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Background: Abnormalities of functional connectivity in the somatomotor network have
been thought to play an essential role in the pathophysiology of epilepsy. However, there
has been no network homogeneity (NH) study about the ventral somatomotor network
(VSN) in patients with temporal lobe epilepsy (TLE). Therefore, we explored the NH of
the VSN in TLE patients in this study.

Methods: The sample included 52 patients with left temporal lobe epilepsy, 83 patients
with right temporal lobe epilepsy, and 68 healthy controls. The NH method was utilized
to analyze the resting-state functional magnetic resonance imaging data.

Results: Compared to the controls, rTLE patients had significantly higher NH in the
bilateral postcentral gyrus, and significantly lower NH in the bilateral Rolandic operculum
and the right superior temporal gyrus (STG). The NH values of the left postcentral
gyrus were significantly higher in lTLE patients than in the healthy controls, and lTLE
patients had lower NH in the right Rolandic operculum. The altered NH in the postcentral
gyrus was negatively correlated with the illness duration, and the decreased NH
in the left Rolandic operculum was negatively correlated with the executive control
reaction time (ECRT).

Conclusion: Our findings suggest that altered NH of the postcentral gyrus, Rolandic
operculum and STG might be associated with the pathophysiology of TLE, and thus,
highlight the contribution of the VSN to the pathophysiology of TLE.

Keywords: temporal lobe epilepsy, ventral somatomotor network, network homogeneity, resting-state functional
magnetic resonance imaging, executive function

INTRODUCTION

Epilepsy is one of the most common neurological disorders, affecting over 70 million people
worldwide and putting a considerable strain on health-care infrastructure and the economy (1).
Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery,
accounting for more than 40% of surgical cases, because of the failure of antiepileptic drug
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therapy (2). TLE is characterized by cognitive dysfunction, which
includes memory, executive functioning, and general intellectual
functioning disorders, thus contributing to a poor quality of
life (3). Although temporal lobectomy results in seizure-free
status in 70% of TLE patients (4), surgical resection is still
invasive and has undesirable side effects. Recent work has
linked TLE with network-level disruption (5), and resting-state
functional magnetic resonance imaging (rs-fMRI) studies have
revealed its neural connections. MRI is thought to be the most
direct method for demonstrating functional connectivity among
separated regions of the brain at rest and is the primary method
used for studying brain networks.

The somatomotor network is a resting-state network
composed of bilateral pre- and postcentral gyri. Based on large
amounts of resting-state fMRI data and a data-driven clustering
approach (6), Biswal et al. (7) found that the somatomotor
network belongs to the conventional group of seven cortical
neuronal networks. Several studies have confirmed that the
somatomotor network has strong positive connectivity with
various brain areas, including the ventral attention networks,
frontoparietal networks, and default mode networks (8). In
addition, the somatomotor network is closely correlated with
the occurrence and progression of diseases such as autism
spectrum disorder, schizophrenia, and major depressive
disorder (8–10). However, there have been a few reports on the
somatomotor network in patients with epilepsy. Furthermore,
the symptoms of epilepsy, such as myotonia, myoclonia, and
atonic seizures, are closely related to the motor system. In
this study, we focused our work on the potential functional
mechanism of the ventral somatomotor network (VSN), which is
a subdivision of the somatomotor network, in patients with TLE.

With the development of imaging technology in recent years,
many brain structural and functional differences have been
reported in patients with TLE and healthy controls. For example,
Gao et al. (11) found a decrease in functional connectivity and
structural deficits in the alerting network of patients with right-
sided TLE (rTLE) by using the seed-based functional connectivity
method. Mankinen et al. (12) found that interictal epileptiform
activity may lead to the reorganization of resting-state brain
networks by using independent component analysis (ICA).
The seed-based region-of-interest (ROI) functional connectivity
method and ICA are two approaches that are often used to assess
brain networks. However, these analytical methods have several
disadvantages. For example, ROI seed-based methods are critical
for selecting an a priori ROI within a network. Unlike the ROI
seed-based method, ICA does not require an a priori definition
of seed regions; however, the results are highly dependent on
the number of components the algorithm is asked to produce
(13). To address these issues, an unbiased method for assessing
imaging data is critical.

