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Abstract

In recent years, the observed antibody sequence space has grown exponentially due to

advances in high-throughput sequencing of immune receptors. The rise in sequences has

not been mirrored by a rise in structures, as experimental structure determination tech-

niques have remained low-throughput. Computational modeling, however, has the potential

to close the sequence–structure gap. To achieve this goal, computational methods must be

robust, fast, easy to use, and accurate. Here we report on the latest advances made in

RosettaAntibody and Rosetta SnugDock—methods for antibody structure prediction and

antibody–antigen docking. We simplified the user interface, expanded and automated the

template database, generalized the kinematics of antibody–antigen docking (which enabled

modeling of single-domain antibodies) and incorporated new loop modeling techniques. To

evaluate the effects of our updates on modeling accuracy, we developed rigorous tests

under a new scientific benchmarking framework within Rosetta. Benchmarking revealed

that more structurally similar templates could be identified in the updated database and that

SnugDock broadened its applicability without losing accuracy. However, there are further

advances to be made, including increasing the accuracy and speed of CDR-H3 loop model-

ing, before computational approaches can accurately model any antibody.

Introduction

Antibodies are a crucial component of the adaptive immune system of vertebrates. They are

antigen-specific and can be directed towards virtually any antigen to protect us from infec-

tions. Their high specificity, in combination with their favorable biophysical properties and

pharmacodynamics, have allowed for their development and use as drugs, diagnostics, and

research reagents. Antibodies are glycoproteins and are composed of two identical heavy

chains and two identical light chains. The isotype is determined by the constant region that

dictates effector functions and half life. These constant regions are the same for antibodies of

the same isotype. The variable fragments (Fv) on the other hand, are unique to each monoclo-

nal antibody and provide antigen specificity.
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Human antibody variable regions consist of a variable light and a variable heavy domain

and are extremely diverse, due to V(D)J recombination and somatic hypermutation. These

processes result in sequence diversity primarily located in the complementarity determining

region (CDR) loops, where the antigen is bound. The CDR 3 loop of the heavy chain (H3) is

the most diverse and often particularly important for antigen binding. The remainder of the

variable domains is termed framework region and assumes a conserved immunoglobulin (Ig)

fold. Antibodies from camelids and cartilaginous fish were found to contain only a variable

heavy chain and are referred to as nanobodies, single-domain antibodies, or VHHs.

While the availability of sequence information has increased sharply thanks to high

throughput sequencing technologies [1], methods for structure determination have remained

low throughput. In order to understand the role of antibodies in disease and to efficiently

develop drugs, there is a demand for structural information, both for unbound antibodies and

for antibodies in complex with their antigens. Computational prediction of these structures is

both attractive and feasible because of the relative conservation of the Ig fold across different

antibodies [2]. There are several algorithms for antibody structure prediction, such as ABody-

Builder [3], PIGSPro [4], and RosettaAntibody [5]. Across these methods, framework regions

are routinely predicted to below 1 Å root-mean-square deviation (RMSD) [6, 7], as they pose a

simple homology modeling problem wherein a similar structure can be readily identified by a

search within a template database. However, the diverse sequences of the CDR loops result in a

variety of conformations, making accurate prediction more difficult. All CDR loops, except

the H3 loop, fold into clusters of conformations that are termed canonical conformations [8,

9]. These loops can be predicted within 1 Å RSMD as long as the correct cluster is identified

[10, 11]. On the other hand, the CDR-H3 loop does not have a limited set of canonical confor-

mations, necessitating de novo modeling and resulting in lower accuracy models.

For certain applications, an antibody model suffices, but often there is interest in further

downstream modeling, particularly docking against a target antigen. The antigen adds yet

another layer of complexity and even more potential for error, especially as the CDR loops can

move to accommodate induced-fit binding [12]. Many software packages are available for pro-

tein–protein docking and several of them have modes specific for antibody–antigen docking,

these include ClusPro [13, 14], FRODOCK [15], PatchDock [16], HADDOCK [17], and

Rosetta SnugDock [18]. The first three methods are global, rigid-body approaches, adopting

different docking algorithms. ClusPro and FRODOCK are fast-Fourier transformation (FFT)

based. PatchDock decomposes proteins into geometric patches of hotspots and combines geo-

metric hashing and pose clustering to identify interactions. On rigid targets, for which

unbound structures are known, these methods tend to perform well. However, using homol-

ogy models as input or docking flexible targets remains a challenge for these approaches.

Methods such as HADDOCK and SnugDock were developed to address the challenge of flexi-

ble docking. HADDOCK is an information-driven flexible docking approach that combines a

global rigid body search with ambiguous restraints, simulated annealing in torsion space, and

minimization in Cartesian space. SnugDock is a local, flexible docking method that refines the

CDR loops (including rebuilding the loops) and re-docks the VH–VL orientation in the context

of the antibody–antigen interface. But to yield low-RMSD models, SnugDock requires an

input orientation with the paratope close to the epitope, as it is not a global docking approach.

Both HADDOCK and SnugDock were recently assessed with respect to other contemporary

docking methods. HADDOCK was compared to ClusPro, LightDock, and ZDOCK on sixteen

target complexes and generally out-performed the other methods [17]. HADDOCK achieved a

75% success rate (defined as having a model of acceptable quality or better in the top 10,

according to the CAPRI quality definition [19]), whereas ClusPro acheived 67.8%. In another

recent assessment, with 67 target complexes, ClusPro, ZDOCK, and SnugDock were

PLOS ONE Robustification of RosettaAntibody and Rosetta SnugDock

PLOS ONE | https://doi.org/10.1371/journal.pone.0234282 March 25, 2021 2 / 20

was funded by NIGMS grants F31-GM123616 and

T32-GM008403. JRJ, RF, JZ, and JJG were funded

by NIGMS grant R01-GM078221. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: J.J.G. is an unpaid board

member of the Rosetta Commons. Under

institutional participation agreements between the

University of Washington, acting on behalf of the

Rosetta Commons, Johns Hopkins University may

be entitled to a portion of revenue received on

licensing Rosetta software, which may include

methods described in this paper. As a member of

the Scientific Advisory Board of Cyrus

Biotechnology, J.J.G. is granted stock options.

