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Background: Diabetic retinopathy, as a severe public health problem associated with
vision loss, should be diagnosed early using an accurate screening tool. While many
previous deep learning models have been proposed for this disease, they need sufficient
professional annotation data to train the model, requiring more expensive and time-
consuming screening skills.

Method: This study aims to economize manual power and proposes a deep graph
correlation network (DGCN) to develop automated diabetic retinopathy grading without
any professional annotations. DGCN involves the novel deep learning algorithm of a
graph convolutional network to exploit inherent correlations from independent retinal
image features learned by a convolutional neural network. Three designed loss
functions of graph-center, pseudo-contrastive, and transformation-invariant constrain
the optimisation and application of the DGCN model in an automated diabetic
retinopathy grading task.

Results: To evaluate the DGCN model, this study employed EyePACS-1 and Messidor-
2 sets to perform grading results. It achieved an accuracy of 89.9% (91.8%), sensitivity
of 88.2% (90.2%), and specificity of 91.3% (93.0%) on EyePACS-1 (Messidor-2) data set
with a confidence index of 95% and commendable effectiveness on receiver operating
characteristic (ROC) curve and t-SNE plots.

Conclusion: The grading capability of this study is close to that of retina specialists,
but superior to that of trained graders, which demonstrates that the proposed DGCN
provides an innovative route for automated diabetic retinopathy grading and other
computer-aided diagnostic systems.

Keywords: diabetic retinopathy, retinal image classification, graph correlation network, unsupervised learning,
automated diagnosis
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INTRODUCTION

Diabetic retinopathy, which has become a severe public health
problem, is estimated to affect 200 million patients in the next
two decades (1–4). Diabetic retinopathy is a severe etiology of
vision loss, possibly causing blindness, which can be avoided
by early diagnosis, fundus screening, and temporal treatment
(4). Fundus images with professional interpretation are a
commonly accepted screening strategy for blindness prevention,
with superior capability for in-person dilated eye examinations
(5). However, the procedures for observing diabetic retinopathy
confront challenges by factors correlated to execution, availability
of professionals, and substantial financial sustainability (6–9).
The automatic grading of diabetic retinopathy appears to have
potential advantages in solving these obstacles, such as increasing
efficiency, scalability, and coverage of examining procedures,
extending applications in developed regions, and improving
patient prevention by providing early diagnosis and referral.

To take full advantage of the clinical application of automatic
grading, deep learning technology has been employed to
develop a grading system for diabetic retinopathy and achieve
considerable progress (10–12). Deep learning adopts artificial
intelligence and representation learning tools to address large
amounts of data and informative features (13, 14). Recent studies
(15–17) have elaborated highly accurate sensitivity and specificity
(>90%) in the automatic detection of diabetic retinopathy from
fundus images, principally involving accurately annotated fundus
images from experienced and professional experts. Recently, the
performance of deep learning systems in the examination of
diabetic retinopathy is close to that of expert-level diagnoses
for grading fundus images, with the help of extensive labeled
fundus images from accurate grading by professional manpower.
In clinical grading, concentrating extensive professional human
resources to provide annotations for developing deep learning
systems is unreasonable. Therefore, the performance of an
ideal automatic system should also have an excellent capability
for detecting diabetic retinopathy from fundus images without
manual annotations.

This study mainly aimed to explore the automatic diabetic
retinopathy grading without requiring manual annotations on
fundus images. This is developed from advanced deep learning
technology, thereby saving large amounts of expensive and
time-consuming professional manpower. Furthermore, extensive
validations on two publicly available diabetic retinopathy grading
datasets [EyePACS-1 (18) and Messidor-2 (19)], which consist of
various severe clinical challenges, demonstrate the accessibility
for automatic grading without manual annotations.

The automatic diabetic retinopathy grading system aims
to assist in early diagnosis and grading, which is crucial in
diabetic retinopathy screening procedures and requires robust
discernment and sufficiently wide computer screens. Several
representative attempts have achieved promising effectiveness for
grading fundus images (1, 7, 8, 10, 19).

