, 2011). However, a full 
understating of how this behavior is inherited is lacking. We ap-
plied a line cross-analysis (LCA) approach to artificially selected 
lines to estimate the genetic architecture and inheritance of dis-
persal tendency.

The genes underlying traits can act in a variety of fashions. 
Additive effects are the simplest type of genetic effects and occur 
when the alleles at a locus contribute equally and independently of 
other loci in contributing to the observed phenotype. However, a 
variety of nonadditive effects (e.g., epistasis and maternal effects) 
are often found to underly complex traits. Epistatic effects describe 
a case where the contribution of an allele at one locus is dependent 
on the genotype at a second locus. Maternal effects are common and 
describe a case where an individual’s phenotype is influenced by the 
mother’s genotype or condition. The genetic architecture of traits can 
be investigated using a variety of methods. Genome-wide association 
studies (GWAS) and quantitative trait locus (QTL) analyses have 
become particularly popular in the last decade. GWAS and QTL 
studies are infamous for inferring an oligogenic genetic architecture 
for complex traits (Mackay et al. 2012; Husby et al. 2015; Santure 
et al. 2015). However, we know that these tests can lack the power 
to detect genes of small effect, complex architectures like epistasis, 
and parent of origin effects (Rockman 2012). However, we know 
that these complex architectures are common in determining many 
traits of biological interest including reproductive isolation, disease, 
and life history (Wagner et al. 1994; Leips and Mackay 2002; Moore 
2003). Life-history traits, like dispersal, are expected to harbor more 
dominant and epistatic variance than additive variance making them 
more difficult to detect with GWAS and QTL studies alone (Roff and 
Emerson 2006: but see Houle 1992).

We chose to apply LCA which offers a fundamentally different 
approach to understanding the genetic underpinnings of traits. 
Rather than focusing on locus identification as GWAS and QTL 
do, LCA focuses on understanding the mode of gene action that is 
responsible for variation in the trait of interest. For instance, the 
genes responsible for variation in a trait could act in an additive 
fashion, through dominance, or epistasis, or even more complex 
modes of gene action like additive by sex interactions (Bulmer 
1980; Lynch and Walsh 1997; Kearsey and Pooni 1998). Using arti-
ficial selection, we created lines for low and high dispersal tendency 
in T. castaneum. We found that dispersal tendency has both additive 
and epistatic components that are important in determining vari-
ation in the dispersal tendency.

Methods

Source Population
A population of T.  castaneum was collected from a feed store in 
Hereford, Texas (34.80°, −102.40°) in 2014 (approximately 200 in-
dividuals). The beetles were housed in glass jars with 200  mL of 
standard media (95% whole wheat flour and 5% brewer’s yeast) in 
an incubator at 30°C with 60% humidity. Prior to the start of this 
study, these beetles were maintained by starting a new generation 
every 45 days by collecting approximately 200 adult beetles from 
an existing population jar and placing them in a new jar with fresh 
media. This 5-year period of acclimation to lab conditions ensures 
that the beetles were not impacted by adaptation to a lab environ-
ment during the present study.

Measuring Dispersal Tendency
To measure the dispersal tendency and perform artificial selec-
tion, we created a dispersal chamber inspired by previous work 
(Figure 1) (Arnold et al. 2017). This dispersal chamber consisted 
of 3 interconnected fly bottles that allow beetles the opportunity 
to disperse to connected jars and gain access to fresh media. 
Beetles were initially placed in the leftmost jar with 50  mL of 
conditioned media. This conditioned media consisted of flour that 
had been used for approximately 1 week by another population of 
beetles. To sterilize the media, it was baked for 2 hours at 125°C 
and then sifted to remove any detritus. The use of conditioned 
media has been shown to increase dispersal tendency, and this 
was chosen to ensure that a sufficient number of beetles would 
disperse, allowing for selection (Sokoloff 1977). To disperse, bee-
tles climbed a 200 mm piece of string to the next jar through a 
150  mm straw connecting the jars. The middle jar had a small 
tissue in the bottom to ensure that the beetles would not get stuck 
at the bottom and were able to move to the last jar. In the final jar, 
the beetles encountered 50 mL of fresh media. When we report 
dispersal tendency of a line, it is the proportion of the 200 bee-
tles that had moved to jar 2 or jar 3 at the end of a 24-hour test 
period. We chose to count both jars 2 and 3 as dispersed beetles 
because the beetles could move between jars and had the oppor-
tunity to enter jar 3 and then return to jar 2. For all measurements 
of dispersal tendency, the dispersal chamber was kept undisturbed 
in an incubator ensuring that all lines had identical temperature, 
humidity, and light during phenotyping. All beetles had dispersal 
tendency measured within 1 week of eclosion (i.e., the transition 
from pupae to adult stage).