Network homogeneity (NH) (14) is a survey method
that has been widely used in investigating many diseases,
such as attention-deficit/hyperactivity disorder and depression,
and has also been used to assess connectivity among brain
networks (14, 15). The NH method is a novel method that
combines the advantages of ICA and ROI seed-based functional
connectivity. Thus, it provides an unbiased, hypothesis-driven

measure for evaluating a specific brain network associated with
a pathophysiologic process or a disorder. The NH method
investigates a given network without requiring prior knowledge
of the location of network abnormalities. As a voxel-wise survey,
NH can be utilized to assess the connectivity of a voxel with
the other brain voxels in a predefined network. Homogeneity is
defined as the average connectivity of a given voxel. However,
VSN homogeneity in patients with TLE has not been reported.
In the present study, we analyzed rs-fMRI data from patients
with TLE to investigate abnormalities in the NH of the VSN
and explore the potential mechanism of impaired somatomotor
function in TLE.

MATERIALS AND APPROACHES

Subjects
Fifty-two patients with left temporal lobe epilepsy (lTLE) and
83 patients with right temporal lobe epilepsy (rTLE) were
recruited from the Department of Neurology, Tianyou Hospital
Affiliated to Wuhan University of Science and Technology. Sixty-
eight healthy people were recruited from those who underwent
a standard physical examination at the medical examination
center of the Tianyou Hospital Affiliated to Wuhan University
of Science and Technology. Patients were diagnosed with TLE
based on the diagnostic manual from the International League
Against Epilepsy (16). The inclusion criteria for TLE were as
follows (epilepsy patients who met any two of the following
symptoms): (1) the clinical onset of symptoms suggested epileptic
foci in the temporal lobe, such as psychiatric symptoms,
abnormal emotional experiences, automatisms, epigastric rising,
or dystonic posturing of the limb; (2) the imaging results
showed atrophy or sclerosis in the right/left temporal lobe;
and (3) the interictal electroencephalographic traces suggested
an abnormality in the right/left temporal lobe. The exclusion
criteria for all subjects were as follows: (1) left-handed; (2)
any lifetime psychiatric disorder; (3) history of serious medical
diseases or other neurological illness; and (4) Mini-Mental
State Examination scores (MMSE) < 24. All subjects gave
written, informed consent before participating in the study. All
participants were right-handed, and the groups were matched
by age, education level, and sex ratio. Our study was performed
according to the Declaration of Helsinki and approved by the
Medical Ethics Committee of the Tianyou Hospital Affiliated to
Wuhan University of Science and Technology.

Behavioral Paradigm
The executive function was assessed by the attentional network
test (ANT) (17). The stimulus signals of ANT visually appear
on a screen, and the subjects were required to correctly and
quickly identify the orientation in which a central target arrow
pointed. The reaction time (RT) of all the subjects were recorded,
and the executive control reaction time (ECRT) was calculated
by subtracting the consistent arrow direction RT from the
inconsistent arrow direction RT (17). A longer ECRT indicated
inferior executive control performance.
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Scan Acquisition
Images were acquired with an Achieva 3T MRI scanner (Philips,
Amsterdam, the Netherlands) for resting-state functional
magnetic resonance imaging (rsfMRI). “Participants were
instructed to lie down with their eyes closed and remain awake.
A prototype quadrature birdcage head coil filled with foam
padding was used to limit the head motion. The scanning
parameters were as follows: ratio of repetition time to echo
time (TR/TE) (2,000/30 ms), slice thickness (5 mm), pitch
(1 mm), field of view (240 × 240 mm), and flip angle (90◦). On
the structural scan (T1-weighted), the following settings were
used: spin-echo sequence, repetition time (TR) = 20 ms, echo
time (TE) = 3.5 ms, slice thickness = 1 mm, and field of view
(FOV) = 24 × 24 cm.” [excerpted from our previous study (15)].

Data Preprocessing
Imaging data of rs-fMRI were preprocessed using the DPARSF
software (18) in MATLAB (Mathworks). “After signal
stabilization, head motion and slice-timing correction were
conducted (19, 20). The subjects had a maximal translation ≤ 2
mm in the x, y, or z direction and an angular rotation ≤ 2◦ on
each axis. The functional images were normalized to the standard
template in Montreal Neurological Institute (MNI) template and
spatially resampled to a voxel size of 3 mm × 3 mm × 3 mm.
The head motion parameters obtained by rigid body correction,
the white matter signal, and the cerebrospinal fluid signal were
removed from the images by linear regression. The signal was
bandpass filtered (0.01–0.1 Hz) and linearly detrended to reduce
high-frequency physiological noise and low-frequency drift.
The global signal removal may introduce artifacts into the data
and distort resting-state connectivity patterns. Furthermore,
the regression of the global signal may significantly distort
results when studying clinical populations. Therefore, the global
signal was preserved (21, 22)” [excerpted from our previous
study (15)].