Cyrus Biotechnology distributes the Rosetta

software, which may include methods described in

this paper. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0234282


compared. Therein, ClusPro achieved a 34% success rate (defined similarly) while SnugDock

managed a 77.6% [20], but these rates are not directly comparable as SnugDock was bench-

marked on local refinement, not a global search.

Antibody modeling and antibody–antigen docking are fields under active research. Here

we report recent developments of RosettaAntibody and SnugDock to improve accuracy of the

predicted structures and to make the software more robust and accessible for users and future

developers. The template database is now fully automated and can be updated at will, ensuring

access to the latest antibody structures in SAbDab [21]. Both RosettaAntibody and SnugDock

can now model heavy-chain only antibodies, without any additional flags or specifications.

Options for the protocols have been simplified with defaults set based on benchmarks. Con-

straints have been introduced to improve the quality of models and to allow experimental data

to guide modeling. Finally, as these developments were implemented, a set of scientific tests

was curated to regularly assess the performance of RosettaAntibody and SnugDock on real-life

scenarios.

Materials and methods

Template database automation

We developed a Python script to query SAbDab [21], an online antibody database, for the set

of sub-3-Å crystal structures. SAbDab pre-processes antibody crystal structures from the PDB

and renumbers them according to the Chothia convention [22]. All residue numbers in this

manuscript follow the Chothia convention, unless otherwise specified. Based on the informa-

tion curated by SAbDab, the script then truncates the antibody structures to the relevant struc-

tural regions (light chain residues 1–109 and heavy chain residues 1–112). While a crystal

structure typically contains a single unique antibody (light chain and heavy chain), there are

several structures with multiple distinct antibodies. When multiple chains are present, to avoid

ambiguity, we retain the first reported to the SAbDab summary file. If the structure contains

only a single light or heavy chain, we retain it. However, if the chain is a single-chain Fv (scFv)

(covalently linked light and heavy chain), then it is ignored to limit downstream errors that

could arise if the chains are incorrectly assigned. From the truncated structures, sequences are

extracted for the regions specified in Table 1 and will be later used in alignments to select

structural templates. CDRs containing chainbreaks are omitted during the BLAST database

construction. The database is constructed by pooling sequences of the same structural region

and length (e.g. database.L1.11 for all sequences of length 11 of the first light-chain

CDR) into a single FASTA file, indexed by PDB ID. Each FASTA file is used to build a BLAST

database with the makeblastdb command. Additionally, the sequences used to construct

the database are compiled by structural region and reported to tab-delimited information files

for further analysis. Finally, average B-factors for all atoms in each CDR loop and VH–VL rela-

tive orientation metrics are computed, so these values can later be available to quality filters.

The automated database can be generated by running the create_antibody_db.py
script. A comparison of the last version of the manual template database and the first version

of the automatic template database is presented in the results section.

Enabling nanobody–antigen docking

In the grafting step of RosettaAntibody we removed the requirement for a light chain. Using

the flag –vhh_only it is now possible to produce heavy-chain only antibody models. Within

SnugDock, we now apply a hierarchical kinematic representation (referred to as a FoldTree)

of the antibody–antigen complex by taking advantage of “virtual” residues. In Rosetta, such

residues are ignored during energy calculations, but can be used to describe translations and

PLOS ONE Robustification of RosettaAntibody and Rosetta SnugDock

PLOS ONE | https://doi.org/10.1371/journal.pone.0234282 March 25, 2021 3 / 20

https://doi.org/10.1371/journal.pone.0234282


rotations. Throughout SnugDock, a single, “universal” FoldTree permitting both VH–VL

and antibody–antigen docking motions is implemented as described in Fig 1.

Simplified options, new filters, and new constraints

Improvements were made to the options, filters, and constraints within RosettaAntibody and

SnugDock. Briefly, we reduced the number of options required to be set by the user in both

protocols by setting optimal defaults based on our benchmarking simulations. For the homol-

ogy modeling stage of RosettaAntibody, we implemented new filters as command-line options

to permit the exclusion of specific template PDB files or of cases where the template and query

have sequence mismatches involving proline residues in the CDR loops (see Results). Finally,

we implemented an automatic glutamine–glutamine (Q–Q) hydrogen bonding constraint in

the CDR-H3 loop modeling stage of RosettaAntibody and in SnugDock.

The Q–Q constraint is described by a flat harmonic potential:

f ðxÞ ¼

jx � x0j � dm

s

� �2

; if jx � x0j > dm

0; otherwise:

8
>><

>>:

Here, x is the distance between the donor and acceptor heavy atoms, x0 is the mean observed

Table 1. Structural region to sequence mapping for RosettaAntibody.