Artificial Selection
Selection lines were initiated by collecting 1200 male and 1200 
female pupae from the source population. These were subdiv-
ided into 3 replicates for the high selection lines and 3 replicates 
for the low selection lines (for each sex). Each of the 12 groups 
of 200 sexed pupae were kept isolated in 250  mL fly jars with 
standard media for up to 1 week to ensure that all of the pupae 
had become adults.

To perform selection, we placed 200 virgin beetles of the same 
sex in the conditioned media (Figure 1, jar 1) and allowed the bee-
tles 24 hours to move between jars. The dispersal chamber was left 
undisturbed in the incubator during the 24-hour dispersal period. 
Parents for the low selection line were drawn from those beetles that 
remained in the conditioned media, while the high selection line was 
drawn from beetles that moved into either the second or third jars 
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before the end of the 24-hour test. This was replicated to create 3 
sets of high and low selection lines.

After the 24-hour test period, the selected males and females (ap-
proximately 80 to 100 each) from a replicate were combined and 
allowed to randomly mate. Parents were removed from the mating 
jar after 14  days and pupae for the next generation of selection 
were collected beginning on or about 25 days after the initiation of 
mating. This process was repeated for a total of 5 generations.

Generation of Line Crosses
After 3 generations of selection 100 males and 100 females were 
drawn from each replicate selection line to act as our high dispersal 
line (P2) and low dispersal line (P1). When mating beetles for our 

line crosses we allowed adults to mate for 14 days after which adults 
were removed and larvae were allowed to develop. The offspring of 
each cross were sexed as pupae and kept isolated until all beetles 
had eclosed and then had dispersal tendency measured as described 
above. Parental lines (P1 and P2) were used to create both F1 and re-
ciprocal F1 lines. F1s were then mated to both parental lines to gen-
erate a total of 8 lines. For each cross, both males and females were 
measured for dispersal tendency. All crosses are depicted in Figure 2. 
This set of crosses was replicated 3 times.

Inference of Composite Genetic Effects
An LCA approach was used to infer the relative contribution of pos-
sible composite genetic effects (i.e., additive, dominance, epistatic, 

Figure 1.  Experimental setup for dispersal selection. The beetles started in jar one containing the conditioned media. Beetles were classified as dispersers if they 
moved into jar 2 or jar 3 with the fresh media. Beetles were classified as non-dispersers if they remained in jar 1 during the experimental period.

Figure 2.  Crossing design used to generate study lines. The low dispersal line (P1) is shown on both the left and right of the plot to allow depiction of all crosses. 
The shade of each shape indicates the proportion of the genome that originates from each of these lines (pure P1 genome is colored in white while pure high 
dispersal line (P2) genome is colored black). In all cases, squares indicate sires while circles indicate dams. Each cross consisted of 3 replicates that are not 
depicted.
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etc.) on divergence in dispersal tendency among our 2 selected lines. 
This method requires both a mean and standard error for each line 
included in the study. For each line, we used the 3 replicates to esti-
mate the mean and standard error for a line.

