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Abstract

Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena.
Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors,
exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model
networks with valued edges. We address this problem by introducing a class of generalized exponential random graph
models capable of modeling networks whose edges have continuous values (bounded or unbounded), thus greatly
expanding the scope of networks applied researchers can subject to statistical analysis.
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Introduction

The need to analyze networks statistically transcends disciplines

that have occasion to study the relationships between units.

Applications in the medical sciences [1–3], physics [4–8],

computer science [9,10], mathematics [11–13], the social sciences

[14–16], and other fields examine networks that vary in size and

density, over time, and have edges with values that vary from

binary ties, to counts, to bounded continuous and unbounded

continuous edges. An important method for statistical inference on

networks is the exponential random graph model (ERGM) [17–

19], which estimates the probability of an observed network

conditional on a vector of network statistics that capture the

generative structures in the network. Yet the ERGM has a major

limitation: it is only defined for networks with binary ties [20,21],

thus excluding a wide range of networks with valued edges (e.g.,

genetic networks [22] and correlation networks [23]). We develop

a class of generalized ERGMs (GERGMs) for inference on

networks with continuous edge values, thus lifting the restriction of

this methodology to a, possibly small, subset of networks. The form

of our generalized model is similar to the ERGM in that it can be

flexibly specified to cover a broad range of generative features, and

our model can be estimated efficiently with a Gibbs sampler. The

strengths and limitations of the ERGM are apparent from its

functional form. Let Y be the n-vertex network (adjacency matrix)

of interest with m edges (m~n(n{1) if Y is directed and

n(n{1)=2 if it is undirected). Yij is the edge from i to j. An ERGM

of the network Y is specified as:

P(Y ,h)~
expfh’h(Y )gP

all Y�[Y expfh’h(Y �)g , ð1Þ

where h is a parameter vector, h(Y ) is a vector of statistics

computed on the network, and the object of inference is the

probability of the observed network among all possible permuta-

tions of the network given the network statistics. The h(Y ) term is

what gives the ERGM much of its power: this vector can contain

statistics to capture the interdependence structure of connectivity

in the network – statistics can be included to capture reciprocity,

transitivity, cyclicality, and a wide variety of other endogenous

structures – as well as the effects of exogenous covariates [24].

The challenges for modeling networks with valued edges are

apparent from the specification in equation 1. The flexibility of the

ERG distribution comes from the lack of constraints in specifying

h; the only constraint is that h is finite when evaluated on any

binary network. This assures that the denominator is a convergent

sum, and therefore represents a proper normalizing constant for

the distribution of networks. However, this convergence is not

assured whenever h is finite if the support of Y is infinite, as it is

with any network with continuous-valued edges. The model we

derive retains the flexibility of h within a framework that assures a

proper probability distribution for Y when Y has continuous

edges.

Methods

The major strength of the ERGM is that the vector of statistics

on the network, h, can be specified to represent many forms of

dependence among the elements of Y , including transitivity (i.e.,

clustering), popularity, and reciprocity. Because these same

dependence features characterize valued networks [20,21] and

can be of theoretical import [15], we seek a generalization of the

ERGM that maintains the flexibility of the set of network statistics,

h, while moving away from the limitations inherent in the

denominator of the ERGM. We see the analytic challenge of
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defining an ERGM-like model for valued networks as a three-part

problem: deriving a distributional family that is (1) guaranteed to

have a convergent normalizing constant, (2) incorporates depen-

dence functions into the distribution as flexibly as does the ERGM,

and (3) is easily adapted to accommodate a variety of edge types

(e.g., bounded, unbounded, strictly non-negative). In this section,

we introduce a method of constructing joint continuous distributions

on networks that permit the representation of dependence features

among the elements of Y through a set of statistics on the network,

h(Y ). This generalized exponential random graph model (GERGM) can

be used when edges are continuous and unbounded, bounded

from above, bounded from below, or bounded above and below;

thus greatly increasing the scope of networks it can analyze

compared to the ERGM.

The Generalized ERGM (GERGM)
There are two specification steps in our approach to generalized

ERGMs (GERGMs): first, we specify a tractable joint distribution

that captures the dependencies of interest on a restricted network,

X , and then we transform X onto the support of Y . In so doing,

we produce a probability model for Y . To illustrate these steps,

begin with consideration of the restricted valued network X , which

has the same vertices as Y , but edge values that are continuous

and bounded between zero and one (X[½0,1�m).