Specifically, Abràmoff et al. (20) developed a deep learning
enhanced algorithm for the automatic grading of diabetic
retinopathy, and it achieved significantly better performance
[sensitivity, 96.8%; specificity, 87.0%; and area under the curve

(AUC), 0.980% on MESSIDOR-2 dataset] than did previous
methods. Gulshan et al. (18) applied a specific type of neural
network optimized for image classification using a retrospective
development dataset of 128,175 retinal images for automated
grading of diabetic retinopathy and diabetic macular oedema
in a retinal fundus photograph. This maintained a sensitivity,
specificity, and an AUC of 90.3, 98.1, and 0.991% on EyePACS-
1 dataset and 87.0, 98.5, and 0.990% on MESSIDOR-2 dataset,
respectively. Ting et al. (14) evaluated the performance of a deep
learning system for diabetic retinopathy and related eye diseases
using 494,661 retinal images, and it obtained a sensitivity of
95.0%, specificity of 89.7%, and an AUC of 0.941 for overall
diabetic retinopathy grading. Gulshan et al. (21) generalized
the deep learning automated diabetic retinopathy system to a
population of Indian patients at Aravind and Sankara Nethralaya,
achieving a sensitivity of 88.9 and 92.1%, specificity of 92.2
and 95.2%, and an AUC of 0.963 and 0.980 for the Aravind
Eye Hospital and Sankara Eye Hospital datasets, respectively.
This demonstrates the feasibility of using an automated grading
system to expand screening programs. Kathiresan et al. (22)
proposed a synergic deep learning model for the automated
grading and classification of fundus diabetic retinopathy images,
involving various processes of pre-processing, segmentation,
and classification. This exhibited an excellent accuracy of
99.28%, sensitivity of 98.54%, and specificity of 99.38% on the
Messidor dataset.

Although previous deep learning grading systems
demonstrated excellent performance on publicly available
or self-collected fundus image data, they require expensive
and time-consuming professional labor to annotate large
amounts of retinal images to guide deep learning models. That
severely restricts the application ability of the deep learning
models in clinical practice, leading to the decrease of detection
efficiency, and patients can not get timely diagnosis and delay
the condition. As such, an excellent diabetic retinopathy grading
system should be able to handle fundus image grading without
the need for manual annotations to provide flexibility in
clinical applications.

MATERIALS AND METHODS

To support this development, the EyePACS dataset, which was
retrospectively collected from the Eye Picture Archive and
Communication System (EyePACS) in the United States and
three eye hospitals in India (Aravind Eye Hospital, Sankara
Nethralaya, and Narayana Nethralaya), provides a large-scale set
of high-resolution retinal images obtained under a variety of
imaging conditions. EyePACS is a flexible protocol and web-
based telemedicine system for diabetic retinopathy screening
and collaboration among clinicians. All images from EyePACS
were obtained from different models and types of cameras, and
were de-identified according to the Health Insurance Portability
and Accountability Act Safe Harbor prior to transferring to
the study investigators. Ethics review and institutional review
board exemptions were obtained using the Quorum Review
IRB. To implement the clinical validation, we randomly sampled
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10,286 retinal macula-centered images from 5,158 patients using
the EyePACS data (23), wherein different models and types of
cameras affected the visual appearance of the left vs. right eyes of
the patients. Some images are shown as one would see the retina
anatomically (macula on the left and optic nerve on the right
for the right eye). Others are shown as one would see through
a microscope condensing lens (i.e., inverted, as one sees in a
typical live eye exam).

Furthermore, this prospective study enrolled a second dataset,
Messidor-2 (19), to prove the scalability of DGCN. Messidor-2
collected diabetic retinopathy examinations with two macula-
centered eye fundus images from each eye, part of which
was provided by the Messidor program partners and others
were from the Messidor extension of previously published
examinations from Brest University Hospital. In contrast to the
original Messidor dataset of 1,200 images, it consists of 1,748
digital retinal color images from 874 patients with diabetes.
Patients with diabetes were recruited from the Ophthalmology
Department of Brest University Hospital (France) between
October 16, 2009 and September 6, 2010. Eye fundi were
imaged, without pharmacological dilation, using a Topcon TRC
NW6 non-mydriatic fundus camera with a 45-degree field
of view. Only macula-centered images were included in the
dataset. Messidor-Extension contains 345 examinations (690
images in JPG format). Other descriptions of this dataset can be
found in (19).