Since each line will have different proportions of the parental 
genome and different levels of heterozygosity, the phenotype for 
each line has different opportunities to be impacted by possible 
composite genetic effects. For instance, the phenotype measured 
in the selected lines P1 and P2 should not be strongly impacted 
by dominance since they have undergone selection for alleles that 
contribute to either low or high dispersal tendency respectively. In 
contrast, the F1 line is expected to be strongly impacted by domin-
ance since it is heterozygous at all loci that carry fixed differences 
in the parental lines. This characteristic allows us to construct a 
matrix of coefficients (C-matrix) that describes the opportunity for 
each possible genetic effect to impact dispersal tendency in each 
of our 8 lines (Lynch and Walsh 1997). Based on the crosses that 
we performed, we are able to construct a C-matrix with a total of 
27 possible composite genetic effects. These genetic effects include 
8 simple effects: additive effects from loci on autosomes, X, and 
Y chromosomes, dominance effects on autosomes and X chromo-
somes, cytotype, and maternal effects that are either additive or 
dominant. The remaining 19 composite genetic effects described 
in the C-matrix capture various possible pairwise epistatic inter-
actions, for instance, autosomal additive by additive epistasis (the 
full C-matrix is given in Supplementary Table 1).

Using this information, we performed an LCA which is a 
weighted least squares model that allows us to represent a model of 
genetic architecture as a linear model (1)

y = Cβ + e� (1)

Where y represents the vector of observed line means, C is the 
C-matrix that describes the opportunity for each genetic effect to 
impact the phenotype of a line, β is the vector of parameters to be 
estimated that describe the degree to which each composite genetic 
effect is responsible for the observed line means, and e is a vector of 
the random errors associated with the means of each cohort. In the 
weighted least squares approach, we then find the estimate of the 
parameters β̂  that minimizes the weighted sum of squares (2).

(y− Cβ)TV−1(y− Cβ)� (2)

Here V is the variance-covariance matrix of e. In LCA, V is a diagonal 
matrix with the standard errors of cohort means along the diagonal. 
This scales each cohort’s contribution to the sum of squares by the cer-
tainty of the cohort mean. This means that if there is large uncertainty 
in a mean for a given line, it will contribute less to the sum of squares 
and by extension to the inference of the genetic architecture for the trait.

We used the software SAGA 2.0 to evaluate all possible models 
for the genetic architecture of our trait (Armstrong et  al. 2019). 
Because we have a total of 8 lines, we limited the space of possible 
models to those with 7 or fewer parameters (composite genetic ef-
fects). This leads to a potential model space of 1.28 million models. 
A large proportion of these models will include genetic effects where 
the coefficients in the C-matrix are highly correlated leading to diffi-
culty in calculating the maximum likelihood estimate of parameters. 
Models that exhibit this characteristic are dropped from the analysis 
and parameters are estimated by the remaining models. Previous 
simulation studies indicate that this does not lead to significant 

bias or loss of power in the inference of composite genetic effects 
under a model averaging approach (Blackmon and Demuth 2016; 
Armstrong et al. 2019). The AIC score for each evaluated model was 
recorded and we constructed a 95% confidence set of models that 
were used to produce model-averaged results that account for model 
selection uncertainty (Burnham and Anderson 2002).

To investigate the veracity of our LCA findings, we performed 
a forward time diploid, 20 loci, biallelic simulation. We assumed 
that dispersal tendency could be impacted by up to 20 unlinked loci 
(19 autosomal and 1 cytotype). To maximize the opportunity for 
transgressive segregation, we made all dispersal alleles dominant to 
non-dispersal alleles. Each locus could increase dispersal by 5% if it 
carried 1 or 2 copies of the dispersal allele. Under this model, a line 
fixed for all dispersal alleles would have 100% dispersal, and 1 fixed 
for all alternative alleles would have 0% dispersal.

To perform the simulation, we first generated a genome for the 
high dispersal line (P2) by randomly choosing 12 loci and fixing these 
sites for the dispersal alleles while the remaining 8 were fixed for the 
non-dispersal alleles. The low dispersal line (P1) genome was created 
similarly, but only 1 site was chosen at random and fixed for the 
dispersal alleles while all other sites were fixed for the non-dispersal 
alleles. Thus, our simulated P1 and P2 will have a dispersal tendency 
equal to what we observed in our empirical P1 and P2 lines.

Using these simulated genomes, we can draw gametes from the P1 
and P2 lines (allowing for recombination between all loci and strict 
maternal inheritance of cytotype). These gametes were combined to 
generate 100 F1 and rF1 offspring. These F1 genomes were used to 
generate 100 offspring of each of the 4 backcrosses that we created 
in our experiment. We then calculated the mean and standard error 
for the dispersal phenotype for each of the 8 simulated lines. This 
data was, then, used to perform an LCA in the same fashion as de-
scribed for the empirical data. This process was repeated 100 times 
to evaluate the impact of dispersion in an experiment like ours. All 
analyses and simulations were completed using R, version 3.6.3 (R 
Core Team 2020). Code and data to perform all analyses reported 
are available via GitHub https://github.com/coleoguy/dispersal.