Ventral Somatomotor Network
Identification
The toolbox GIFT1 was used to pick out VSN as a mask from
all participants through the group ICA method. “Three steps
from the GIFT toolbox were used as following: data reduction,
separation of independent components, and back rebuilding.
On the consideration of every component, the voxel-wise one-
sample t-test set a statistical map and a threshold. Based on
Gaussian random field (GRF) theory, p < 0.01 represents
a significant statistical modification of multiple comparisons.
Voxel significance: p < 0.01, and cluster significance: p < 0.01).
Masks were created for the VSN components. Finally, the
masks were combined to generate a VSN mask utilized in
the following NH analysis.” [excerpted from our previous
study (15)].

Network Homogeneity Analysis
MATLAB was used for NH analysis (14). “For each patient,
the correlation coefficients were obtained in a given voxel

1http://mialab.mrn.org/software/#gica

TABLE 1 | Characteristics of the participants.

Characteristics NC (n = 68) rTLE (n = 83) lTLE (n = 52)

Gender (male/female) 68 (36/32) 83 (43/40) 52 (33/19)

Age, years 26.55 ± 4.90 28.64 ± 8.52 27.74 ± 7.89

Years of education, years 12.32 ± 2.40 11.89 ± 2.68 11.73 ± 2.01

Illness duration, years – 8.63 ± 7.04 7.98 ± 6.70

ECRT 72.88 ± 36.03 129.22 ± 42.95* 124.07 ± 31.96*

Head motion 0.11 ± 0.03 0.10 ± 0.04 0.09 ± 0.03

A non-parametric statistics (Kruskal-Wallis test) was used for continuous data, and
the X2 test for categorical data. Compared with normal controls, *P < 0.01. NC,
normal controls; RT, reaction time.

with all other voxels within the VSN mask. The mean
correlation coefficient was defined as the homogeneity
of the given voxel, and subsequently changed into
z-value by using z-transformation to improve the normal
distribution as described. The resultant values generated
the NH map that finally underwent z-transformation
for group comparison” [excerpted from our previous
study (15)].

Statistical Analyses
Demographic information, including sex, age, education
degree, and imaging data, were calculated between the patient
and control groups. Non-parametric Kruskal-Wallis test was
used to compare the distributions between multiple groups
because not all samples were in compliance with normal
distribution. Categorical data were analyzed with a chi-square
test using the IBMSPSS Statistics 22.0 software. Analyses of
covariance were executed to compare differences across the
three groups on voxel-based VSN maps. Then, post-hoc t-tests
were executed to compare VSN differences between every
two groups. Sex, age, years of education, and head motion
were applied as covariates in group comparisons to limit the
possible effects of these components. The significance level
was set at the corrected p < 0.01 for multiple comparisons
using the Gaussian Random Field (GRF) theory (GRF-
corrected, voxel significance: p < 0.001, cluster significance:
p < 0.01). Correlations between clinical variables were analyzed
using partial correlations with head motion as a covariate.
Bonferroni correction for multiple comparisons was used in the
correlation analysis.

RESULTS

Demographics and Clinical
Characteristics of Subjects
In this study, 135 TLE patients (52 lTLE patients and 83
rTLE patients) and 68 age- and sex-matched healthy controls
were recruited for the study. The demographic and clinical
characteristics of the study subjects are provided in Table 1. No
significant differences were observed among the three groups
regarding age, sex, and years of education. The patient group
showed a longer executive control reaction time.
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FIGURE 1 | Ventral somatomotor network (left: axial, coronal, and sagittal images of VSN; right: the detailed axial images of VSN. Based on group ICA with a
threshold at z ≥ 5).

FIGURE 2 | Statistical maps showing NH differences in the bilateral postcentral gyrus, the bilateral Rolandic operculum and the right STG between the rTLE group
and control group. (Blue indicates lower NH and the color bar indicates the t-values from the two-sample t-test).
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FIGURE 3 | Statistical maps showing NH differences in the left postcentral gyrus and the right Rolandic operculum between the lTLE group and the control group.
(Blue indicates lower NH and the color bar indicates the t-values from the two-sample t-test).