All images in the clinical validation sets were graded by
several ophthalmologists for the presence of diabetic retinopathy.
Diabetic retinopathy severity is annotated as none, mild,
moderate, severe, or proliferative, according to the International
Clinical Retinopathy Scale (24). The severity of each grade is as
follows:

• None: no apparent retinopathy (no abnormalities).
• Mild: mild non-proliferative diabetic retinopathy

(microaneurysms only).
• Moderate: moderate non-proliferative diabetic

retinopathy (more than microaneurysms but less severe
non-proliferative diabetic retinopathy).
• Severe: severe non-proliferative diabetic retinopathy (any

extensive intraretinal hemorrhages in each of the four
quadrants, definite venous beading in 2+ quadrants,
prominent IRMA in 1+ quadrant, and no signs of
proliferative retinopathy).
• Proliferative: proliferative diabetic retinopathy (one

or more neovascularization and vitreous/preretinal
hemorrhage).

As introduced in the datasets, the graders were CN-
licensed ophthalmologists and had diabetic retinopathy diagnosis
experience of at least 5 years. Furthermore, every image was
randomly sent to graders with more than three grades for
implementing impartial judgment.

Statistical Analysis
This study first reports the sensitivity and specificity results in
95% confidence intervals (CIs), which are then compared to

the diagnosis from retina specialists and trained graders. The
sensitivity and specificity are defined as follows:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP denotes the number of truly predicted positive samples,
FN is the number of falsely predicted negative samples, TN is
the number of truly predicted negative samples, and FP is the
number of falsely predicted positive samples. To characterize
the sensitivity and specificity of DGCN, this study reports the
presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy) on EyePACS and Messidor-2 data sets.

Second, this study elaborates on the receiver operating
characteristic (ROC) curve and its AUC to measure the
performance of DGCN on diabetic retinopathy grading without
manual annotations. The ROC curve is a graphical plot that
illustrates the diagnostic ability of a binary classifier system, as its
discrimination threshold is varied. The AUC measures the entire
two-dimensional area underneath the entire ROC curve. ROC is
a probability curve, and AUC represents the degree or measure of
separability. A higher AUC indicates that the model is better in
distinguishing between patients with and without the disease.

Third, an important speculation for DGCN is the t-distributed
stochastic neighbour embedding (t-SNE) (25), a technique
for dimension reduction that is particularly appropriate
for visualizing high-dimensional features. This metric can
synthetically perform feature learning ability for deep learning
models, and it is widely used in unsupervised frameworks. In
addition, we utilized PyTorch and Python to develop our DGCN
model and conduct the experiments.

Development of Deep Learning
Algorithm
Deep learning (DL) technology is effective for pattern recognition
based on the rapid development of computing power (GPUs),
especially for automated diagnosis, such as in previous studies
(26–28). In this study, DL involves millions of trainable
parameters to achieve the target task using objective functions.
It aims to generate the diabetic retinopathy severity for retinal
image data from patients, which do not require any manual
annotations, rather than requiring large amounts of labeled data
as previous time-consuming and cost-expensive DL systems
have done (11, 12, 21). These works were developed from
an early DL architecture of a convolutional neural network
(CNN), which allows learning independent representations from
a single image. In addition, an advanced DL framework of the
graph convolutional network (GCN) was proposed recently and
preferred to deal with graph correlations between image samples.
Moreover, implementing diabetic retinopathy grading without
annotations should exploit the inherent similarities from retinal
images and rely heavily on correlations between their feature
representations. Therefore, this study proposes a deep graph
correlation network (DGCN) under an unsupervised framework,
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a novel deep learning technology for the automated diagnosis of
diabetic retinopathy. In this study, the DGCN model was trained
using unlabelled retinal images to optimize the parameters, which
were randomly initialized and further explored the inherent
distance correlations supervised by estimated labels. Specifically,
the DGCN proposed in this study first uses a CNN as a backbone
network for learning independent feature representations from
retinal images conducted in a mini-batch. Then, DGCN
constructs a K nearest neighbor graph by computing similarities
to choose the top K samples, and forwards them into a
GCN, constrained by a graph-centre (gc) loss. Through these
operations, DGCN can make similar features closer to each other,
and discriminant correlations in unlabelled retinal images are
initially learned. Furthermore, the vital step of this study is to
identify the grade for each retinal image, and DGCN designs a
pairwise correlation estimating module to determine whether a
pair of retinal image features belongs to the same grade, which
could provide pseudo annotations automatically. Finally, the
specific DGCN framework in this study integrates contrastive
loss and transform-invariant constraints based on automated
learned pseudo labels.