Results

Response to Selection
Our selection lines showed an immediate but short-lived response 
to selection (Supplementary Figure S1). The base population had a 
mean dispersal tendency of 25%. Over 3 generations of selection, the 
dispersal in the P2 line increased to 59% while dispersal tendency 
in the P1 line reduced to 5%. However, continued selection led to 
little change; the means in the fifth generation were 70% and 18% 
for the P2 and P1 lines respectively. We have no comparable dis-
persal tendency measure for generation 4.  In all other generations, 
lines were phenotyped approximately 7 days after the collection of 
pupae. However, in generation 4, phenotyping occurred 1 week later, 
and both P2 and P1 lines exhibited unusually high dispersal tendency. 
Further exploratory investigation revealed that dispersal behavior in 
T. castaneum appears to increase with time at least under our experi-
mental conditions. One possible explanation is that we held beetles in 
single-sex populations and perhaps this leads to increased attempts to 
disperse when no mate has been located.

Impact of Sex on Dispersal Tendency
In accordance with previous research, we found a consistent but 
weak effect of sex on dispersal tendency. To test the significance 
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of this observation, we used the R package LME4 to fit a mixed 
model (Bates et  al. 2015). Dispersal tendency was the response 
variable, sex was a fixed effect, and the line was a random ef-
fect; we used the standard link function and assumed normally 
distributed random effects. With this approach, we find that 
male dispersal tendency is approximately 5.0% higher than fe-
male dispersal tendency (P-value  =  0.018, T  =  2.48, df  =  37; 
Supplementary Figure S2).

Composite Genetic Effects
Phenotyping of our experimental lines demonstrated an unexpected 
pattern of transgressive segregation where crosses between the P2 
and P1 lines exhibited higher dispersal rates than either of the par-
ental lines (Figure 3A). When evaluating all possible LCA models, we 
found that 71% exhibited high levels of correlation among predictor 
variables. This reduced the possible model space to be searched to 
just 369, 342 models. Despite the vast model space that might ex-
plain the genetic architecture of dispersal tendency in T. castaneum, 
we find that a group of just 10 models is necessary to construct a 
95% confidence set (Supplementary Table 2). Based on model aver-
aging across this set of 10 models, we find that only 4 composite gen-
etic effects are inferred to have strong contributions to divergence 
in dispersal tendency. Autosomal additive, autosomal additive by X 
dominance epistasis, autosomal additive by additive epistasis, and 
X additive by cytotype epistasis each have confidence intervals that 
exclude zero and variable importance greater than 0.5 (Figure 3B). 
In this confidence set of models, a single model containing these 4 
composite genetic effects provided 67% of the model probability. 
The remaining 9 models all exhibited much smaller model probabil-
ities (each less than 0.05), and each of these 9 competing models 
contained autosomal additive and autosomal additive by X domin-
ance epistasis as 2 of the 4 predictors. Examining all other possible 
genetic effects, we find that none have variable importance scores 

greater than 0.11 suggesting that they were only rarely included in 
models that fit the data well. Furthermore, all other variables had 
confidence intervals that overlapped zero indicating that they can ex-
plain little of the variation that we see in dispersal tendency and that 
the effect estimate was not consistent among models (Supplementary 
Figure S3).

To assess the adequacy of the 4 inferred composite genetic ef-
fects to explain our data, we examined the change in the Cox-Snell 
pseudo R2 for 4 models, beginning with the model that included only 
the composite genetic effect with the highest variable importance 
score, autosomal additive. Then we assessed the next 3 models, each 
time adding the composite genetic effect with the next highest vari-
able importance score (autosomal additive by X dominance epistasis, 
autosomal additive by additive epistasis, and X chromosome addi-
tive by cytotype additive epistasis). These pseudo R2 values ranged 
from just 0.39 for the autosomal additive only model to 0.99 for the 
4-parameter model given the highest weight in our confidence set. 
When we plotted the observed mean phenotypes and the expected 
mean phenotypes under this 4-parameter model (Supplementary 
Figures S4), we found a striking match between values. The rBC2 
line displayed the largest residual difference between expected and 
observed values but even this was very slight (approximately 2%).

