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Abstract
Background: Artificial intelligence (AI) has demonstrated significant potential in supporting emergency medical services personnel during out-of-

hospital cardiac arrest (OHCA) care; however, the extent of research evaluating this topic is unknown. This scoping review examines the breadth of

literature on the application of AI in early OHCA care.

Methods: We conducted a search of PubMed�, Embase, and Web of Science in accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. Articles focused on non-traumatic OHCA and published prior to January

18th, 2023 were included. Studies were excluded if they did not use an AI intervention (including machine learning, deep learning, or natural lan-

guage processing), or did not utilize data from the prehospital phase of care.

Results: Of 173 unique articles identified, 54 (31%) were included after screening. Of these studies, 15 (28%) were from the year 2022 and with an

increasing trend annually starting in 2019. The majority were carried out by multinational collaborations (20/54, 38%) with additional studies from the

United States (10/54, 19%), Korea (5/54, 10%), and Spain (3/54, 6%). Studies were classified into three major categories including ECG waveform

classification and outcome prediction (24/54, 44%), early dispatch-level detection and outcome prediction (7/54, 13%), return of spontaneous circu-

lation and survival outcome prediction (15/54, 20%), and other (9/54, 16%). All but one study had a retrospective design.

Conclusions: A small but growing body of literature exists describing the use of AI to augment early OHCA care.

Keywords: Out-of-hospital cardiac arrest, Prehospital care, Emergency medical services, Medical dispatch, Artificial intelligence, Machine

learning, Deep learning
Introduction

Over 250,000 people are treated by emergency medical services

(EMS) for out-of-hospital cardiac arrest (OHCA) annually in the Uni-

ted States.1 While the incidence of successful prehospital return of

spontaneous circulation (ROSC) has been reported at approximately

27%, the chances of survival are low at around 9% and 7% for sur-

vival to hospital discharge and neurologically intact survival, respec-

tively.1 Despite significant research into prehospital resuscitation,

survival outcomes after OHCA have remained low.2

The role of artificial intelligence (AI), including machine learning

(ML), deep learning (DL), and natural language processing (NLP),

as decision-support for EMS personnel in the management of OHCA

is rapidly evolving. In the dynamic out-of-hospital setting where crit-
ical management decisions must be based off limited information, AI

may assist EMS clinicians in quickly and objectively synthesizing

patient data to guide care. Prior studies have demonstrated the fea-

sibility of AI in assisting dispatchers in the early recognition of OHCA,

and EMS clinicians and emergency department (ED) physicians in

OHCA prognostication based solely on prehospital factors. To date,

little research has evaluated the literature scope pertaining to the use

of AI in emergency care3 and in cardiac arrest care4,5, and no studies

have mapped the extent of literature on the use of AI as decision-

support in the prehospital OHCA management.

We aimed to perform a scoping review on the use of AI as

decision-support for OHCA management in the prehospital and early

phases of care. The intent of this review is to inform EMS clinicians,

physicians, and researchers on the current scope of literature on the

use of AI as decision-support in early OHCA care.
rg/
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Methods

We performed a search of peer-reviewed articles indexed in

Embase, PubMed�, and Web of Science on January 18th, 2023.

Articles published up to the search date were eligible for inclusion.

Key search terms included ‘artificial intelligence’, ‘machine learning’,

‘deep learning’, ‘natural language processing’, and ‘out-of-hospital

cardiac arrest’ (Fig. 1). After removal of duplicate publications, a sin-

gle investigator (J.T.) who is an emergency medicine physician spe-

cializing in EMS screened titles and abstracts for relevancy based on

predefined criterion (Supplementary Fig. 1). Selected articles under-

went full-text screening. We conducted this review in accordance

with Preferred Reporting Items for Systematic Reviews and Meta-

Analyses Extension for Scoping Reviews guidelines (See Fig. 2 for

PRISMA checklist).6

Studies were included if they used subsets of AI including ML,

DL, or NLP as decision-support in the early phases of non-

traumatic OHCA care. ML requires the input of structured data and

learns in a supervised or unsupervised manner to make predictions.

DL, a subset of ML, automatically inputs structured or raw data into

multiple layers known as neural networks to organize and classify

information and output predictions. Both ML and DL frameworks uti-

lize classification algorithms of varying complexity (i.e., random for-

est, convolutional neural networks) to recognize, understand, and

group data elements into categories which can then be interpreted

by a human operator. NLP refers to the ability of a computer to

understand and interpret text or spoken human language.