Our first specification step involves defining a set of network

statistics, h, to capture endogenous effects and exogenous

covariates, and defining a probability distribution for the restricted

valued network X . We define a probability distribution for X by

adapting the ERGM formula presented in equation 1 to address a

½0,1� bounded network and assure a convergent sum in the

denominator:

fX (X ,h)~
exp h0h(X )½ �Ð

½0,1�m exp h0h(Z)½ �dZ
: ð2Þ

In equation 2, h[Rp remains the parameter vector and h:

½0,1�m?Rp, is formulated to represent joint features of Y in the

distribution of X . The statistics h are guaranteed to be finite on

½0,1�m and each hi(:) is a statistic that captures the generative

structure of the network by summing over subgraph products such

that for every i, L2h(X )

L2Xij
~0. This is a flexible specification because

many dependence relationships can be captured by summing

products over subgraphs of the network, particularly when the edges

are in the unit interval [21]. For instance, networks generated by a

highly reciprocal process are likely to exhibit high values ofP
ivj XijXji, and those in which connections gravitate toward

high-degree vertices exhibit high values of
P

i

P
j,k=i XjiXki (i.e.,

‘‘two-stars,’’ [25]).

An important property of the distribution we have specified for

the restricted valued network, X , is that when there are no

dependencies in the network, fX is an appropriate model for

independent uniform random variables. That is to say, if we have

correctly specified the set of network statistics and h~0, then X
has no dependencies. Since fX is the joint distribution of the

quantiles of Y , and a joint uniform distribution is the joint

distribution of the quantiles of independent random variables [26],

h~0 implies independence among the edges in Y . This is

convenient because it implies that there need not be any

dependencies in the network to use the GERGM.

In our second specification step, we transform the restricted

valued network X onto the support of the network of interest Y .

We do so by applying parameterized, one-to-one, monotone

increasing transformations, which we denote G{1(:), to the m
edges of the restricted network. Specifically, we specify Y as

Yij~G{1
ij (Xij ,lij), ð3Þ

where lij parameterizes the transformation to capture marginal

features of Yij . Equation 3 shows that we can define each edge, ij,

in the network of interest (Y ) as a parameterized transformation of

the same ij edge in the restricted network X . An interesting case of

transforming X is when the edges of Y are bounded from below at

a and above at b. In this case, the transformation Yij~

azXij(b{a) is a natural choice. This illustrates that the GERGM

can be used to model networks of correlation coefficients, which

have been of great interest recently [27–29].

Given this transformation of the restricted network, we derive a

specification for the GERGM that allows us to keep the basic

structure and strength of the ERGM: the h vector is now specified

on a transformation of the network rather than the network in its

observed form, but it maintains all the flexibility that makes the

ERGM powerful. Because dG{1(Xij ,li)=dXijw0, the properties

of multivariate transformations [30] imply that the distribution of

Y is fY (Y ,h,L)~fX (G(Y ,L),h)jJj, where the Jacobian matrix, J,

is the matrix of first partial derivatives. Since J is a diagonal

matrix, we may write the GERGM as

fY (Y ,h,L)~
exp h0h(G(Y ,L))½ �Ð
½0,1�m exp h0h(Z)½ �dZ

P
ij

g(Yij ,lij), ð4Þ

where the model parameters h and the transformation parameters

L must both be estimated.

An elegant feature of this formulation is that it may be specified

to reduce to well known regression models for independent data

when the network is free of dependencies. Specifically, we may

specify g as a probability density function (i.e., G is a CDF, and

G{1 an inverse CDF) parameterized to match the support of Y
and capture features of Y such as location, scale, and dependence

on covariates. When g is specified as such, the distribution for Y
contains many common models for independent and identically

distributed variables as special cases when h~0. For instance, if g
is a Gaussian PDF with constant variance and the mean

dependent on a vector of covariates, the model reduces to that

assumed in linear regression. This is a useful feature of the model

because researchers may doubt the role of network dependencies

in their data, but be uncomfortable applying a model that assumes

no dependencies and is incapable of modeling them (e.g.,

regression). In such a case, the researcher may apply a GERGM

and, if there are no dependencies, the parameters h that capture

network dependencies will be zero and the parameters returned

for exogenous covariates will be identical to those a regression

would have produced.

A further feature of the GERGM for researchers unsure of

whether to include some subset of their effects, be they endogenous

dependencies or exogenous covariates, is that the GERGM allows

hypothesis tests for block restrictions. As such, a researcher may

apply tests, such as the likelihood ratio or Wald tests, to test the

assumption that the edges of Y are independent conditional upon

L.

The specification of dependencies in a quantile network is

standard across different edge-types, because the support of the

joint quantiles is always a unit hypercube. However, the

specification of g will vary substantially based upon the marginal

characteristics of Y . A few general features to consider when

selecting g are (1) the support of Y , (2) the notable characteristics

The Generalized Exponential Random Graph Model

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30136



of the moments of Y , and (3) the dependence of Y upon covariate

information. It is advisable to select g such that the support of g is

equal to the possible values that could be observed for Y . For

instance, if the edge values are strictly positive (e.g., monetary

exchange), a Weibull distribution would be a feasible choice. Once

a class of g’s with appropriate support is identified, it is then

important to consider other relevant marginal features of Y – such

as skewness, kurtosis, or multimodality – and be sure to choose a g

that is flexible enough to represent those marginal features. Lastly,

it might be the case that marginal characteristics of Y vary based

on some covariate information. It is important to parameterize g

such that these dependencies can be accurately represented. One

beneficial feature of our two-stage derivation of the GERGM is

that the extensive literature on fitting flexible parametric models to

independent observations can inform choices for g (e.g., [31]).