To evaluate the potential for dispersion to impact our results, 
we analyzed 100 simulated line cross datasets. Our simulation 
scenario was successful in producing line cross datasets that ex-
hibited transgressive segregation. Of the 100 simulated datasets, 
68 had F1 lines that had higher dispersal than the simulated 
P2 dispersal line. Across all simulated datasets, F1 lines had a 
dispersal tendency that was, on average, 2.5% higher than the 
simulated P2 disperser line. During LCA, 70% of datasets were in-
ferred to have a significant additive component (variable import-
ance score higher than 50% and an estimate that excluded zero). 
Within these 70 datasets, 30, also, were inferred to have a signifi-
cant epistatic composite effect. However, these simulated epistatic 

Figure 3.  (A) Dispersal proportion among lines. On the horizontal axis, we show the proportion of the genome that originates from the P2 line. On the vertical 
axis, we show the proportion of dispersers in each line. Circles are used to indicate females and squares to indicate males. BC2 and rBC2 have been staggered 
slightly away from the true value of 0.75 on the horizontal axis to allow visualization of both crosses. (B) Composite genetic effects describing divergence in 
dispersal tendency among selection lines. The 4 composite effects identified are autosomal additive (Aa), autosomal additive by additive epistasis (AaAa), 
autosomal additive by X dominance epistasis (AaXd), and X additive by cytotype additive epistasis (XaCa). The color gradient indicates variable importance 
based on the 95% model confidence set. Only composite effects with variable importance greater than 0.15 and a mean with a confidence interval that does not 
include zero are shown.
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effects were an order of magnitude smaller than inferred with the 
empirical data (Supplementary Figure S5). To compare the relative 
balance of epistatic and additive effects, we calculated an epistatic 
to additive ratio. This ratio was formed by summing the absolute 
value of all inferred epistatic effects and dividing by the absolute 
value of the inferred additive effect. For the empirical dataset, this 
value is 5.27. In contrast, for simulated datasets, the ratio ranged 
from zero to 0.33. This indicates that dispersion alone is unlikely 
to explain the large contribution of epistatic component that we 
infer from our empirical data.

Discussion

The present study joins a host of others that concludes that dis-
persal is polygenic and has epistatic interactions (Wheat et  al. 
2011; Niitepõld and Saastamoinen 2017). Our findings reaffirm 
the hypothesis that many loci with small effects are contrib-
uting to complex traits like dispersal behavior (Rockman 2012; 
Saastamoinen et al. 2018). Our analysis also shows a consistent sex 
effect where males have higher dispersal tendency than females. This 
confirms previous work on T.  castaneum dispersal (Naylor 1961; 
Ritte and Lavie 1977; Lavie and Ritte 1978). However, we note that 
our experimental design may have led to higher male dispersal than 
may be observed in more natural conditions. For instance, keeping 
beetles in single-sex virgin populations until phenotyping may lead 
to male beetles exhibiting higher dispersal tendency as they searched 
for mates.

One assumption of LCA is that there is no dispersion—all alleles 
that contribute to a higher phenotype are fixed in the high line, and 
all alleles contributing to a lower phenotype are fixed in the low 
line. In a short-term artificial selection experiment like ours, this as-
sumption may not be satisfied. In our experiment, we observe trans-
gressive segregation and epistatic composite genetic effects. Both of 
these characteristics can be due to the dispersion of alleles among 
the selection lines (Kearsey and Pooni 1998). To investigate whether 
dispersion could produce inferences similar to ours, we performed a 
forward time diploid, 20 loci, biallelic simulation.