The search focused on peer-reviewed, primary studies published

in academic journals. Studies were restricted to those published in

the English language and based on human subject research. Studies

were excluded if they did not restrict the patient population to non-

traumatic OHCA, did not include ML, DL, and/or NLP as the AI inter-

vention, or did not utilize input data from the prehospital setting or

data obtained immediately upon arrival to the ED. Of note, studies

utilizing non-prehospital data that are applicable and could be easily

collected in the prehospital setting were included (i.e., electrocardio-

gram [ECG] waveform data). Conference abstracts, review articles,

editorials, and gray literature were excluded.

Studies were filed into the citation-manager Zotero (Version

6.0.23; Corporation for Digital Scholarship, Vienna, Virginia, USA)

and data were extracted by a single investigator (J.T.) into an Excel
Fig. 1 – Inclusion/e
spreadsheet (Version 16.66.1; Microsoft Corp, Redmond Washing-

ton, USA). We extracted year, country of origin, AI branch (i.e.,

ML, DL, or NLP), classification algorithm (i.e., random forest, support

vector machine), number of input predictors, data input type (i.e.,

clinical variables, ECG segment), database used, database size,

and primary study outcomes. Country of origin was defined as the

country were the authors declared their institutional affiliation. The

category ‘Multinational Collaboration’ was created for studies with

authors from two or more countries. We summarized descriptive

statistics as frequencies and percentages. No personal or individual

identifiers of human study subjects was retrieved in this literature

review.

Results

The initial search yielded 318 total articles (Fig. 2). After removal of

duplicate publications, 173 articles remained. After screening of titles

and abstracts, 99 articles remained. Full manuscript review yielded

54 (31%) articles for inclusion.

Overall study characteristics

Of 54 included studies (Fig. 3), 15 (28%) were from the year 2022

and there was an annual increase in publications starting in 2019.

The majority of studies were carried out by multinational collabora-

tions (20/54, 38%), with additional studies from the United States

(10/54, 19%), Korea (5/54, 10%), and Spain (3/54, 6%). We classi-

fied studies into four main categories based on their use of AI includ-

ing ECG waveform classification and outcome prediction (24/54,

44%), early dispatch-level detection and outcome prediction (7/54,

13%), return of spontaneous circulation (ROSC) and/or survival out-

come prediction (15/54, 20%), and other uses (9/54, 16%). All stud-

ies had a retrospective design except one by Blomberg et al.7 See

Table 3 for study list.

ROSC and survival outcome prediction

Fifteen studies were identified that used AI for ROSC and survival

outcome prediction (Table 1). The majority were from 2022 (5/15,

34%)8–12 and all but one were published in the past five years. Most

studies were carried out by multinational collaborations (4/15,

27%)12–15 and from Korea (3/15, 20%)16–18, Japan (2/15, 14%)9,19,
xclusion criteria.



Fig. 2 – Selection Flow Chart. AI = artificial intelligence, ECG = electrocardiogram, OHCA = out of hospital cardiac

arrest, ROSC = return of spontaneous circulation.
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and the United States (2/15, 14%)8,20. Eleven studies (73%) focused

on survival prediction8–11,13,14,17–21, two studies (13%) focused on

ROSC prediction12,15, and two studies (13%) focused on both16,22.

Most studies excluded patients < 18 years of age or did not specify

an age cutoff, while a single study by Al-Dury et al.13 explicitly

included both adults and children. The number of patients included

in each study ranged from 194 to 170,678 with the majority of studies

including > 5,000 patients from large OHCA databases.

Among studies with models aimed at predicting survival and/or

ROSC, eleven utilized ML9–11,13–15,17,19,21–23 and four used both

ML and DL8,16,18,20. All of these studies utilized a random forest clas-

sification algorithm as one type of the ML classification algorithms

and additional ML and DL classification methods included logistic

regression8,9,16,18–21, support vector machine9,18–20,22, k-nearest

neighbor8,9,16,20,22, decision tree8,9,16,20, light gradient boosted

machine (LightGBM)8,9,14,20, extreme gradient boosting

(XGboost)8,9,17,20, multilayer perceptron18,19,21, Autoscore10,15, deep

neural networks8,20, embedded fully convolutional network8,20, gradi-

ent boosting8,20, artificial neural networks14, classification and

regression tree11, Lagrangian support vector machine16, naı̈ve
bayes22, neural networks22, reduced support vector machine16, reg-

ularized logistic regression17, and voting classifier17. All studies uti-

lized more than one classification algorithm with the exception of

one study by Liu et al.15 which used a single ML classification algo-

rithm (random forest) and compared it to an existing prediction score.