Regiona Definitionb

CDR L1 24–34

CDR L2 50–56

CDR L3 89–97

FRLc 10–23

35–39

46–49

57–66

71–88

98–104

CDR H1 26–35

CDR H2 50–65

CDR H3 95–102

FRHc 10–25

36–39

46–49

66–94

103–109

Orientation L5–L104

H5–H109

aCDR and framework region definitions in RosettaAntibody. These definitions are used to extract sequences and

templates for the homology modeling database. In a modeling task, templates are selected for each region and

combined to produce the initial homology model.
bThe definitions are based on the Chothia numbering convention, but are modified for use in RosettaAntibody.
cThe FRH and FRL definitions do not exactly complement the CDR definitions as there are additional (non-CDR)

loops that are excluded from the frameworks.

https://doi.org/10.1371/journal.pone.0234282.t001
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distance in our antibody database, dm is the minimal difference at which the penalty will be

applied, and σ is the observed standard deviation. There are two possible hydrogen bonds

between Gln 39 of the heavy chain and Gln 38 of the light chain. We measured the donor–

acceptor distances for all antibodies in our updated antibody database that contain the relevant

Gln residues. The fit is shown in S1 Fig. The distances between the N and O atoms yielded x0 =

2.91 Å and σ = 0.23 Å. The dm value is chosen to be 0.5 σ, such that there is no penalty in being

within half a standard deviation of the mean and there is a penalty of 0.5 REU at one standard

deviation.

New loop modeling and scientific benchmarks

The final set of improvements to RosettaAntibody and SnugDock brought a new, fragment-

based loop modeling approach and new scientific benchmarks to both methods. Briefly, the

Fig 1. Comparison of a default FoldTree versus one permitting multi-body docking. Proteins are shown as blobs

and labeled A, B, C, and D, jumps (describing relative translations and rotations) are labeled as “J”, with subscripts

indicating the direction of each jump (e.g. A-B indicates that the jump describes the orientation of protein B relative to

protein A). Loosely, the ordered collection of all atomic positions and jumps defines a FoldTree that can fully

describe the motions of a protein complex. In complexes, jumps typically connect the residues closest to their

respective protein center of mass (COM). For two chains, perturbing the jump transformation corresponds to simple

protein docking. However, when multiple chains are present as in A, upstream chains propagate their transformations

downstream. In A, moving (updating the transformation matrix) JA−B would affect JB−C and JC−D, as the jumps are only

described relative to one another. The inability to independently move individual proteins or subcomplexes in the

default FoldTree can limit sampling when large protein complexes are docked. To overcome this, we introduced a

hierarchical FoldTree (B). Here, subcomplexes (e.g. antibody chains or antigen chains) have virtual residues placed

at their COMs. Jumps connect the virtual residues. The resultant FoldTree then contains the transformations

relative to the subcomplex COMs and allows subcomplex docking, which was previously not possible.

https://doi.org/10.1371/journal.pone.0234282.g001
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new loop modeling method expands on the default kinematic loop closure (KIC) modeling

approach in Rosetta [28] by allowing the sampling of backbone dihedral angles from homolo-

gous 3- and 9-residue fragments, in addition to the standard sampling from the Ramachan-

dran plot, during loop modeling. After selecting appropriate fragments via the fragment

picker [29], fragment KIC can be used during the loop modeling stages of RosettaAntibody

and SnugDock. Additionally, we introduced a new form of testing alongside the standard unit

and integration tests already present in the Rosetta code base. Scientific testing evaluates the

performance of Rosetta on complete scientific tasks (e.g. running full antibody modeling simu-

lations to test accuracy rather than just one simulation to test that the code runs without fail-

ure). We have made three antibody-related scientific tests: grafting, H3-loop modeling, and

antigen docking. The tests are detailed in the subsections below and run automatically on our

testing server https://benchmark.graylab.jhu.edu. Both the new loop modeling approach (Pan,

X. et al.) and the scientific benchmarking framework (Leman, J. K. et al.) will be fully detailed

in other publications that are currently in preparation.

Results

Scientific benchmarking

In the process of developing RosettaAntibody and SnugDock, a series of scientific benchmarks

were developed. Scientific benchmarking complements other forms of software testing, such

as integration and unit tests, by assessing Rosetta’s performance on a diverse set of relevant

modeling challenges. A single scientific benchmark consists of a full simulation, whereas unit

tests focus on individual functions and integration tests assess exact changes in output. A sci-

entific benchmark is considered successful if the performance is within a certain threshold,

usually set by a prior publication. We created three scientific tests for RosettaAntibody and

SnugDock. The tests are based on previously published datasets and run regularly on a webser-

ver (https://benchmark.graylab.jhu.edu). There are two RosettaAntibody tests: grafting and

loop modeling. While grafting is a fast process (� 10 mins per model), CDR-H3 loop modeling

is time consuming, so the tests were split based on their runtime.

The grafting test runs the antibody executable for 47 targets (listed in the S1 Appendix

and available in the antibody database that is distributed with Rosetta), a subset of the 49 tar-

gets originally described in [31] (we omit 3mlr due to its atypically long CDR-L3 loop and

1x9q as it is an single chain antibody fragment), and it evaluates the RMSDs between the

grafted models and the native crystal structures over all antibody structural regions (Table 1).

The CDR-H3 loop modeling test runs the antibody_H3 executable for a six-target subset

of the Marze et al. set [23], ranging from easy to difficult, and it evaluates the RMSDs between

the models and crystals for the CDR-H3 loop. There is a single SnugDock test that is run on

six targets (again ranging from easy to hard) and assesses the interface RSMD between the

modeled complexes and the corresponding crystal structures.

Template database improvements

A homology modeling method, such as the grafting stage of RosettaAntibody, is highly depen-

dent on the structural database it samples for templates. A database with inadequate template

coverage will result in poorer modeling outcomes. In the most recent CAPRI assessment [24],

we were tasked with modeling two camelid antibodies but could not find suitable non-H3

CDR loop templates in the RosettaAntibody database. Further investigation revealed that the

database was outdated and contained artifacts due to its manual curation, a consequence of its

initial development in 2008. At that point in time, antibody structures were few and antibody

structure databases with consistent numbering schemes, such as IMGT [25], SAbDab [21],
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and abYsis [26], were not yet developed or, in the case of IMGT, did not use a numbering

scheme compatible with RosettaAntibody.