For simplicity, we summarized main symbols in this part,
including retinal images I = {I1, I2, . . . , IN}, CNN network
r (·; θ), and GCN network G (Fb,A), where Fb is the CNN features
in a batch, and Ais the adjacent matrix for Fb .

Convolutional Neural Network
The DGCN framework proposed in this study contains a joint
feature learning module of a CNN and GCN, optimized by a
series of loss functions, to update the network parameters.

Inspired by the excellent feature learning capability of
convolutional neural network, we deploy the CNN framework to
extract representative information from image pixels. Formally,
retinal images are denoted by I = {I1, I2, . . . , IN}, and resNet-50
(29) is utilized as the backbone CNN r (·; θ). The learned feature
collection of I can be denoted as follows:

F = [F0, F1, . . . ,FN] = [r (I1, θ) , r (I2, θ, . . . ,r (IN, θ))] (1)

where θ denotes trainable parameters of CNN.

Graph Convolutional Network
To exploit the correlations between retinal images, GCN is
adopted to formulate a topological structure and learn graph
feature representations due to its successful application in a
medical data analysis (30–32), especially for learning inherent
correlations among different samples.

In a mini-batch Ib = [I1, · · · ,Ik, · · · ,IB] (B is the batch size
and 1 ≤ k ≤ B), this study first builds graph correlations for
feature set Fb = [F1, · · · ,Fk, · · · ,FB], where K nearest neighbors
are employed to connect to each sample. From this, DGCN
connects sample Fk with its K nearest neighbors by formulating
an adjacent matrix A ∈ RB×B,

Akj =

{
0, if j ∈ Kk

1, if j /∈ Kk
(2)

where Akj denotes the correlation between k-th and j-th samples,
and Kk is a collection of K nearest neighbors to Ik.

From the learned CNN feature Fb and adjacent matrix A in
a mini-batch, G (Fb,A) represents the graph correlations from
Ib. The GCN in this study consists of one input layer and L
hidden layers (12). The graph convolution for retinal image
representation is as follows:

X(l) =
[
X(l)

1 , . . . , X(l)
k , . . . , X(l)

B

]
σ
(
D−1/2AD−1/2X(l−1)W(l)

) (3)

where l = 0, 1, . . . , L, and D = diag
(
d1, d2, . . . ,dB

)
, thus

denoting diagonal matrix with dk =
∑B

j=1 Akj ∈ Rdl−1×dl .
X0
= Fb as the input of the GCN, σ (·) , which represents the

activation of ReLU (·) = max (0,·), and X(l) ∈ RB×dl is the
output from the l-th layer.

The output of the last layer Z = {Z1, . . . ,Zk, . . . ,ZB} ∈
RB×m is the graph representation of the mini-batch Ib, and
the parameters of θ and W = {W0,W1, . . . ,W(l)} need to be
trained by several loss functions focusing on unsupervised retinal
image classification.

Loss Function and Optimisation
One of the most critical issues of DL is the loss function,
which provides directions of training and application. The loss
functions of this study are as follows: gc loss, pseudo-contrastive
(pc) loss, and transform-invariant loss.