The number of predictors utilized in the various classification

algorithms employed by each study to predict ROSC and survival

ranged from three to 27 with an overall mean of 14.7 (Fig. 4). In these

studies, 12 of 15 models8–10,12,13,15–17,19–22 utilized only predictors

from the prehospital setting, while the remaining three models12,14,18

also incorporated one to two predictor variables obtained upon ED

arrival including initial ED vitals, initial ED ECG, consciousness level

upon ED arrival, and time from ED arrival to ROSC.

Early dispatch-level detection and outcome prediction

Seven studies were identified that used AI for the early detection of

OHCA and outcome prediction at the dispatch-level from audio-

based input (Table 2). All were published in the past five years.

The studies were conducted by investigators in multinational

collaborations (2/7, 29%)22,28, France (2/7, 29%)24,25, with additional



Fig. 3 – Characteristics of all included studies in this scoping review. *A) Studies from the year 2023 were omitted.

ECG = electrocardiogram; ROSC = return of spontaneous circulation.
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studies from Denmark26, Sweden27, and Taiwan28. Four stud-

ies7,26,27,29 focused on the early detection of OHCA based on linguis-

tic (e.g., spoken words) features in the dispatch-call audio while Rafi

et al.24 focused on the phonetic (e.g., vocal acoustic characteristics)

features of the callers voice in the dispatch-call audio. Chin et al.28

characterized callers’ emotional state during dispatch calls for OHCA

and Arcolezi et al.25 predicted the need for transport and mortality

outcomes from the dispatch call audio. The exact number and types

of inputted predictors varied greatly and/or were not well described in

these studies. One study by Blomberg et al.7 was a randomized con-

trolled trial while the remaining were of retrospective observational

design. The number of audio calls analyzed in each study ranged

from 337 to 169,236 with the majority obtaining call audio from large,

regional OHCA databases.
Among these dispatch-level studies, four utilized ML7,26,28,29 and

three employed both ML and DL24,25,27. ML and DL classification

algorithms included attentive interpretable tabular learning

(TabNet)25, automatic speech recognition27, binary logistic regres-

sion24, convolutional neural network24, lightGBM25, Neural net-

work24, Random forest24, XGBoost25. Four studies did not describe

the specific classification algorithm used.7,26,28,29

Electrocardiogram waveform classification and prediction

of outcomes

Twenty-four studies were identified that used AI for ECG waveform

classification in OHCA and outcome prediction. The majority were

published in the past five years and five from prior years. The major-

ity were carried out through collaborations between multinational



Table 1 – Characteristics of studies aimed at prediction of return of spontaneous circulation outcomes and
survival. ROSC = return of spontaneous circulation.

Prediction of ROSC and Survival (n = 15)

Dates Frequency (%)

2023 1 (7)

2022 5 (34)

2021 4 (27)

2020 2 (14)

2019 2 (14)

2009 1 (7)

Country of Study Origin

Hong Kong 1 (7)

Japan 2 (14)

Korea 3 (20)

Singapore 1 (7)

Slovenia 1 (7)

Taiwan 1 (7)

United States 2 (14)

Multinational Collaboration 4 (27)

Patient Demographic

Adults (<18 years) 10 (67)

Adults & Pediatrics 1 (7)

Not Specified 4 (27)

AI Branch

Machine Learning 11

Machine Learning & Deep Learning 4

Classification Algorithm

Artificial Neural Networks 1

Autoscore 2

Classification and Regression Tree 1

Decision Tree 4

Deep Neural Networks 2

Embedded Fully Convolutional Network 2

Gradient Boosting 2

K-Nearest Neighbor 5

Lagrangian Support Vector Machine 1

LightGBM 4

Logistic Regression 7

Multilayer Perceptron 3

Naı̈ve Bayes 1

Neural Networks 1

Random Forest 15

Reduced Support Vector Machine 1

Regularized Logistic Regression 1

Support Vector Machine 6

Voting Classifier 1

XGBoost 4
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groups in Europe and the United States utilizing ECG waveform data