Now we have a new antibody template database that can be automatically generated and

updated with the create_antibody_db.py script. Table 2 shows the increase in available

templates following the update and Fig 2 shows the increase in unique sequence templates for

each structural region, which is in the range of 15–49%. We observed that not all the PDBs in

the previous template database are retained in the new database, with the specific number

varying by structural region. For the entire database, the difference amounts to 342 PDB IDs

Table 2. More templates are available for all structural regions in the new database.

Old Count New Count Overlap

All CDRs 1,902 2,611 1,560

FRH 1,785 2,390 1,427

FRL 1,577 2,832 1,111

Orientation 1,003 1,721 749

Comparison of the template count between the last iteration of the manual database and the first iteration of the

automatic database (February 15th, 2019). Template counts for each region are shown as well as the “overlap” or

number of shared templates between the two databases. Additionally, some sequences in the old database do not

appear in the new database because it has more stringent quality criteria. Primarily, 307 structures do not meet the 3

Å resolution cutoff.

https://doi.org/10.1371/journal.pone.0234282.t002

Fig 2. The new database expands the number of unique sequences for which structural templates are available. For each structural region, the

structures with unique sequences in the old versus new database are compared by Venn diagram. For all regions, there is substantial overlap. The new

database always has more sequences than the old database. Some sequences are only found in the old database, this is due to the consistent application

of clear selection criteria in the automated database whereas the previous database was manually curated.

https://doi.org/10.1371/journal.pone.0234282.g002
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that are no longer included. This is due to a few key differences between the two databases.

First, we ensure that entire antibody sequences are non-redundant in the new database, no

such check was present before. Second, we require that the resolution of structures in the new

database is below 3 Å. Again, no such cutoff was present before. Furthermore the previous

data included NMR and low-resolution EM structures, which have now been excluded. Of the

342 non-overlapping PDB IDs, the resolution criterion accounts for the most, 307. Third, we

have new quality criteria that were not previously implemented, requiring that (1) there are no

C–N bond lengths of greater than 2 Å and CA–C–N and C–N–CA bond angels are within the

ranges (89.5˚– 144.5˚) and (95˚– 151˚), respectively, (2) all templates can be loaded without

error in Rosetta, (3) there are no 0 occupancy atoms in the PDB, and (4) no conserved frame-

work residues, or residues used to identify the different antibody structural regions, are miss-

ing. For the overlapping portion of the two databases (identical PDBs), we compared the

template structures and sequences to ensure that no drastic changes had occurred. The quality

criteria exclude 19 of the 342, which leaves 16 to be excluded by the fact that these PDB records

are now obsolete.

Additionally, we found approximately 1–2% of the template regions sourced from the same

PDBs mismatched at the sequence level between the old and new database. Investigating the

individual cases revealed two general trends. One set of cases arose when multiple antibodies

were present in the same PDB asymmetric unit and different antibodies were selected from the

multiple possibilities. Another for a sequence mismatch between otherwise identical templates

in the new and old database was due to differences in the heavy-chain framework or CDR-H2

loop. In the old database, several variable loops had been incorrectly numbered, possibly

because the regular expressions failed to account for edge cases such as engineered antibodies.

In the new database, numbering errors are avoided because structures and sequences are

derived from Chothia-numbered PDB files, where errors in numbering are minimal [27].

RosettaAntibody improvements

Improvements to RosettaAntibody affected either the grafting or CDR-H3 loop modeling

stage.

Grafting with an expanded database and filters. In the grafting stage, RosettaAntibody

benefited from the new template database and new filters. Fig 3 shows a direct comparison of

the grafted models for 47 target antibody sequences, previously described in [23]. We omit

3MLR due to its atypical CDR L3 loop. We generated the grafted models as previously

described S2 Appendix [31]. We report RMSDs of the loops and framework regions, as well as

Orientational Coordinate Distance (OCD), a measure of the relative orientation between the

heavy and light chain [23]. In general, we found that the new database produces lower-RMSD

grafted models for 53.5–55.0% of target regions. This set of grafting targets was implemented

as an automatic scientific benchmark.

Following template selection (based on sequence similarity) potential templates are then fil-

tered based on certain criteria. We introduced a PDB ID and a proline filter to improve the

selection process for non-H3 CDR templates. The PDB ID filter excludes a particular PDB

from the template set, e.g. -antibody:exclude_pdb 1AHW. This is useful for bench-

marking; if the query sequence has a known structure, then it can be excluded from the tem-

plate set. The proline filter ensures that prolines match between the query sequences and

template structures. Prolines occupy a distinct region of Ramachandran space, but the current

template selection approach, BLAST, uses either the BLOSUM62 (for framework alignments)

or PAM30 (for CDR alignments) matrix and does not sufficiently penalize proline mis-

matches. While the filter eliminated proline–non-proline mismatches between template and

PLOS ONE Robustification of RosettaAntibody and Rosetta SnugDock

PLOS ONE | https://doi.org/10.1371/journal.pone.0234282 March 25, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0234282


query sequences, it did not demonstrate a concrete improvement in terms of loop RSMD

(S2 Fig).