Ventral Somatomotor Network Maps
Determined by Group Independent
Component Analysis
By employing ICA, the VSN masks were chosen from the
control group. The parts involved in the VSN were the bilateral
postcentral and Rolandic operculum (Figure 1). The VSN was
used as a mask in the following NH analysis.

Group Differences in Ventral
Somatomotor Network Regarding
Network Homogeneity
Significant group differences in NH values between the
patients (rTLE/lTLE) and the controls within the VSN mask
were observed via two-sample t-tests. Compared to the
controls, rTLE patients had significantly higher NH in the
bilateral postcentral gyrus, and significantly lower NH in the
bilateral Rolandic operculum and right superior temporal gyrus
(STG) (Figure 2). The NH values of the left postcentral
gyrus were significantly higher in lTLE patients than in
the healthy controls, and lTLE patients had lower NH in
the right Rolandic operculum (Figure 3). The NH values
of the right Rolandic operculum and left postcentral gyrus

were significantly higher in rTLE patients than in the lTLE
patients (Figure 4).

Correlation of Network Homogeneity
With Clinical Variables
The correlations between abnormal NH and clinical variables
in the patients were examined. The increased NH of the left
postcentral gyrus was negatively correlated with the illness
duration in the lTLE group (r = –0.393, p = 0.004) (Figure 5A).
The increased NH of the right postcentral gyrus was negatively
correlated with the illness duration in the rTLE group (r = –0.345,
p = 0.001) (Figure 5C). And the decreased NH in the left Rolandic
operculum was negatively correlated with the ECRT in the rTLE
group (r = –0.326, p = 0.003) (Figure 5B). No other correlations
were observed in the participants.

DISCUSSION

Temporal lobe epilepsy is the most common drug-resistant form
of epilepsy in adults (23) and is the most common indication
for surgical intervention. However, surgical treatment is invasive
and has several undesirable and serious side effects, and not
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FIGURE 4 | Statistical maps showing NH differences in the right Rolandic operculum and the left postcentral gyrus between the rTLE group and the lTLE group.
(Blue indicates lower NH and the color bar indicates the t-values from the two-sample t-test).

FIGURE 5 | Correlations between abnormal NH and clinical variables. (A) Negative correlation between the NH values in the left postcentral gyrus and illness
duration in the lTLE group. (B) Negative correlation between the NH values in the left Rolandic operculum and ECRT in the rTLE group. (C) Negative correlation
between the NH values in the right postcentral gyrus and illness duration in the rTLE group.

every patient is a candidate for surgical intervention. Given the
limited treatment options available for those with drug-resistant
TLE, it is crucial to understand the pathophysiologic mechanism
of TLE. Because TLE patients usually have motor and sensory
impairment (24), we aimed to investigate the abnormal ventral
somatomotor network in patients with rTLE/lTLE. In this study,
we used an NH method to investigate the VSN region, which is
associated with motor and somatosensory function, in patients
with TLE (rTLE/lTLE). Compared to healthy controls, rTLE
patients had significantly higher NH in the bilateral postcentral
gyrus and significantly lower NH in the bilateral Rolandic
operculum. Compared to healthy controls, lTLE patients had

significantly higher NH in the left postcentral gyrus and lower
NH in the right Rolandic operculum. These patients had a
longer ECRT. In addition, the altered NH in the postcentral
gyrus was negatively correlated with the illness duration, and
the decreased NH in the left Rolandic operculum was negatively
correlated with the ECRT. We speculated that abnormal NH in
the postcentral gyrus and Rolandic operculum play a critical role
in the pathophysiology of TLE.