from multicenter databases. Among these studies, six (25%) aimed

to predict defibrillation outcomes in ventricular fibrillation (VF)30–35,

five (21%) focused on rhythm classification36–40, five (21%) devel-

oped algorithms to advise defibrillation versus no defibrillation41–45,

four (17%) focused specific on the classification of pulseless electri-

cal activity (PEA) (i.e., PEA vs pseudo-PEA vs pulsed rhythm, or

favorable-PEA vs non-favorable-PEA)46–49, two (8%) aimed to pre-

dict survival outcomes30,50 and two (8%) aimed to suppress CPR

artifact to improve ECG segment analysis36,37. Additional studies

aimed to develop ECG based classification algorithms to predict

rearrest in the immediate post-ROSC period51, predict the presence

of a pulse during CPR52, and predict myocardial infarction/acute

coronary artery occlusion during CPR53
Among the studies of ECG segment analysis, fourteen used

ML30–32,35,36,38–40,47–52, nine used DL33,34,37,38,41–46, and one used

both ML and DL38. All studies utilized ECG waveform characteristics

(i.e., VF amplitude/frequency, QRS size/amplitude) obtained from

manual defibrillators, automated external defibrillators, and/or Holter

monitors. Several studies additionally utilized thoracic impedance

data30,36,42,43,47–52 obtained from the manual defibrillator and end

tidal carbon monoxide values35,48,49. Coult et al.50 also added clinical

variables including age (<60 or �60 years) and sex. The analyzed

ECG segments ranged from 1-second to greater than 40-seconds

and were primarily segments from continuous ECG waveform cap-

tured during OHCA resuscitation (10/24, 42%)36,37,39–45,52. Other

studies analyzed more specific ECG segments including VF seg-

ments before and after defibrillator (9/24, 38%)30–35,38,50,53, pulse-



Fig. 4 – Number of inputted variables used in each study to predict return of spontaneous circulation and survival

outcomes. ROSC = return of spontaneous circulation.

Table 2 – Characteristics of studies aimed at the early dispatch-level detection of out-of-hospital cardiac arrest
and outcome prediction.

Early Dispatch-level Detection and Outcome Prediction for OHCA (n = 7)

Year Frequency (%)

2023 1 (15)

2022 2 (29)

2021 3 (43)

2019 1 (15)

Country of Study Origin

Denmark 1 (15)

France 2 (29)

Sweden 1 (15)

Taiwan 1 (15)

Multinational Collaboration 2 (29)

Patient Demographic

Adults & Pediatrics 7 (100)

AI Branch

Machine Learning 4

Machine Learning & Deep Learning 3

Classification Algorithm

Attentive Interpretable Tabular Learning 1

Automatic speech recognition 1

Binary logistic regression 1

Convolutional Neural Network 1

LightGBM 1

Neural network 1

Random forest 1

XGBoost 1

Not specified 4
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less electrical activity (PEA) segments (4/24, 17%)46–49, and imme-

diate post-ROSC ECG segments (1/24, 4%)51

Other

Eight studies were identified that utilized AI to augment other aspects

OHCA care. Three of these studies described their use of ML for

spatial and temporal OHCA cluster detection and outcome prediction
using clinical, demographic, or environmental factors.54–56 Three ret-

rospective studies employed ML to analyze OHCA patient care

reports to evaluate data integrity and predict outcomes, one of which

also used NLP.57–59 Finally, two studies described the use of ML and

DL to augment the lay rescuer and prehospital response to OHCA

including chatbots to guide lay rescuer OHCA response60 and the

use of drones to deliver automated external defibrillators61



Table 3 – Studies included in this scoping review (n = 54).

Category Title Primary

Author &

Year

Country of Origin Study Design AI

branch

Data Source

Dispatch Machine learning as a supportive tool to recognize cardiac arrest in emergency

calls

Blomberg

et al. 2019

Denmark, United States Retrospective

Observational

ML Dispatch Audio

Dispatch Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital

Cardiac Arrest During Calls to Emergency Medical Services: A Randomized

Clinical Trial

Blomberg

et al. 2021

Denmark, United States Randomized

Clinical Trial

ML Dispatch Audio

Dispatch Machine learning can support dispatchers to better and faster recognize out-of-

hospital cardiac arrest during emergency calls: A retrospective study

Byrsell et al.

2021

Sweden Retrospective

Observational

ML, DL Dispatch Audio

Dispatch Early recognition of a caller’s emotion in out-ofhospital cardiac arrest

dispatching: An artificial intelligence approach

Chin et al.