CDR-H3 loop modeling with fragments and VH–VL refinement with constraints. In

the CDR-H3 loop modeling stage, we simplified options and introduced a new fragment-

based loop modeling method. The options system permits users to pass values to compiled

Fig 3. Comparison of grafted model metrics produced by the new and old databases. Plots show values for structural metrics (either OCD or

RMSD), comparing the grafted models produced using either the old database (manually curated, x-axis) or new database (automatically curated, y-

axis) to the crystal structures. Each subplot contains the results for the 47 targets listed in S1 Appendix. Solid lines indicate either 1 Å or 2 OCD and the

diagonal (i.e. expected performance if there is no change). The OCD is a measure of the heavy-light chain orientation, previously described in [23]. The

RMSD is calculated for backbone atoms for the region specified in the subfigure title and defined in Table 1. In the new database, 55% of CDR loops

and 53.5% of FRs in the benchmark set have lower RMSD templates than in the old database.

https://doi.org/10.1371/journal.pone.0234282.g003
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Rosetta binaries via flags on the command line. To configure the CDR-H3 loop modeling

stage of RosettaAntibody, a user previously had to specify the loop modeling method, its set-

tings, and custom constraints to maintain the Q–Q hydrogen bond at the VH–VL interface, if

present. This constraint is now automated and included by default. The legacy options

-cter_insert, -flank_residue_min (bool), -bad_nter (bool), -ideali-
ze_h3_stems_before_modeling (bool), -remodel (string), and -refine
(string) have been completely removed. C-terminal H3 insertions can now be accom-

plished via fragment-based KIC. We no longer minimize flanking residues during loop model-

ing or manually adjust CDR-H3 loop dihedral angles, bond angles, and bond lengths, as this

does not affect performance. Finally, the remodel and refine options are removed. These

options previously set the loop modeling algorithm, but the loop modeler is now fixed to be

KIC, as it has been shown to be the most accurate approach within Rosetta [28]. Furthermore,

by refactoring the code to use the newly developed LoopModel class, all other loop-related

options are by default set to reasonable values, so it is no longer necessary for the user to con-

figure loop-modeling options, although the possibility remains. In sum these efforts have

reduced the number of options required to configure RosettaAntibody from approximately 30

to 5 S3 Appendix.

We implemented a new fragment-based loop modeling approach as it was found that fixing

sub-regions of loops to match the structures of short fragments (either of length three or nine

residues) of similar sequence improved both the fraction of sub-Å models and the RMSDs of

near-native models (Pan, X., personal communication). Fragments were selected via the frag-

ment picker on the Robetta server [29]. The new loop modeling method was tested on the 47

antibody targets S1 Appendix and showed no difference in performance when compared to

the standard approach. In particular, we expected the use of structural fragments to enhance

sampling during loop modeling and lower the minimum RMSD observed across all models.

Instead we observed a slight worsening of this metric in the fragment-based models (Fig 4A).

As this lack of improvement may have been caused by the highly unique nature of the

CDR-H3 loop, we sought to quantify the structural similarity between both protein and

CDR-H3 loops and the fragments used in modeling. We investigated the structural similarity

between the fragment sets picked for loop modeling and the corresponding target antibody

CDR-H3 loop or other (non-antibody) protein loop. For each loop and each possible window

of size three or nine residues, the fragment picker selected two hundred selected fragments.

These fragments and their corresponding loop segments were compared by measuring the

average difference in the backbone dihedral angles as a chord distance (originally defined by

Dunbrack and North [8]). We found that non-antibody protein loops were more likely to have

near-native fragments identified by the picker than antibody CDR-H3 loops (Fig 4B). This was

due to one of two possibilities: (1) either structurally similar fragments exist and the fragment

picker cannot identify them for antibody CDR-H3 loops or (2) the fragments do not exist.

Considering that the fragment picker tends to perform well across a diverse set of targets [29]

and previous observations that antibody CDR-H3 loops have fewer structurally similar frag-

ments in the PDB than other protein loops [30], we concluded that the latter is most likely and

the lack of structural similarity between fragments and CDR-H3 loops can explain the inability

of fragment-based loop modeling to improve CDR-H3 loop models.

To ensure continuous testing of the CDR-H3 loop modeling stage, we implemented a sub-

set of the Marze et al. antibody targets as a scientific benchmark. Specifically, we selected six

targets of varying difficulty, based on prior modeling performance [31] and CDR-H3 loop

length (S1 Table). The scientific benchmark then consists of running the CDR-H3 loop model-

ing stage on homology models of these antibody frameworks (S3 Appendix).
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Finally, beyond enabling a new loop modeling approach, we introduced an automated VH–

VL Q–Q hydrogen bond constraint. Constraints modify the Rosetta score function by adding

customizable functions to the standard collection of physical and statistical terms. A typical

use case for constraints is to incorporate experimental data in simulations by penalizing pro-

tein conformations that are nonconcordant. RosettaAntibody recommends constraining the

C-terminal CDR-H3 loop kink and a Q–Q hydrogen bond at the VH–VL interface, if present.

The kink and the Q–Q hydrogen bond are both present in 81.1% and 88.5% of antibodies in

our database. Thus both constraints should be enabled by default. However, the kink con-

straint was only recently automated [31] and the Q–Q constraint remained user specified until

this publication. As a consequence, the constraints were under utilized because they relied on

manual user input to identify the corresponding residues and determine the functional form

and weights of the constraint.

We implemented a constraint automation similar to the one used by Weitzner and Gray to

constrain the kink [31]. Key residues are automatically identified by relying on known

sequence features and implementing a consistent numbering scheme throughout modeling.

The functional form and weights of the constraint are based on observed geometries in the

protein data bank. Using the recently established scientific benchmarking framework, we

tested multiple constraint functions and strengths to identify a reasonable default. We found

that the harmonic constraint improved the fraction of models in which the hydrogen bond is

formed (S3 Fig), but did not significantly affect the CDR-H3 loop RMSDs (S4 Fig). The con-

straint is now enabled whenever the requisite glutamine residues are present in the antibody

sequence.