The postcentral gyrus, which is located on the lateral surface
of the parietal lobe between the central sulcus and postcentral
sulcus and caudal to the central sulcus, corresponds to Brodmann
areas 3b, 1, and 2 (25), which contain the primary somatosensory
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network and are thereby crucial for proprioception and motor
control (26). Furthermore, the postcentral gyrus also includes
the secondary somatosensory network, which is involved in
integrating memories with somatosensory stimuli (27). Because
of its unique characteristics, the postcentral gyrus is often
affected in psychiatric illness. Li et al. (28) and Kilts et al.
(29) found that increased activity of the postcentral gyrus
is associated with decreased social anxiety symptoms. Zhuo
et al. (30) reported decreased density in the resting-state global
functional connectivity of the postcentral gyrus in patients with
major depressive disorder. Larabi et al. (31) observed lowered
activation of the postcentral gyrus during suppression, which
resulted in poorer self-reflectiveness in schizophrenia patients.
Jalbrzikowski et al. (32) confirmed that increased postcentral
surface area is associated with less severe negative symptoms
and better executive cognition in bipolar disorder. With a whole-
brain voxel-based unbiased resting-state functional connectivity
method, Cheng et al. (33) demonstrated reduced connectivity
in the bilateral postcentral gyrus of patients with autism. Song
et al. (34) demonstrated that destructive lesions in the postcentral
gyrus, as well as changes in its outflow pathways to neighboring
motor areas, could lead to epileptic negative myoclonus. These
findings could be attributed to the location, structure and
function of the postcentral gyrus. As reported by DiGuiseppi et al.
(35), axons from the ventral posterolateral nucleus travel from the
thalamus through the posterior limb of the internal capsule and
terminate in the appropriate region of the postcentral gyrus. The
postcentral gyrus has numerous connections with other brain
areas, including the insula (36), amygdala (37), limbic system
(38), cerebellum (39), and parietal lobe (40). Because of these
numerous connections, the postcentral gyrus is able to perform
a variety of functions, including those involved in somatic
perceptual processes. The postcentral gyrus can also integrate
sensory-motor connections associated with poor attentional set
shifting and participate in suppression and cognitive insight
because emotion-specific representations convey emotions and
emotion processing. Our results showed significantly higher NH
in the bilateral postcentral gyrus in patients with rTLE and higher
NH in the left postcentral gyrus in patients with lTLE, which
is consistent with previous studies (41–43). Furthermore, the
altered NH values of the left postcentral gyrus were negatively
correlated with the duration of the illness in the lTLE group. And
similar finding was observed in the rTLE group that altered NH
values of the right postcentral gyrus were negatively correlated
with the illness duration. We speculate that as rTLE/lTLE
progressed, the correlation of the postcentral region with all
other regions in the VSN decreased, resulting in functional
loss in the postcentral region. We hypothesize that altered NH
values in the postcentral gyrus may be responsible for cognitive
dysfunctions in TLE patients, including executive cognition (32),
attention alertness (44), emotion processing (29), and primary
information processing.

The Rolandic operculum is defined as the confluence of
the most caudal parts of the pre- and postcentral gyri, is
contiguous to the oropharyngeal muscle control area of M1S1
and adjacent to the insula, and corresponds to Brodmann areas
6, 4, and 43 (45, 46). The most well-known function of the

Rolandic operculum is its contribution to articulation and tongue
movement during speech production, as it includes the ventral
portion of the somatotopic tongue and lip representations (47).
Furthermore, many other functions of the Rolandic operculum
have been discovered in recent years. Fink et al. (48) found
that an activated Rolandic operculum supports multimodal input
processing from various motor, sensory, and perceptual sources.
Ventre-Dominey (49) reported that the Rolandic operculum
overlaps with a cortical network that is thought to be associated
with self-referential processes that involve self-location in space.
Blefari et al. (50) confirmed that the Rolandic operculum is
crucial for interoceptive awareness and bodily self-consciousness
by processing integrated exteroceptive-interoceptive signals. The
findings of Wu et al. (51) suggest that functional impairments of
the left Rolandic operculum in patients with schizophrenia are
related to delusional thoughts, and patients with schizophrenia
have been found to have increased mean connectivity in the
left Rolandic operculum (52). Shan et al. (53) discovered that
an activated Rolandic operculum is associated with cognitive
disabilities in Alzheimer’s disease and mild cognitive impairment.
Wang et al. (54) reported that the Rolandic operculum is
associated with the neural mechanisms of tic generation. Decades
ago, it was discovered that critical electrical discharges in
temporal lobe epilepsy always affect extratemporal structures,
such as the Rolandic operculum (55). In the present study,
lower NH was found in the bilateral Rolandic operculum of
patients with rTLE and in the right Rolandic operculum of
patients with lTLE. Furthermore, we found that decreased NH
in the left Rolandic operculum was negatively correlated with
the ECRT between the control group and rTLE group. A longer
ECRT indicates inferior executive control performance, and
thus, we speculated that abnormal NH in the left Rolandic
operculum played a critical role in the executive function of
patients with rTLE.