2021

Taiwan Retrospective

Observational

ML Dispatch Audio

Dispatch Privacy-Preserving Prediction of Victim’s Mortality and Their Need for

Transportation to Health Facilities

Arcolezi et al.

2022

France Retrospective

Observational

ML, DL Dispatch Audio

Dispatch Out-of-Hospital Cardiac Arrest Detection by Machine Learning Based on the

Phonetic Characteristics of the Caller’s Voice.

Rafi et al.

2022

France Retrospective

Observational

ML, DL Dispatch Audio

Dispatch When the machine is wrong. Characteristics of true and false predictions of Out-

of-Hospital Cardiac Arrests in Emergency Calls using a machine-learning model

Blomberg

et al. 2023

Denmark Retrospective

Observational

ML Dispatch Audio

ECG A method to predict ventricular fibrillation shock outcome during chest

compressions

Coult et al.

2021

United States Retrospective

Observational

ML ECG Waveform,

Thoracic impedance

ECG Ventricular Fibrillation Waveform Analysis During Chest Compressions to

Predict Survival From Cardiac Arrest

Coult et al.

2019

United States Retrospective

Observational

ML ECG Waveform,

Thoracic impedance,

Clinical Variables

ECG Towards the Prediction of Rearrest during Out-of-Hospital Cardiac Arrest Elola et al.

2020

Spain, United States Retrospective

Observational

ML ECG Waveform

ECG Multimodal Algorithms for the Classification of Circulation States During Out-of-

Hospital Cardiac Arrest

Elola et al.

2020

Spain, Norway Retrospective

Observational

ML ECG Waveform,

Thoracic impedance,

EtCO2

ECG Capnography: A support tool for the detection of return of spontaneous

circulation in out-of-hospital cardiac arrest

Elola et al.

2019

Spain, China, United

States

Retrospective

Observational

ML ECG Waveform,

Thoracic impedance

ECG Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital

Cardiac Arrest

Elola et al.

2019

Spain, United States Retrospective

Observational

DL ECG Waveform,

Thoracic impedance,

EtCO2

ECG Machine Learning Techniques for the Detection of Shockable Rhythms in

Automated External Defibrillators

Figuera et al.

2016

Spain, Norway Retrospective

Observational

ML ECG Waveform

ECG Enhancing the accuracy of shock advisory algorithms in automated external

defibrillators during ongoing cardiopulmonary resuscitation using a deep

convolutional Encoder-Decoder filtering model

Hajeb et al.

2022

United States Retrospective

Observational

DL ECG Waveform

ECG Deep Neural Network Approach for Continuous ECG-Based Automated External

Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation.

Hajeb et al.

2021

United States Retrospective

Observational

DL ECG Waveform

ECG Combining Amplitude Spectrum Area with Previous Shock Information Using

Neural Networks Improves Prediction Performance of Defibrillation Outcome for

Subsequent Shocks in Out-Of-Hospital Cardiac Arrest Patients.

He et al. 2016 China Retrospective

Observational

DL ECG Waveform

(continued on next page)
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Table 3 (continued)

Category Title Primary

Author &

Year

Country of Origin Study Design AI

branch

Data Source

ECG Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional

Neural Networks.

Isasi et al.

2020

Spain, Norway Retrospective

Observational

DL ECG Waveform,

Thoracic impedance

ECG Shock decision algorithm for use during load distributing band cardiopulmonary

resuscitation

Isasi et al.

2021

Spain, Norway Retrospective

Observational

ML ECG Waveform,

Thoracic impedance

ECG ECG derived feature combination versus single feature in predicting defibrillation

success in out-of-hospital cardiac arrested patients

Ivanovic et al.

2019

Serbia, Germany, Italy Retrospective

Observational

ML ECG Waveform

ECG Predicting defibrillation success in out-of-hospital cardiac arrested patients:

Moving beyond feature design

Ivanovic et al.

2020

Serbia, Germany, Italy Retrospective

Observational

ML ECG Waveform

ECG Shock Decision Algorithms for Automated External Defibrillators Based on

Convolutional Networks

Jaureguibeitia

et al. 2020

Spain Retrospective

Observational

DL ECG Waveform,

Thoracic impedance

ECG Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-

of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation.

Jekova &

Krasteva 2021

Bulgaria Retrospective

Observational

DL ECG Waveform

ECG Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for

Detection of Shockable and Non-Shockable Rhythms.