It is also important to note that inferences about network

dependencies will depend upon the specification of g. The network

dependencies are estimated on the joint quantiles with respect to g.

Thus, changing g alters the joint quantiles of Y with respect to g

and effectively changes the network within which the dependen-

cies are estimated. In this sense, we do not expect that inferences

with respect to h will be robust to substantially different choices of

g. It is therefore important to consider and compare feasible

alternatives for g. Typically, evaluating the robustness of a

particular model to alternative specifications of g will not be

especially difficult because nested alternatives can be compared

using Wald tests on the parameter restrictions. Simulation based

model-fit metrics, such as those computed in our application

below, could also be used to compare alternative formulations of g.

An important topic for future research would address model

comparison and selection within the GERGM framework.

Interpretation of the GERGM coefficients is relatively straight

forward and we give an extensive example when we present our

application. We note here however that, when g is a PDF, X is the

random variable drawn from the joint distribution of the quantiles

of Y . Therefore, the vectors h and h characterize the dependencies

among the quantiles of Y . In this way, our method closely

resembles the process of constructing joint distributions with

copula functions [26]. To illustrate the process of specifying a

GERGM, it is useful to consider a generic small-scale model. A

simple example of deriving a joint distribution through the

combination of h and g is illustrated in Figure 1, which presents

the distributions of X and Y for a directed network with two

vertices exhibiting a high degree of reciprocity.

Alternative Formulations
Our approach to the generalized ERGM is not the only means

by which the ERGM can be extended to model valued-edge

networks, though we believe it is a particularly flexible one.

Krivitsky [32] has proposed an alternative framework for such an

extension, which takes a substantially different approach to the

problem than we do. As noted above, one of the major challenges

to deriving an ERGM for a network with infinite support is that of

assuring that the sum or integral over the probability mass or

density function is convergent. We assure this by defining the

exponential family graphical model on the restricted quantile

network. This permits free reign in the specification of dependence

functions h. The only requirement is that the functions be finite-

valued. The approach to assuring a convergent sum/integral, and

thus a proper probability distribution, taken by Krivitsky [32] is

more flexible than ours, yet imposes more constraints on the

definition of h. The extension of the ERGM proposed by Krivitsky

[32] is given by

P(Y ,h)! exp g(h)’h(Y )½ �dR(Y ), ð5Þ

where g maps h to canonical parameters and R is a ‘reference

measure’ that assuresð
Y

exp g(h)’h(Y )½ �dR(Y )dYv?:

For a given reference measure, h must be carefully specified so as

to be dominated by R.

It is not apparent that either approach is globally preferable. Our

approach permits substantially greater flexibility in specifying h,

since there is no need to check for convergence given a particular

specification of h. However, we restrict the specification of

dependence to occur within the joint quantile network. Indeed, we

view the necessity that the dependencies be estimated in the joint

quantile network as the primary limitation of our formulation of the

GERGM. The class of models proposed by Krivitsky [32], in

contrast, permits dependence to be represented in the natural

support of Y . However, our framework offers a more direct

relationship between the GERGM and common independence

models than that proposed by Krivitsky [32]. For instance, in the

Poisson ERGM proposed by Krivitsky [32], independence among

the edges in the network does not assure that the edges are

marginally Poisson distributed. In our formulation of the GERGM,

when the edges are independent, the model is guaranteed to reduce

to the marginal model used to specify g. Ultimately however, which

model is more appropriate will depend on the particular application.

Estimation
Estimation of the parameters in the model is a non-trivial task. The

greatest challenge in estimating h and L in equation 4 is that the

integral in the denominator is typically intractable. Because of the

polynomial structure of h, and the fact that the variables of integration

are bounded, we know that the integral is both positive and finite,

meaning fY is a proper joint distribution. However, inference

requires the approximation of the denominator. We develop a

Markov chain Monte Carlo maximum likelihood estimation

(MCMC-MLE) [33] method for estimating the parameters.