In the present study, we observed that rTLE and lTLE
patients had altered NH values in the postcentral gyrus and
Rolandic operculum. Because the postcentral gyrus and Rolandic
operculum in play critical roles in cognitive function, we
speculate that network homogeneity abnormalities caused by
temporal lobe epilepsy may account for cognitive dysfunctions
in TLE patients. Additionally, this may be the cause of abnormal
electrical discharge in patients with TLE. However, our results are
consistent with those of some previous studies (56, 57). Li et al.
(56) found that increased functional connectivity of the Rolandic
operculum was lateralized in patients with rTLE, and Zhou
et al. (57) reported that decreased functional connectivity of the
postcentral gyrus was lateralized in patients with rTLE. However,
we found that the altered NH of the Rolandic operculum
and postcentral gyrus were bilateral in patients with rTLE.
We speculate that the following factors may account for this
phenomenon. (1) There might be a compensatory mechanism
that occurs in patients with lTLE/rTLE at rest. As part of the
VSN, the postcentral gyrus and the Rolandic operculum share
many similarities and overlaps in function; for example, they are
both closely related to depression, schizophrenia, epilepsy, and
emotion and sensation processing. Bettus et al. (58) reported
decreased basal functional connectivity within epileptogenic
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networks with concurrent contralaterally increased connectivity,
which confirmed our suspicions. Campo et al. (59) discovered
decreased effective connectivity in the medial temporal lobe
of the lesional hemisphere and increased effective connectivity
in the medial temporal lobe/inferior frontal cortex of the
contralesional hemisphere. Similar to these findings regarding
functional connectivity in patients with epilepsy, our results
demonstrated increased NH values in the ipsilesional postcentral
gyrus and decreased NH values in the contralesional Rolandic
operculum. (2) Because TLE is a chronic disorder, epileptic
discharges propagating into the contralateral gyrus and recurrent
epileptic activities might be responsible for the contralateral
structural and functional decline as TLE progressed. Jokeit et al.
(60) confirmed the TLE patients had altered glucose metabolism
in the contralateral hippocampus, which was related to seizure
frequency. Additionally, the duration of TLE may have a greater
impact on the contralateral measure of hippocampal metabolism
than the ipsilateral measure. Following a multiple regression
analysis, there was a subsequent decrease in the hippocampal
volume contralateral to the primary temporal seizure focus (61,
62). We believe that similar processing occurs in the postcentral
gyrus and Rolandic operculum, which is strongly supported by
the results of our study.

The STG plays a key role in language function (63), and
study showed that the activity of STG was strongly associated
with the listeners’ subjective experience (64). A fMRI study
enrolled 43 TLE patients with language-impaired and 42 TLE
patients with non-language-impaired confirmed that activations
within the STG was the most predictive of language impairment
(65). A Chinese tasks based fMRI study showed that the main
effect region of auditory naming and picture naming tasks
was in right STG, and the main effect region of semantic
fluency task was in left STG (66). Meanwhile, to protect the
language function in the postoperative patients, the task-state
fMRI and intraoperative electroencephalography were suggested
to be used to develop a personalized surgical plan for epilepsy
treatment (66). Moreover, the dysfunction in the STG was related
to the cognitive dysfunction in epilepsy patients. A rs-fMRI
study found that decreased functional connectivity of the left
precentral gyrus with the bilateral STG has a significant effect
on intelligence in children and adolescents with focal epilepsy
(67). The right STG was found blunted neural response to
emotional faces in pediatric epilepsy, which was regarded as a
marker of risk for social cognitive deficits (68). In our study,
lower NH in the right STG was found in the rTLE, and no
significant correlation was found between the NH and clinical
variables including the ECRT. Based on these prior studies,
we speculate that the decreased NH was associated with the
language function in TLE, though relevant language task hadn’t
perform in our study.

There were several limitations in the study: (1) Physiological
noise cannot be completely removed. (2) We focused only on
abnormalities of the VSN in patients with TLE, and although
illuminating the pathophysiological contribution of the VSN
is critical, other significant brain networks might have been
neglected. (3) Antiepileptic drugs may also have effects on
functional networks in epilepsy, and we did not account for this
confounding factor.

CONCLUSION

In conclusion, we used the NH method to analyze resting-state
fMRI data in patients with TLE, and abnormal NH values in the
VSN were confirmed. The importance of NH alterations in the
VSN implies the importance of the postcentral gyrus, STG and
Rolandic operculum in the progression of TLE and provides new
insights into the pathophysiological mechanism of TLE.
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