Krasteva et al.

2020

Bulgaria, France Retrospective

Observational

DL ECG Waveform

ECG Prediction of countershock success using single features from multiple

ventricular fibrillation frequency bands and feature combinations using neural

networks

Neurauter

et al. 2006

Austria, Norway, United

States

Retrospective

Observational

DL ECG Waveform

ECG Mixed convolutional and long short-term memory network for the detection of

lethal ventricular arrhythmia.

Picon et al.

2019

Spain Retrospective

Observational

ML, DL ECG Waveform

ECG ECG-Based Classification of Resuscitation Cardiac Rhythms for Retrospective

Data Analysis

Rad et al.

2017

Spain, Norway, United

States

Retrospective

Observational

ML ECG Waveform

ECG Machine learning and feature engineering for predicting pulse presence during

chest compressions

Sashidhar

et al. 2021

United States Retrospective

Observational

ML ECG Waveform,

Thoracic impedance

ECG Integration of attributes from non-linear characterization of cardiovascular time-

series for prediction of defibrillation outcomes

Shandilya

et al. 2016

United States Retrospective

Observational

ML ECG Waveform.

EtCO2

ECG Pilot study on VF-waveform based algorithms for early detection of acute

myocardial infarction during out-of-hospital cardiac arrest

Thannhauser

et al. 2022

Netherlands Retrospective

Observational

ML ECG Waveform

ECG A Machine Learning Model for the Prognosis of Pulseless Electrical Activity

during Out-of-Hospital Cardiac Arrest.

Urteaga et al.

2021

Spain, United States Retrospective

Observational

ML ECG Waveform,

Thoracic impedance

Other Machine Learning Analysis to Identify Data Entry Errors in Prehospital Patient

Care Reports: A Case Study of a National Out-of-Hospital Cardiac Arrest

Registry.

Choi et al.

2022

Korea Retrospective

Observational

ML,

NLP

Clinical Variables

Other Machine learning-based dispatch of drone-delivered defibrillators for out-of-

hospital cardiac arrest.

Chu et al.

2020

Canada Retrospective

Observational

ML Other

Other Identification of Factors Associated with Return of Spontaneous Circulation after

Pediatric Out-of-Hospital Cardiac Arrest Using Natural Language Processing

Harris et al.

2022

United States Retrospective

Observational

NLP Clinical Variables

Other Racial and Socioeconomic Disparities in Out-Of-Hospital Cardiac Arrest

Outcomes: Artificial Intelligence-Augmented Propensity Score and Geospatial

Cohort Analysis of 3,952 Patients.

Monlezun

et al. 2021

United States Retrospective

Observational

ML Demographic

Variables

Other Identification of out-of-hospital cardiac arrest clusters using unsupervised

learning.

Moon

et al.2022

Korea Retrospective

Observational

ML Other

8
R

E
S

U
S

C
I
T

A
T

I
O

N
P

L
U

S
1
6

(
2
0
2
3
)
1
0
0
4
9
1



Table 3 (continued)

Category Title Primary

Author &

Year

Country of Origin Study Design AI

branch

Data Source

Other Machine learning model for predicting out-of-hospital cardiac arrests using

meteorological and chronological data

Nakashima

et al. 2020

United States, Japan Retrospective

Observational

ML Other

Other Association between type of bystander cardiopulmonary resuscitation and

survival in out-of-hospital cardiac arrest: A machine learning study

Jerkeman

et al. 2022

Sweden Retrospective

Observational

ML Clinical Variables

Other Can a voice assistant help bystanders save lives? A feasibility pilot study chatbot

in beta version to assist OHCA bystanders.

Otero-Agra

et al. 2022

Spain Retrospective

Observational

ML, DL Other

ROSC

Prediction

Prediction of ROSC After Cardiac Arrest Using Machine Learning Liu et al. 2020 Singapore, Taiwan,

Thailand, Korea, Japan,

United Arab Emirates

Retrospective

Observational

ML Clinical Variables

ROSC

Prediction

Development and validation of an interpretable prehospital return of

spontaneous circulation (P-ROSC) score for patients with out-of-hospital cardiac

arrest using machine learning: A retrospective study

Liu et al. 2022 Singapore, Korea, Taiwan,

Japan

Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Identifying the relative importance of predictors of survival in out of hospital

cardiac arrest: a machine learning study

Al-Dury et al.