In order to approximate the denominator in equation 4, we

sample from fX using a Gibbs Sampler. To do so, we require the

conditional distribution of Xij jX{ij . To simplify the notation, letÐ
½0,1�m exp h0h(Z)½ �dZ~C(h). The conditional distribution (f c

X ) is

given by

f c
X (Xij jh)~

exp h0h(X )½ �=C(h)Ð 1

0
exp h0h(X )½ �=C(h)dXij

~

exp Xijh
0 Lh(X )

LXij

� �
h0

Lh(X )

LXij

� �{1

exp (h0
Lh(X )

LXij

){1

� � : ð6Þ

We may then draw from the conditional distribution in equation 6

using the inverse CDF method. If u is a uniform (0,1) random

variable, then

Xij jX{ij*
ln 1zu exp h0

Lh(X )

LXij

� �
{1

� �� �
h0

Lh(X )

LXij

: ð7Þ

The Generalized Exponential Random Graph Model
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When h0
Lh(X )

LXij

~0 the conditional density given in equation 6 is

undefined. However, in this case, each point in the unit interval is

equally likely and the conditional distribution of Xij is uniform

(0,1).

In order to estimate h and L, we maximize ln fY½ �:

h0h(G(Y ,L))z
X

ij

ln g(Yij jlij)
� �

{ ln C(h)½ �: ð8Þ

Our algorithm iteratively proceeds by maximum likelihood

estimation of Ljh and MCMC-MLE of hjL until convergence.

We derive an approximation to the asymptotic variance-

covariance matrix by the inverse of the negative Hessian matrix

at the last iteration.

Consider first the maximum likelihood estimation of Ljh.

Because C(h) does not depend on L, maximum likelihood

estimation of Ljh reduces to

arg
L
max h0h(G(Y ,L))z

X
ij

ln g(Yij jlij)
� � !

, ð9Þ

a function easy to maximize using a hill-climbing algorithm.

The estimation of hjL is more involved. Let X̂X~G(Y ,L̂L) be the

estimate of the restricted (quantile) network given the current

estimate of the transformation parameters. The second term in

equation 8 does not depend on h, so to estimate hjL we find

arg
h
max h0h(X̂ ){ ln C(h)½ �

� 	
, ð10Þ

which requires an approximation of C(h). We approximate C(h)

using MCMC-MLE; an iterative method itself. Let h½i{1� be the

previous estimate of h, and ~XX be a sample of n networks drawn

from fX (X ,h½i{1�). Then, an approximation to C(h) is given by

dC hð ÞC hð Þ~C(h½i{1�)
Xn

j~1

exp h0h( ~XX j)
� �

exp h’½i{1�h( ~XX j)
h i : ð11Þ

This requires a starting value for h. In simulation experiments, we

have found the pseudolikelihood estimate (arg maxhP
ij ln f c

X (Xij jh)
� �� 	

) to be effective in providing starting values

for h (i.e., h½0�). Pseudocode for the algorithm is given in Figure 2.

Challenges in Estimation and Specification
The joint distribution fX in equation 2 is a linear exponential

family multivariate distribution in that ln fX is proportional to a

Figure 1. Bivariate distributions for edges in a two-vertex di-graph. (c) The darker the shading, the higher the relative likelihood of a point.
In this example, g is the standard normal PDF (b), and fX (a) is defined by h~fX12zX21,X12X21g, and h~f{3:5,7g, representing negative density
and positive reciprocity effects.
doi:10.1371/journal.pone.0030136.g001
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linear combination of the parameters h and sufficient statistics h
[34]. Focusing specifically on ERGMs, there is a burgeoning

literature on obstacles to specification and approximate maximum

likelihood estimation with multivariate discrete exponential family

distributions [35–37]. There are two related problems that have

motivated this literature: (1) the existence and uniqueness of of the

MCMC-MLE, and (2) the degeneracy of the ERG distribution.

To estimate the model by MCMC-MLE, we maximize the

approximate likelihood function with respect to h, such that a

sample of networks ~XX is used to approximate the likelihood function.

The sample is drawn from a distribution parameterized with the

same network statistics h and a previous estimate or starting value

for the parameter h0. The performance of this optimization method

depends heavily upon the sample ~XX, and thus upon h0. Specifically,

a value of h that maximizes the approximated likelihood exists and

is unique if and only if the values of the network statistics computed

on the observed network (i.e., ^�X�X ) are within the p-dimensional

convex hull of the network statistics computed on the sample of

networks. In application, this requires that ~XX be drawn from a

distribution that generates networks similar to ^�X�X . Heuristically, we

would expect that setting h½0� close to the true maximizer of the

likelihood function would be sufficient. However, this is not the case,

which brings us to the second challenge.

The problem of degeneracy in discrete exponential families adds

substantial complication to the specification, estimation and

simulation of ERG distributions. Discrete ERG distributions that

are degenerate tend, in Markov Chain simulation, toward either

the completely full graph in which all edges are at their maximum

value or the completely empty graph in which all edges are at their

minimum value [36]. This means that either extremely dense or

extremely sparse networks have high probability in a degenerate

ERG distribution. This creates two complications in application.