Fig 4. Comparison of loop modeling methods. (A) The distributions of the minimum CDR-H3 loop RMSDs observed for all antibodies in the

benchmark, for two loop modeling methods, do not significantly differ according to Student’s t-test (p-value = 0.67). (B) Three-residue fragments from

the PDB are more structurally similar to protein loops than to antibody CDR-H3 loops. All three-residue fragments selected by the fragment picker

were compared to their corresponding loop sub-regions. For each fragment and loop combination, a chord distance was calculated to compare the

difference in dihedral angles: hDi ¼ 1

n

P
nðD

2
�
þ D2

c
Þ=2 where D2(θ1, θ2) = 2 − 2 cos(θ2 − θ1). Thus, hDi has a minimum of 0, if a fragment matches a

loop exactly, and a maximum of 4, if a fragment differs by 180 degrees at every dihedral angle. The cumulative distribution function of these distances

then yields the probability (y-axis) that a fragment is within a certain chord distance (x-axis) of a loop.

https://doi.org/10.1371/journal.pone.0234282.g004
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Rosetta SnugDock improvements

The primary improvement to SnugDock was the introduction of a more general FoldTree
that enabled the modeling of heavy-chain only antibodies. Additionally, we introduced the

possibility for fragment-based loop modeling, the capacity for experimental constraints, as

well as two automated constraints (as in RosettaAntibody), and scientific benchmarks. While

outside the scope of this publication, some readers may find a full benchmark and comparison

to other software useful. A recent study comparing SnugDock, ZDOCK, and ClusPro is avail-

able [20]. Readers may also find useful another recent study comparing ClusPro, LightDock,

ZDOCK, and HADDOCK [17].

FoldTree simplification. Primarily, we improved the kinematics of Rosetta SnugDock.

The kinematic layer of Rosetta controls how atomic coordinates are updated over the course of

a simulation. It is necessary because Rosetta uses internal coordinates (dihedral angles, with

fixed bond lengths and angles) to accelerate sampling in most protocols (simulations in Carte-

sian coordinates are possible, but not common) [32]. Central to the process of keeping internal

and Cartesian coordinates up-to-date is an object known as the FoldTree, at the residue

level, and the AtomTree, at the atomic level [33]. The FoldTree is implemented as a

directed acyclic graph that propagates coordinate changes. For example, a typical FoldTree
for a four-protein complex would be linearly ordered, taking the chain order from the PDB file

(Fig 1A). In this FoldTree, one cannot dock a middle protein independently of its neigh-

bors. This poses a problem in the case of an antibody–antigen complex, where the relative VH–

VL orientation might change as the antibody accommodates the antigen. This problem is fur-

ther amplified when modeling loops, as loops require alterations to the FoldTree to permit

the repeated breaking and closing of covalent bonds. The typical solution is to switch between

multiple, incompatible, “simple” FoldTree objects that rely on assumptions about the input

and have to be specified beforehand. To overcome this issue, we generalized the set of assump-

tions applied in the FoldTree construction stage of SnugDock, resulting in a single, consis-

tent FoldTree that can be used throughout the simulation. This tree also enabled the

modeling of heavy-chain only antibodies (e.g. camelid).

In the initial implementation of Rosetta SnugDock, it was assumed that the docking part-

ners consisted of a light chain, a heavy chain, and an antigen, in that order. The FoldTree
was updated at each stage of the simulation to accommodate appropriate sampling. The light

chain could be docked to the heavy chain to refine the orientation. In the stage sampling the

Ab–Ag interface, the FoldTree was re-ordered to have the antigen first then the light and

heavy chains, so the antigen could be docked to the antibody. Additionally, during H3 and H2

loop modeling stages, a third FoldTree was applied to permit opening and closing the loops.

This scheme assumed the presence of a light chain, excluding heavy-chain only antibodies

from SnugDock simulations.

To correct this issue, we introduced a more hierarchical FoldTree that exploits “virtual”

residues—residues that are chemically and physically ignored, but tracked by the FoldTree
to store positional information. The virtual residues are placed at individual protein and com-

plex centers-of-mass and then connected to corresponding polypeptide chains in a hierarchical

fashion (Fig 1B), such that complexes of interest are grouped together (e.g. the two antibody

chains or any number of antigen chains). Using virtual residues overcomes the aforemen-

tioned challenges. First, by placing the proteins downstream of virtual residues, each chain can

have its own internal FoldTree without affecting any downstream partner. This permits

FoldTree-dependent modifications within in each chain (such as loop modeling) to take

place, without necessitating a new FoldTree. Second, by placing virtual residues at the cen-

ters-of-mass of each protein and the relevant complexes, simultaneous docking between

PLOS ONE Robustification of RosettaAntibody and Rosetta SnugDock

PLOS ONE | https://doi.org/10.1371/journal.pone.0234282 March 25, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0234282


multiple partners is now possible in one FoldTree. Finally, this FoldTree makes no

assumptions about the identity of individual chains, so it is compatible with heavy-chain only

antibodies.

The new FoldTree enabled our participation for Targets 123, 124, and 160 in the blind

protein docking challenge called CAPRI, detailed in [24]. Briefly, we ran standard ensemble

SnugDock simulations (S5 Appendix). The results showed that we were technically able to

model the camelid antibodies, but the models were inaccurate due to the challenges associated

with modeling longer CDR-H3 loops (11–21 residues).