2020

Sweden, Norway Retrospective

Observational

ML Clinical Variables

Survival

Prediction

A machine learning approach for modeling decisions in the out of hospital

cardiac arrest care workflow.

Harford

et al.2022

United States Retrospective

Observational

ML, DL Clinical Variables

Survival

Prediction

A machine learning based model for Out of Hospital cardiac arrest outcome

classification and sensitivity analysis.

Harford

et al.2019

United States Retrospective

Observational

ML, DL Clinical Variables

Survival

Prediction

Early outcome prediction for out-of-hospital cardiac arrest with initial shockable

rhythm using machine learning models.

Hirano et al.

2021

Japan Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Visual assessment of interactions among resuscitation activity factors in out-of-

hospital cardiopulmonary arrest using amachine learning model

Kawai2022 Japan Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Developing a Time-Adaptive Prediction Model for Out-of-Hospital Cardiac

Arrest: Nationwide Cohort Study in Korea.

Kim et al. 2021 Korea, United States Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict

clinical outcomes

Kwon

et al.2019

Korea Retrospective

Observational

ML, DL Clinical Variables

Survival

Prediction

Tree-Based Algorithms and Association Rule Mining for Predicting Patients’

Neurological Outcomes After First-Aid Treatment for an Out-of-Hospital Cardiac

Arrest During COVID-19 Pandemic: Application of Data Mining

Lin et al. 2022 Taiwan Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A

Comparison Study on Machine Learning and Regression Models

Lo & Siu2021 Hong Kong Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Prediction of Neurologically Intact Survival in Cardiac Arrest Patients without

Pre-Hospital Return of Spontaneous Circulation: Machine Learning Approach

Seo et al.

2021

Korea Retrospective

Observational

ML Clinical Variables

Survival

Prediction

Development and validation of the SARICA score to predict survival after return

of spontaneous circulation in out of hospital cardiac arrest using an interpretable

machine learning framework.

Wong et al.

2022

Singapore Retrospective

Observational

ML Clinical Variables

Survival

Prediction/

ROSC

Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest Krizmaric et al.

2009

Slovenia Retrospective

Observational

ML Clinical Variables

Survival

Prediction/

ROSC

Evaluation of optimal scene time interval for out-of-hospital cardiac arrest using a

deep neural network.

Shin et al.

2023

Korea Retrospective

Observational

ML, DL Clinical Variables
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Discussion

To date, there is a small but growing body of research evaluating the

AI to support dispatchers, EMS clinicians, and physicians in OHCA

care. The number of published studies detailing the feasibility and

potential applications of AI have steadily increased since 2019. To

our knowledge, we are the first to have evaluated the scope of liter-

ature on AI as decision-support in early OHCA resuscitation. We

identified three main categories of studies that use AI to detect

and predict outcomes in OHCA care: early dispatch-level detection

of OHCA, prediction of ROSC and/or survival, and ECG waveform

classification. In the prehospital setting where the dynamic nature

requires rapid gathering and interpretation of limited information, har-

nessing the power of AI to quickly analyze data and predict outcomes

may enhance our ability to deliver the most effective OHCA care.

The prediction of ROSC and survival early in the care continuum

has the potential to guide resuscitation decisions for OHCA patients;

yet accurate outcomeprediction based on limited prehospital data rep-

resents a major challenge. In this scoping review, most of the studies

evaluated the performance of different AI classification algorithms to

predict the binary outcome(s) of survival and/or neurologically intact

survival. Themajority of studies compared the predictive performance

of multiple different ML or DL classification algorithms. Two different

studies by Liu et al. additionally compared a single ML classification

algorithm to previously validated predictivemodels based on standard

logistic regression including the ROSC After Cardiac Arrest score

(RACA) and Utstein reporting-based ROSC score (UB-ROSC).12,15

Kim et al. developed a time-adaptive ML algorithm to predict percent

survival and neurologically intact survival minute-by-minute for OHCA

patients up to 60 minutes.14

When assessing factors in each study predicting ROSC and sur-

vival, there was significant heterogeneity. While some studies

included as few as three predictors, others included as many as 27.