First, degenerate ERGMs are poor models for most empirically

observed networks, meaning that it is generally unacceptable to

arrive at a degenerate ERGM in training a model for an observed

network [36]. Second, degeneracy of the approximating distribu-

tion in the iterations of MCMC-MLE can cause the convex hull of

the statistics computed on the sample of approximating networks

to be far from the statistics computed on the observed network,

causing the algorithm to break down [36]. Adding to the

challenges posed by degeneracy, for a given model and network

size, there may be only a very small and nonlinear region in the

parameter space that leads to non-degenerate ERG distributions

[37], which complicates the selection of starting values and the

iterative search of the parameter space.

There are two complimentary approaches to combating the

problem of degeneracy in ERGMs: using specifications that are

less prone to degeneracy and checking a given estimated model for

degeneracy. First, the degree to which a particular ERGM is

prone to degeneracy depends substantially on the specification of

the model [37]. Classic ERGM specifications used counts of sub-

graphs that measure local dependence structures as network

statistics (h). For example, to measure transitivity (i.e., whether a

friend of a friend is a friend), classically specified ERGMs used

counts of the number of triangles in the network. Classically

specified ERGMs are known as Markov Graphs [38]. To

minimize degeneracy problems, Snijders, Pattison, Robins and

Handcock [39] proposed a set of specifications of the ERGM that

are substantially less prone to degeneracy than Markov Graphs.

This is a useful approach to the problem because use of these

specifications reduces the probability that model selection/

specification will be complicated by degeneracy.

Second, one can directly check whether a given ERGM is

degenerate. This is accomplished in a straightforward manner by

Figure 2. Estimation by iterative MLE-MCMC-MLE.
doi:10.1371/journal.pone.0030136.g002

The Generalized Exponential Random Graph Model

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30136



simulating a large number of networks using MCMC and

checking whether (a) the simulated network statistics are similar

to the observed values and (b) whether the Markov Chain is

tending toward the full or empty graph [40]. This is a powerful

approach to diagnosing degeneracy because it can be applied to

any ERGM specification. Indeed, regardless of the specification

used, it is important to diagnose whether an estimated model is

degenerate because even degeneracy-resistant specifications do not

guarantee non-degeneracy.

Because the GERGM is based on a continuous exponential

family and is applicable to a wide array of edge types, it is not clear

that the statistics proposed by Snijders, Pattison, Robins and

Handcock [39] can be easily adapted to the GERGM framework.

Thus, though outside of the scope of the current research, future

work should focus on developing specifications of the GERGM

that are resistant to degeneracy.

Fortunately, however, it is straightforward to apply the same

MCMC methods used in estimating the model to determine

whether a particular GERGM is degenerate. We take a two-

pronged approach to checking for degeneracy. First, we check

whether the average edge value in the simulated networks is closer

to zero or one than to the mean of the network used to estimate the

model. This can be accomplished through the use of trace plots (a

line-plot of connecting mean edge values over many iterations of the

chain) and/or running mean plots (a plot to examine the stability of

the mean edge value over a large number of iterations of the chain);

though trace plots may be better suited to this purpose than running

mean plots because they show every mean value. Second, once we

are satisfied that the means in the simulations are far from

degenerate values, we use standard MCMC diagnostic tools to test

for non-convergence of the Markov chain. The Geweke and

Gelman-Rubin diagnostics lend themselves particularly well to this

purpose. As with all convergence diagnostics, the Geweke and

Gelman-Rubin tests are tests of non-convergence that assume the

convergence of the chain as the null hypothesis; accordingly

satisfying these diagnostics does not assure convergence, but

provides the best indication of convergence possible given that

analytical proofs of convergence are not possible.

The Geweke diagnostic [41] is a time-series diagnostic based on a

comparison of two non-overlapping windows of the Markov chain, one

earlier in the series and one later. The Geweke diagnostic is specified as

G~
�gg(w1){�gg(w2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1(0)

n1
z

s2(0)

n2

s , ð12Þ

where w1 and w2 are non-overlapping subsets of the Markov chain of

length n1 and n2 respectively, the �gg() function is typically the mean,

and s1(0) and s2(0) are the symmetric spectral density functions [42].

Because the Geweke diagnostic follows a standard normal distribution,

one typically takes values greater in absolute value than 2 to indicate

non-convergence.

The Gelman-Rubin diagnostic [43] examines the convergence

of multiple Markov chains begun from several overdispersed

starting points by estimating the factor by which the distribution of

parameter w, at any point in the Markov chain, is expected to

shrink under continued simulation. For mw2 Markov chains of

length n, the within and between chain variances are respectively

W~
1

m(n{1)

Xm

j~1

Xn

i~1

w
½i�
(j){

�ww(j)

� 	2

B~
n

m{1

Xm

j~1

�ww(j){
��ww�ww

� 	2

,ð13Þ

where �ww(j) indicates the mean for the jth chain, and ��ww�ww indicates the

grand mean [42]. The total variance may then be calculated asdv(w)v(w)~(1{1=n)Wz(1=n)B and the shrink factor is computed

R̂R~

ffiffiffiffiffiffiffiffidv(w)v(w)

W

s
, ð14Þ

where values departing significantly from 1 indicate non-

convergence [42,44].