This study aims to explore the correlations between retinal
images, and it should make similar samples closer to network
training. Thus, DGCN adopts a gc loss on graph representations
in each mini-batch.

Lgc =
1
2

B∑
k=1

B∑
j=1

Akj ‖Zj − Zk‖2 (4)

where Zk is the center of K-nearest neighbors.
Furthermore, this study proposes a label estimator to compute

pseudo-annotations for each sample. This label estimator is
based on correlations between each other and only outputs
pairwise annotations. Given a pair of samples Ij and Ik from
the mini-batch, if both of them have more shared K nearest
neighbors, it is possible that they belong to the same category.
Mathematically, given i-th and k-th samples, the annotation
estimation is computed as follows:

l
(
k, j
)
=

{
0, if ‖ Kk ∩Kj ‖≤ λ

1, if ‖ Kk ∩Kj ‖> λ
(5)

where λ is a threshold to balance the number of shared neighbors.
According to Eq. 5, pairwise retinal images have

contrastive annotations l (·,·)(0 or 1), where 1 denotes that
they belong to the same category and 0 means they are
in different classes. Subsequently, this study utilizes a pc
loss function on each pair of samples from the mini-batch.
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Lpc =
1

2N

∑
∀ Ik,Ij∈Ib

l
(
k, j
)
d2
+
(
1− l

(
k, j
))

max
(
m− d, 0

)2

(6)
where d represents the Euclidean distance and m is a
margin parameter. This loss constraint guarantees that
samples with the same pseudo pairwise label have smaller
distances and those with different pseudo-annotations have
larger distances.

The third concern of this study is the feature scalability of
each sample after CNN and GCN; thus, a transform-invariant
loss is employed to ensure that the feature representation remains
invariant regardless of undergoing random transformation.
Concretely, we assumed a transformation T (·) (e.g., random
rotation) on each retinal image, thus generating a new image
I′k = T (Ik) with equal discriminative information to that of
the original retinal image. It is expected that the feature
representations from DGCN preserve identical information
despite suffering transformations, achieved by a transform-
invariant (ti) loss,

Lti =
1
B

B∑
k=1

‖Zk − Z′k ‖ (7)

where Z′k represents the graph feature of I′k.
Finally, this study employs an overall loss function to conduct

optimisation for a deep GCN as follows:

L = Lpc + αLgc + βLti (8)

where α and β are balance parameters for three terms.

Application of Deep Graph Correlation
Network Algorithm
After sufficient training for DGCN, it is then applied to retinal
image grading. This study employs several gallery images Ig =[
Ig1, . . . ,I

g
i , . . . ,I

g
n
]

with correct grading annotations, fed into the
network and output graph features Zg

=
[
Zg

1, . . . ,Z
g
i , . . . ,Z

g
n
]
.

Given a testing retinal image Ik, the DGCN obtains its annotation
by

Labelk = arg min
c

(
Zk,Z

g
c
)
; 1 ≤ c ≤ C (9)

where Zg
c is the sample from the c-th class. This prediction

strategy searches for the smallest distance between Ik and all
gallery images, and predicts its annotation using the label of
the matched image.

RESULTS

In our experiments, the number of retinal images from EyePACS-
1 and SXEye were 10,286 and 1,748, respectively. Each retinal
image was graded by ophthalmologists 4–6 times, which were
only utilized in the evaluation of this study. The EyePACS-
1 data were collected from 5,158 persons, and the grading
was classified into five levels: none, mild, moderate, severe,
and proliferative. Specifically, EyePACS-1 consists of 2,276

(22.1%) none, 2,038 (19.8%), 1,982 (2161%) severe, and 1,829
(17.8%) proliferative. Data samples are shown in Figure 1.
The deep GCN is directly trained for these two data sets
when there is no need to involve manual annotations. In
the evaluation, we prepared two extra data sets as a baseline
with an average of 100 images from each class to calculate
predictions for each retinal image, according to Eq. 9. These two
baseline sets were collected from the EyePACS-1 and Messidor-
2 datasets.