Introducing constraints to SnugDock. We also implemented automatic Q–Q and kink

constraints in SnugDock, and further enabled user-defined constraints. Experimental or com-

putationally-derived epitope data (e.g. [34]) can now guide docking. As a proof of principle,

we combined hydrogen exchange-mass spectrometry (HX-MS) data with SnugDock. HX-MS

measures the backbone amide hydrogen/deuterium exchange rate, and interacting residues,

such as those at epitope or paratope, will yield slower exchange rates that can then suggest

binding sites for docking. During the docking process, constraints based on pre-processed

HX-MS data are applied to the antibody–antigen complex. Interactions that satisfy the experi-

mental constraints are rewarded, whereas the interaction that violate the constraints are penal-

ized. We derived a constraint form for each antigen-residue suggested by HX-MS to the

closest antibody CDR residue by using the so-called KofNConstraint with a flat harmonic

potential. A KofNConstraint adds the K lowest values of a total of N constraints to the

score, where the N constraints are for each residue in the paratope.

As a proof-of-principle, we selected a camelid antibody–ricin complex, 5BOZ [35], to evalu-

ate the utility of constraints. This PDB structure is one of several antibody–ricin complexes for

which HX-MS data is available (Weiss, D. D., personal communication). We introduced the

data in SnugDock as KofNConstraints (S9 Appendix). We then ran a local ensemble

docking simulation in SnugDock (S10 Appendix) and global rigid-body docking simulation

with RosettaDock (S11 Appendix) [36], both constrained based on the HX-MS data. We

found that, when starting from the bound crystal structure, the global search with constraints

produced low-scoring (favorable) models of high quality (according to CAPRI criteria), (Fig

5). When using SnugDock and starting from a modeled antibody and unbound antigen crystal

structure, constraints did not result in high quality models. Interestingly, these models were

able to produce native-like CDR-H3 loop structures. A full study on the utility of constraining

antibody–antigen docking simulations with HX-MS constraints is currently in preparation

(Zhou, J., Weis, D. D. & Gray, J. J.).

Discussion

Here we presented several advancements in RosettaAntibody and SnugDock that improve per-

formance and collectively lay a foundation for further work. We improved the homology

modeling stage of RosettaAntibody by (1) automating the template database to increase cover-

age and reduce errors, and (2) introducing new filters. We advanced the CDR-H3 loop model-

ing stage by introducing a new loop modeling approach and structural constraints. We

updated SnugDock to use a universal FoldTree that enabled the docking of single-domain

antibodies, added a new loop modeling protocol, and introduced new constraints. Finally, we

implemented scientific benchmarks that regularly test the performance of these protocols.

However, major challenges remain that could be the focus of future development: CDR-H3

modeling, a truly universal FoldTree for multi-body docking, and improved selection of

non-H3 CDR loop templates. Of these, CDR-H3 loop modeling is the most challenging.

Broadly, modeling challenges are binned into two categories: scoring and sampling. We
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Fig 5. Constraints aid global antibody–antigen docking, but do not affect local refinement. A global, rigid-body

search with constraints added to the score function resulted in multiple high-quality models, according to the CAPRI

criteria (top panel). However, applying the same constraints to a local search with an antibody homology model did

not improve sampling (middle panel). Interestingly, the addition of constraints to SnugDock led to the sampling of

native-like CDR-H3 loops, despite not including any constraints during the H3 modeling stage of Rosetta Antibody

(bottom panel). “Refined” indicates models created from the bound complex structure, for reference.

https://doi.org/10.1371/journal.pone.0234282.g005
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recently showed that native-like antibody loops, when sampled, can be identified by score

alone in Rosetta [31]. We also observed that for some targets it is challenging to observe a

native-like conformation in the set of all models [6, 24]. Thus, the CDR-H3 loop modeling

problem is primarily a sampling challenge. The anecdotal evidence is further supported by

observations that CDR-H3 loops are exceptionally diverse, as has been previously demon-

strated by others [30] and shown by us here (Fig 4B). One possible approach to overcoming

the sampling challenging is to accelerate the loop modeling step to sample more loop confor-

mations. As the slow stage of generating loop models is scoring and filtering, using a knowl-

edge-based rather than physical potential may provide a viable alternative. For example,

KORP is a potential capable of scoring 100,000 12-residue loop decoys in under a minute [37].

Another approach to improving sampling would be a more specialized fragment insertion rou-

tine during loop modeling. The method used here relied only on sequence similarity to select

fragments of either length 3 or 9 and inserted the fragments randomly throughout the loop

modeling simulation. An alternative fragment selection approach would not restrict fragment

size and might choose fragments from CDR-H3 or H3-like loops. Fragment insertion would

focus on the termini that are more structurally conserved regions, e.g. approximately 90% of

antibodies have a C-terminal “kink”. Finally, emerging deep-learning-based approaches may

accelerate CDR-H3 loop sampling [38]. The new loop modeling framework has laid the foun-

dation for exploring further strategies.

The hierarchical FoldTree introduced here allows more flexibility in SnugDock and

enable the docking of single-domain antibodies. However, true multi-body docking is still not

possible as the SnugDock approach is a specialized class, separate from the general docking

approach in Rosetta. Moving forward, docking approaches in Rosetta should be unified. I.e.
the DockingProtocol class should be able to provide all docking functionality, based on

user specifications and input.

Finally, the homology modeling stage of RosettaAntibody relies on BLAST to select struc-

tural templates for query sequences for the various structural regions of an antibody (Table 1).

However, most structural regions are small while BLAST is not optimized for aligning short

sequences. Thus going forward we must consider alternative approaches to alignment such as

custom PSSMs or machine-learning-based approaches [10, 11].

Conclusion

The role of computational modeling will grow as the throughput of experimental techniques

continues to increase. To enable the continued development of the RosettaAntibody and Snug-

Dock protocols, we have simplified their usage, robustified their performance on varied tar-

gets, and developed scientific benchmarks. By simplifying the usage of these protocols, future

developers can focus on improving the underlying algorithms rather than fiddling with extra-

neous options. Increasing the utility of these protocols will ensure their longevity as increas-

ingly diverse and challenging pathogens lead to the development and discovery of atypical

antibodies. Finally, the availability and regular assessment of scientific benchmarks will

encourage a more rapid developmental cycle.