If we can satisfy ourselves that the running mean of network

edge values is non-degenerate and that the Markov chains have

converged, we will have satisfied the strongest possible criteria for

claiming non-degeneracy of the GERGM model.

Results

We illustrate important features of the GERGM and demon-

strate its efficacy by applying it to a real network: the network of

domestic migration in the United States. Our aim in this

application is primarily pedagogical, and so we devote more

attention to the choices made as part of the modeling process and

alternative ways to interpret our results than is typical of

applications whose primary purpose is substantive discovery.

Interstate migration flows in the U.S., the flow of citizens from

one state to another, do much to shape the demographic, political,

and economic makeup of the country. Migration flows have

implications for local financial markets [45] and are an important

determinant of stress on public infrastructure [46]. What is more,

consumer-voters are thought to relocate to states that better match

their preferences [47] and, perhaps as an effect, migration can

shape the political climates of the states [48]. Migration flows

naturally form a directed and valued network because each state

(vertex) sends a certain number of its citizens to every other state

(outbound edges), and receives a certain number of citizens from

every other state (inbound edges). Despite some recent interest in

modeling migration as a network phenomenon [49–51], there is

little work in this area and the literatures in policy/political science

and demography have not been well integrated. Our aim is to

demonstrate the GERGM on interstate migration flows while

incorporating factors from both literatures.

In contrast to previous studies, we focus on the change in the

directional interstate migration flow from one year to the next.

Migration flows are fairly persistent over time, and the ability to

predict this year’s flow based on the previous year’s may mask an

important type of predictive deficiency in a statistical model.

Substantial change in the migration in and out of a state are of

interest because they can cause disruptions to local economies and

exert unexpected stresses on infrastructure. Specifically, we model

the change in interstate migration flows from 2006 to 2007, in the

50 states, Washington D.C., and Puerto Rico. The edge from state

i to state j is the difference between the number of people who

migrated from i to j in 2007 and the number who migrated from i

to j in 2006. These data allow us to consider the GERGM in the

context of a valued network requiring transformation away from

the restricted valued network onto a continuous unbounded

support with exogenous covariates and endogenous parameters,

thus making full use of the GERGM’s flexibility.

To gain intuition about the network under consideration, we

present the largest increasing and decreasing edges and vertices in

Figure 3.

There are three broad choices we face in specifying the model

for the network of migration change: the selection of the
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distribution family for g, the covariates that condition the location

of g, and the statistics that comprise h.

With respect to the distribution of g, one distinct feature of the

data that we need to accommodate is the thickness of the tails. The

empirical kurtosis of the edges is 637, compared to the normal

distribution’s kurtosis of 3. As such, we use the location-scale

Cauchy distribution [52]. The PDF of the Cauchy is

g(y,m,s)~
1

ps 1z
y{m

s

� 	2
� � , ð15Þ

where m[R is the location parameter (i.e., the median), and sw0 is

the scale parameter. The location parameter for the edge from i to

j depends on a vector of covariates zij via regression parameters b,

such that mij~b0zij . Under the restriction that there are no

dependencies in the network (i.e. h~0), our model of change in

migration flows reduces to the Cauchy regression model (CRM)

[52]. Thus, we denote the model without network effects by CRM.

We draw directly from the literature on interstate migration in

selecting the covariates. Specifically, we include the covariates that

[49] finds to be statistically significant determinants of migration

flows. These include the population, unemployment rate, per-

capita income, and average January temperature of both the

sending and receiving states. Since we are modeling change in and

not the level of migration, each covariate is included as the change

in the respective covariate value from 2005 to 2006. For instance

Unemployment Sender (ij) is the difference between state i’s
unemployment rate in 2006 and state i’s unemployment rate in

2005.

We complete our specification by considering which endoge-

nous dependence terms to include in the model. We include five

terms to capture the endogenous generative structure of the

network. The first endogenous effect we include is transitive triads,

which will account for any unmodeled clustering in the network

(e.g., migration in clusters of agricultural or coastal states). The

transitive triads term is defined as

Transitive Triads~
X

ivjvk

xijxjkxikzxijxkjxkizxijxkjxik

zxjixjkxkizxjixjkxikzxjixkjxki,

ð16Þ

where the six additive terms capture every possible combination of

directed edges between three vertices: i, j, and k. The second

dependence term is reciprocity, which will account for any tendency

towards dyadic exchange of migration flows (i.e., states trading

migrants at similar levels). The reciprocity term is specified as

Reciprocity~
X
ivj

xijxji, ð17Þ

which captures the tendency of i?j and j?i edges to co-occur.