Other studies utilized data available at the time of ambulance arrival

while further studies included data up to the time of care transfer to

ED staff. Al-Dury et al.13 evaluated the relative importance of factors

for predicting survival present at the time of ambulance arrival and

found that initial rhythm (most important), age, time to CPR initiation,

EMS response time, and location of cardiac arrest were the top five

most important. Lin et al.11 assessed the relative importance of factors

available during the entire out-of-hospital course and upon ED arrival

and found that prehospital ROSC, age, EMS response time, scene

time, and transport time were the fivemost important factors, with pre-

hospital ROSCbeing themost important.Overall, the useof AI to prog-

nosticate outcomes at different time points may benefit different care

teams including EMS providers (i.e., informing transport or field termi-

nation of resuscitation ) andEDphysicians (i.e., informing the length of

additional resuscitation or care discussions with families).

Despite the growing number of studies evaluating AI to predict

ROSC and survival outcomes in OHCA, the generalizability of the

predictive models developed to date may be limited. Most of these

studies utilized classification algorithms that were developed and val-

idated with data from EMS systems in Asia.9–11,13–19,21 It is known

that EMS systems vary widely both at the international level and

within the United States.62 As such, these models may not be appli-

cable within the North American and European EMS systems.

Improving timely recognition of OHCA during the initial medical

dispatch call is another factor that may improve OHCA outcomes.

Early detection of OHCA is critical as it may enable telephone
CPR and dispatch of appropriate EMS resources. This scoping

review identified multiple studies which described ML and DL frame-

works which analyze linguistic and phonetic characteristics of

speech during the dispatch call and provided decision-support for

dispatch in the detection of OHCA. Blomberg et al.7 conducted the

first randomized controlled trial evaluating the use of ML as real-

time decision support for OHCA recognition for dispatchers. Though

the model had previously shown success in training and validation

during a prior retrospective observational study29, it did not result

in a significant improvement in dispatcher OHCA recognition when

used in real-time. The absence of a significant improvement was

attributed to human factors in the interaction with the decision sup-

port tool. This study highlighted the first prospective implementation

of ML to guide early OHCA care. Overall, this scoping review

revealed that current literature consists of retrospective analyses

with positive conclusions and a single randomized control trial with

a neutral outcome. As such, these findings demonstrate the need

for future prospective studies to better elucidate the factors impacting

the use of AI in real-time to support dispatch and prehospital care.

This scoping review further identified studies which used AI to ana-

lyze ECG waveform segments from OHCA resuscitations. These

studies were heterogenous in both their objectives and approaches;

nonetheless the overarching aims were to limit CPR interruptions

through rapid analysis of ECG segments (both with and without CPR

artifact) with a variety of classification algorithms. While some studies

used ML algorithms to classify ECG segments obtained during CPR

pauses46–49, other studies allowed classified rhythms with on-going

CPR through removal of artifact via filtering.30,36,38,42,50,52 Other stud-

ies utilized feature extraction and rhythm classification via DL from

ECG segments taken during CPR which eliminated the need for

CPR artifact filtering.37,41,44,45,53 Additional studies attempted to char-

acterize specific features of VF in order to predict defibrillation perfor-

mance30–35,43 while others targeted overall rhythm classification39,40

Finally, Coult et al.50 conducted a study using ECGwaveform and tho-

racic impedance data obtained from the defibrillator and combined it

with clinical variables in an attempt to predict survival outcomes.

Limitations

The results of this scoping review must be considered within the con-

text of multiple limitations. This review may not encompass literature

published by nursing and allied health professionals given that data-

bases such as the Cumulated Index to Nursing and Allied Health Liter-

ature were not included. Similarly, more technical engineering studies

in databases such as Institute of Electrical and Electronics Engineers

may not have been included. Further, findingsmay lack external valid-

ity due to the limited number of countries fromwhich studies were pub-

lished. Conference abstracts, which lack complete methodology and

outcome descriptions, were also excluded and this may have limited

the breadth of emerging research. Finally, a single experienced

reviewer screened manuscripts which may have led to bias toward

over- or under-inclusion of articles; however, a previous study showed

that it is unlikely to have significantly changed the overall results.63

Conclusions

A growing body of literature exists describing the use of AI to support

providers in the early care of OHCA. The main categories that were
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identified included studies that aimed to improve the early dispatch-

level detection of OHCA, predict ROSC and survival outcomes, and

classify of ECG rhythms. Only one prospective trial was identified,

and future trials are needed to evaluate the integration of AI with

human decision-making and gestalt. Nonetheless, these 54 studies

demonstrate the potential applicability of AI algorithms to support dis-

patchers, EMS providers and physicians, and ED-based physicians

in the OHCA care.
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