Supporting information

S1 Fig. Q–Q hydrogen bond distances observed in the RosettaAntibody database. Left: The

histogram depicts the observed distances between the oxygen and nitrogen atoms of light

chain residue Q38 and heavy chain residue Q39. The distribution was fit by kernel density esti-

mate using Gaussian kernels. Right: The negative logarithm of the probability is proportional
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to the energy. A harmonic function was fit in the range of 2.5 Å to 3.1 Å.

(TIFF)

S2 Fig. Proline filter has minimal effect on grafted model RMSDs. Comparison of the non-

H3 CDR loop RMSDs before and after the application of a proline filter. The filter prevents the

use of a template when there is a mismatched proline residue with the query. The differences

show that most loops are unaffected. In one case for the CDR H2 loop, the loop is model is

worse following the application of the filer (moving 2 Å further from the native). This is exclu-

sively due to the presence of an glycine at the start of the target loop (PDB ID: 3LMJ). In the

initial model (PDB ID 6EIK, no proline filter), the template also has a glycine, correctly model-

ing the initial loop structure, whereas the proline-filter-selected template (PDB ID 5LSP) lacks

this initial glycine and cannot accurately model the loop start resulting in a cascading worsen-

ing of the loop model. All other loops show minor variations within 1 Å.

(TIFF)

S3 Fig. The Q–Q constraint increases the fraction of models that form hydrogen bonds.

We generated 500 decoys of 6 antibodies with solved structures (S1 Table) either without or

with a flat harmonic constraint between the relevant Gln residues. Left: The distances between

the nitrogen and oxygen atoms of residues Q38 of the light chain and Q39 of the heavy chain

were measured and compared to the native distributions in our antibody database. Right: Each

decoy was analyzed for presence of the two possible hydrogen bonds using PyRosetta’s get_h-

bonds() function. The fraction of decoys forming both hydrogen bonds is shown for each anti-

body (color-coded).

(TIFF)

S4 Fig. The Q–Q constraint does not appear to have a strong effect on CDR-H3 loop

modeling. A funnel plot (total score versus CDR-H3 loop RMSD) comparison of RosettaAnti-

body on six benchmark antibodies does not show a significant difference after the incorpo-

ration of the Q–Q constraint. The constraint seemingly improves performance on targets

2VXV and 4F57, but worsens it on 3M8O.

(TIFF)

S1 Table. Target antibody CDR-H3 loops for the antibody modeling scientific benchmark.

(PDF)

S2 Table. Target antibody–antigen complexes for the docking scientific benchmark.

(PDF)

S1 Appendix. List of antibodies used in the grafting benchmark.

(PDF)

S2 Appendix. RosettaAntibody grafting command line for benchmarking. The command

line below is used only to compare the grafting assembly stage of RosettaAntibody. In a genu-

ine run, the -no_relax would not be used and -antibody:n_multi_templates 10
would be used instead.

(PDF)

S3 Appendix. RosettaAntibody CDR-H3 loop modeling command line. Note constraints

are now automatically enabled. To disable constraints, use -antibody:constrain_
vlvh_qq false, -antibody:h3_loop_csts_lr false and -antibody:
h3_loop_csts_hr false.

(PDF)
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S4 Appendix. RosettaAntibody CDR-H3 loop modeling command line with fragments.

Note constraints are now automatically enabled. To disable constraints, use -antibody:
constrain_vlvh_qq false, -antibody:h3_loop_csts_lr false and

-antibody:h3_loop_csts_hr false.

(PDF)

S5 Appendix. SnugDock command line. Note constraints are now automatically enabled. To

disable constraints, use -antibody:constrain_vlvh_qq false, -antibody:
h3_loop_csts_lr false and -antibody:h3_loop_csts_hr false.

(PDF)

S6 Appendix. SnugDock command line with an ensemble of structures. Note constraints

are now automatically enabled, to disable constraints, use -antibody:constrain_
vlvh_qq false, -antibody:h3_loop_csts_lr false and -antibody:
h3_loop_csts_hr false. Furthermore, structures must be prepared for ensemble dock-

ing by docking_prepack_protocol see (below).

(PDF)

S7 Appendix. Prepack protocol command line. This will alter the antigen.list and

antibody.list files in place. Please note that the chain order in the -partners flag

must match the order of chains in the PDB passed by the -s flag and -ensemble1 and

-ensemble2. That is to say in the example below the initial_conformation.pdb
file has the “A” chain first followed by “H” and “L” while the first ensemble is a list of antigen

only structures and the second ensemble is a list of antibody only structures. All structures

must have matching numbers of residues.

(PDF)

S8 Appendix. Sample list file. The ensemble of antibody sturctures in this case comes from

differ H3 models, but ensembles can also be generated by FastRelax, for example.

(PDF)

S9 Appendix. Sample KofNConstraint file. This file only contains two constraints as an

example. A complete file would contain one KofNConstraint for each antigen residue

with HX-MS data. Each KofNConstraint would contain one flat harmonic constraint for

each CDR residue.

(PDF)

S10 Appendix. SnugDock command line with constraints and motif dock score (MDS).

Additional constraints can be added to both the low- and high-resolution stages of SnugDock.

MDS is a special score function for the low-resolution stage of docking. It has been found to

improve performance in protein–protein complex docking. It can be used in SnugDock as

well.

(PDF)

S11 Appendix. Global docking command line. Exemplary flags for global docking with con-

straints.

(PDF)
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