The third term we include is cyclic triads, which will model the

tendency towards generalized reciprocity in the network – the

degree to which total flows to and from a state are correlated [53].

This term is specified as

Cyclic Triads~
X

ivjvk

xijxjkxkizxikxkjxji, ð18Þ

Figure 3. The increases and decreases in year-to-year migration. The upper-left and upper-right plots respectively show the largest 5% of
decreases and increases from one state to another; the width of the line corresponds to the magnitude of the exodus. The lower-left and lower-right
plots display the states with the highest total number of citizens leaving and the highest total number of citizens arriving respectively. These data are
available at http://www.census.gov/population/www/socdemo/state-to-state.html.
doi:10.1371/journal.pone.0030136.g003
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Figure 4. Dependence statistics in a 25 vertex network Y with a standard normal g. The Y-axis in (a) is the Pearson’s correlation coefficient
between edges in a dyad. The transitivity graphic in (b) is shaded to reflect the mean value of Y23, with darker values indicating higher values. The
parameter value is set to 1. The Y-axis in plot (c) depicts the variance in the in-degrees across vertices.
doi:10.1371/journal.pone.0030136.g004

Figure 5. Estimates of the parameters for covariates (cell a) and dependence terms (cell b). The coefficients are depicted as points whose
values are captured by their location on the x-axis. The bars spanning from each point are 95% confidence intervals based on 5,000 draws for three
iterations used in the MCMC-MLE. Confidence intervals not including zero are statistically significant at the traditional 0.05 level. Points and lines in
black refer to our Cauchy GERGM, those in grey refer to the CRM.
doi:10.1371/journal.pone.0030136.g005
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and captures reciprocal effects that flow through a third state. The

last two terms are closely related: in-two-stars and out-two-stars.

These terms account for any unmodeled features of states that

motivate flows to and from states respectively. The terms are

specified as

In{Two{Stars~
X

i

X
jvk=i

xjixki

Out{Two{Stars~
X

i

X
jvk=i

xijxik,
ð19Þ

and capture the tendency for other states, j and k, to send

migrants to state i, and for state i to send migrants to j and k

respectively.

The substantive interpretations of these statistics are illustrated

in Figure 4. The plots present relevant quantities, computed on

networks simulated using the network statistics discussed above,

plotted against values of the parameter for the respective statistic.

Quantities are derived as the average over 1,000 simulated

networks. The g in this artificial example is a standard normal

PDF, but any appropriate PDF could be used. All of the network

statistics specified on X result in properties of Y that reflect the

Figure 6. MCMC-based Degeneracy Diagnostics. Plots depict diagnostics for the GERGM results reported in Figure 5. Diagnostics are computed
on three Markov Chains of 500,000 networks each, constructed via 500,000 iterations of a Gibbs sampler in which a complete network is drawn in
each iteration. Each chain is started at a network with highly dispersed start values drawn from a U-shaped distribution on the unit interval, followed
by a burn-in of 10,000 iterations. Panels (a.1)–(a.3) give the trace plots of the chains by iteration. The dark gray lines track the mean edge value and
the light gray lines track the 95% confidence interval around the mean. Panel (b) gives the histogram of the Gelman-Rubin diagnostic of whether the
three chains converged to the same stationary distribution, over all 2,550 directed edges in the migration network. Panels (c.1)–(c.3) give normal
quantile plots, which compare the distribution of the Geweke time serial convergence diagnostic over the edges within each chain to the null
standard normal distribution (i.e., the distribution implied by the null hypothesis of a chain in convergence). Note: the R package coda [57] was used
to compute the Geweke and Gelman-Rubin diagnostics.
doi:10.1371/journal.pone.0030136.g006

The Generalized Exponential Random Graph Model

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e30136



respective dependency. As the reciprocity parameter increases, the

correlation between the values of Y in a dyad increase. As the in

two-star parameter increases, the variance in in-degree increases.

Also, when the transitivity parameter is positive, the expected

value of the third edge in a transitive triad increases with the values

of the other two edges in the triangle. It is important to note that

these are not the only conceivable measures of their respective

network dependence properties. For example, see [54] and [55]

for alternative measures of transitivity in valued networks. We

utilize these measures because they are consistent with the product

specification used in the ERGM framework, but other network

statistics can be easily incorporated into the GERGM.

Figure 5 shows the estimates from our GERGM as well as

estimates from the CRM. As we consider the results, it is

important to assess whether the estimated GERGM is degenerate.