Results from our simulation study showed that as expected 
dispersion can lead to false inferences of epistasis. Out of the 100 
simulated line cross experiments, 31 supported a role for epistasis. 
However, the magnitude of epistasis that we infer in these simulated 
datasets is strikingly small compared to what we infer from our em-
pirical data. Furthermore, the contribution of epistasis relative to 
additive variance is remarkably different in the empirical dataset 
relative to the simulated datasets. We suggest that these findings 
show that it is unlikely that the large role of epistasis that we infer is 
simply from dispersion among our parental lines. Furthermore, the 
relatively small role of epistasis that we infer from dispersion points 
to an added strength of accounting for model selection uncertainty 
during LCA not previously documented (Blackmon and Demuth 
2016; Armstrong et al. 2019).

The rapid response to selection that we observed in our P1 and 
P2 lines suggests that there is an additive genetic variance that can 
be selected upon for dispersal tendency. However, the results of our 
LCA support a large role for epistatic interactions as the explan-
ation for the total divergence in our 2 parental lines. Though these 
results may appear to conflict with one another initially, they are not 
at odds with previous analyses or theory concerning the expected 
standing genetic variation for traits, like dispersal, that may have a 
strong link to fitness (Mousseau and Roff 1987; Roff and Emerson 
2006).

If a trait is directly linked to fitness, then, the additive genetic vari-
ance should erode relatively quickly as the fittest allele is fixed in the 
population (Curtsinger et al. 1994). In contrast, the epistatic variance 
may remain present in the population for long periods of time (Wade 
1992). One avenue to investigate this is by comparing the genetic 
architecture of traits that vary in the degree to which they are con-
nected to fitness. For instance, a morphological trait, like height, may 
have some correlation with fitness, but it is expected to be far less 
than the correlation between fecundity and fitness. A series of ana-
lyses comparing the genetic architecture of multiple morphological 
and life-history traits in a variety of species have been performed to 
investigate this (Roff and Mousseau 1987; Mousseau and Roff 1987; 
Houle 1992; McCleery et al. 2004; Roff and Emerson 2006). A clear 
pattern has emerged that morphological traits on average have a 
greater proportion of total genetic variance that is additive, while life-
history traits have a greater proportion of total genetic variance that 
is epistatic (Mousseau and Roff 1987; Roff and Mousseau 1987).

Previous work in T. castaneum has shown a positive correlation 
between fitness and dispersal (Lavie and Ritte 1978). Therefore, we 
expect to see a greater proportion of dominance and epistatic vari-
ance due to past strong selection on this fitness-related trait, and 
our LCA findings are consistent with this expectation. However, if a 
trait has primarily epistatic variation, why do we also find a robust 
response to selection? We do not have a measure of additive variance 
in dispersal tendency for the original population; however, we sug-
gest that during the sampling and selection process that the P1 and 
P2 lines experienced, the epistatic variance may have been converted 
to additive variance through randomly fixing one of the interacting 
loci allowing for a continued response to selection (Goodnight 
1988). This would be consistent with both our response to selection 
and our inference of the composite genetic effects responsible for di-
vergence in dispersal tendency among our selection lines.

Under many circumstances, the additive variation in a trait will 
determine the outcome of selection (Falconer and Mackay 1996). The 
alternative view that epistatic variation in traits is important in the 
course of evolution was a central theme in the work done by Wright 
(1940). Theoretical work has shown the importance of nonadditive 
effects on the evolution of a trait and that nonadditive effects can 
be converted to additive variance by a population bottleneck, which 
allows for further selection to act on the trait (Goodnight 1988; 
Keightley 1996; Fuerst et al. 1997; Łukaszewicz 2000; Soriano 2000; 
Wade 2002; Carlborg et al. 2006; Monnahan and Kelly 2015).

Our results show that even for a trait with little contribution 
from additive genetic effects, epistatic variance may be abundant and 
may contribute more to divergence in dispersal tendency. Because the 
conversion of epistatic variance to additive variance is made more 
likely when populations are small (Wade and Goodnight 1998), it 
seems reasonable that during the course of our selection experiment 
epistatic variance was converted to additive variance and fixed in 
the selection lines. A  strong test of the importance of this process 
would be to replicate the experiment that we have performed but 
with multiple population sizes. Our expectation is that small popu-
lations should respond more rapidly as formerly epistatic variation 
is converted to additive variation and fixed. This would be strong 
evidence that epistatic variance may act as an adaptive reserve that 
is uncovered in small populations allowing a population to reach 
new adaptive peaks.
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