Our GERGM shows no indication of degeneracy. We simulate

Figure 7. Dependence Feature Prediction. The boxplots represent the respective dependence statistic computed on 1,000 instances of the
latent intensity network drawn from each model. Horizontal colored bars are placed at the statistic computed on the estimated intensity network.
doi:10.1371/journal.pone.0030136.g007
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networks from the GERGM via three independent Markov chains

of 500,000 iterations, using a Gibbs sampler that draws a

conditional edge for each directed pair of vertices in each

iteration, using the conditional distribution in equation 6. Our

approach includes much more simulation within each iteration, as

compared to the standard Metropolis-Hastings approach to

simulating from ERGM, in which one edge is re-drawn in each

iteration [35]. We see, in Figure 6, that (a) the mean edge value is

far from zero or one, and varies around the mean of the observed

network, and (b) there is no evidence of non-convergence given by

the Geweke and Gelman-Rubin convergence diagnostics. Under

the null hypothesis of convergence (i.e., no difference in the means

at the beginning of the chain and the end of the chain), the

Geweke diagnostic has a standard normal distribution [41]. The

normal quantile plots in panels (c.1)–(c.3) of figure 6 show that the

Geweke statistics computed on our Markov chains are distributed

very close to a standard normal, which is consistent with the null

hypothesis of convergence. Also, none of the Gelman-Rubin

diagnostic statistics, depicted in panel (b), are at or above 1.1 – the

level typically taken to indicate non-convergence across multiple

chains [56].

A Wald test suggests the restriction of the dependence terms to

zero, a restriction the regression model must make because it

cannot accommodate dependence terms, is inappropriate and that

the GERGM provides a better fit to the data (Wald

statistic~119.19 on 5 degrees of freedom, statistically significant

at the 0.001 level). The statistically significant effects for the

dependence parameters indicate that (a) there are clustering effects

in the network, (b) migration to states repels further migration, and

(c) increases in migration flows from a state are not offset by

increases in flows to that state. We also find a decrease in the

number of people leaving warm states, a decrease in migration to

states that experienced a substantial increase in population in the

previous year, and evidence of an increase in migration away from

states experiencing increases in unemployment.

The superior performance of the GERGM relative to the

Cauchy regression is further depicted in Figure 7, which gives the

predicted and observed network-level reciprocity and cycling

measures from the GERGM and CRM. This figure shows that the

regression does not adequately fit the dependencies (e.g. the lack of

reciprocity) in the migration network. For example, it is

theoretically expected that a network of change in migration

would exhibit anti-reciprocity and anti-cycling. If a locale is

experiencing a spike in migration to other places, that is likely

indicative of some undesirable feature of said locale. This anti-

reciprocal feature of the migration network cannot be integrated

into the conventional regression modeling framework. Figure 7

serves as an additional test of the appropriateness of the

independent regression model. If the CRM were the appropriate

specification, the joint quantiles would be jointly uniform and

these dependence statistics computed on the latent network would

be predicted by the CRM. The GERGM accurately captures

these features of the latent quantile network – with the observed

value falling in the inter-quartile range of the values simulated

from the GERGM.

This application shows the inability of the regression framework

to model the sort of dependencies that we observe in real networks

and the utility of having an inferential network model capable of

accommodating networks with valued edges. In this case, we used

our GERGM to produce insights into the migratory dynamics of

the United States that could not have been produced otherwise.

Discussion

The GERGM greatly expands the scope of networks that can be

modeled within the ERGM framework. This is an important

contribution for several reasons.

First, many networks have valued edges. We have examined one

such network above, interstate migration in the U.S., but many

others exist. For instance, the ijth edge in the cosponsorship

network in the U.S. Congress measures the number of bills

Sponsored by j that are cosponsored by i [15] in the two year

period of the respective Congress. In previous research, [15] this

network has been dichotomized to model with the ERGM. In a

substantively much different application, [29] apply the ERGM to

model a network created by dichotomizing pairwise correlations

among the activity levels of 90 regions in the human brain. The

direct analysis of a network of pairwise correlations could be

conducted with the GERGM, without losing any information

about the magnitude of the correlation, by using the simple

transformation (i.e., G{1) Yij~2Xij{1.

Second, our method allows a researcher, who is not necessarily

substantively interested in the interdependencies in the network, to

test the restriction that the dependence parameters are equal to

zero, meaning that interdependencies in the network do not

matter. Such tests may be conducted using simple and well known

methods such as the likelihood ratio test and Wald test.

Third, many common models for independent data (i.e.

regression models typically estimated by least squares and/or

maximum likelihood) are nested within the GERGM. Thus, if the

endogenous structure of the network does not exert an effect, the

researcher is returned a model with results identical to those they

would have obtained using a regression. This is convenient not

only because those independence models are familiar to political

scientists, but because researchers may be dubious about the role

of endogenous effects, but not want to risk model misspecification

by ignoring them.

Lastly, and probably most importantly, the GERGM expands

the set of substantive theories that researchers are able to evaluate

empirically. For example, in our application, we gained insight

into migration processes that would not have been possible absent

the GERGM technology. This not only offers the opportunity to

make progress on existing debates in the literature, but presents

new theoretical horizons for scholars using relational data.
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