Table 1 reports the performance of the accuracy, sensitivity,
and specificity of this algorithm. Specifically, DGCN grades
EyePACS-1 with 89.9% accuracy, 88.2% sensitivity, and
91.3% specificity and Messidor-2 with 91.8, 90.2, and 93.0%,
respectively. Moreover, this study compares DGCN with
a retina specialist and one trained grader to conduct a
comparison. From the results, DGCN performs distance
of 1.8 (91.7–89.9)% accuracy, 1.3 (89.5–88.2)% sensitivity,
and 1.9 (93.2–91.3)% specificity to a retinal specialist,
using EyePACS as an example. It should be noted that
retinal specialists require professional long-term learning
and training with prohibitive cost. In contrast, DGCN is
superior to short-term trained graders with approximately
1–2% advantage in each metric. From this comparison,
the DGCN proposed in this study performs well with an
admitted distance to a specialist, and exceeds the diagnostic
capability of the trained grader. Importantly, this study does
not involve manual annotations in model development, and
its performance is somewhat practical for automated diabetic
retinopathy diagnosis.

For the diagnosis of referable diabetic retinopathy, this study
also reports the ROC curves for EyePACS-1 and Messidor-2 data
sets in Figure 2, and their t-SNE plots are shown in Figure 3.
DGCN achieved an AUC of 0.953 and 0.974 on EyePACS-1
and Messidor-2, respectively (Figures 2A,B). From the t-SNE
performance in Figure 3, the referable diabetic retinopathy
(navy points) is less misdiagnosed than normal images (deep
pink points), as well as sensitivity and specificity (Table 1).
Compared to the retina specialist and trained graders, the DGCN
proposed in this study achieves satisfactory clinical sensitivity
and specificity, as shown in Figures 2, 3 and Table 1. This
demonstrates that the DGCN method can perform automated
diabetic retinopathy diagnosis without manual annotations,
which yields commendable results and economizes expensive
well-trained professional labor.

DISCUSSION

The experimental results on publicly available datasets
(EyePACS-1 and Messidor-2) demonstrate that automated
diabetic retinopathy grading without any professional
annotations is achievable, significantly alleviating economic
and human resources. The performance of DGCN is close to that
of a retina specialist but superior to that of trained graders. The
model without training by annotations is encouraged to involve
CNN and GCN to explore inherent correlations between retinal
images further. It is also proven that this method is effective,
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FIGURE 1 | Several examples for each grade. The challenges caused by various viewpoints, illumination, and contrast can be seen in different retinal images.

with an accuracy of 89.9%, sensitivity of 88.2%, and specificity of
91.3% for EyePACS-1, and an accuracy of 91.8%, sensitivity of
90.2, and specificity of 93.0% on Messidor-2.

Inspired by successful deep learning applications in
biomedical image analysis (33–35), this paper attempts to
involve advanced deep learning models into retinal image
classification. Considering the challenging variations in
illumination, viewpoint, and contrast, retinal image grading
is a severe automated diagnosis problem, even with professional
annotations. Utilizing correlations between each image
appearance feature is of utmost importance, and keeping
the feature representation invariant when it suffers from
transformations positively affects automated diabetic retinopathy

TABLE 1 | Performance of sensitivity and specificity of deep graph correlation
network (DGCN), compared with a retina specialist and trained graders (95% CI).

Data set Accuracy Sensitivity Specificity

EyePACS-1 % (95% CI)

Retina specialist 91.7 (88.1–93.8) 89.5 (87.2–90.6) 93.2 (88.7–94.8)

Trained grader 88.8 (84.6–92.5) 86.4 (81.2–89.8) 90.4 (87.9–92.7)

DGCN model 89.9 (87.3–91.9) 88.2 (86.4–90.0) 91.3 (89.4–93.3)

Messidor-2 % (95% CI)

Retina specialist 93.3 (89.5–95.8) 91.0 (87.2–93.4) 95.0 (91.7–96.2)

Trained grader 89.7 (86.0–91.8) 87.9 (85.2–90.6) 91.1 (86.9–93.2)

DGCN model 91.8 (89.9–93.2) 90.2 (89.4–91.5) 93.0 (91.5–94.3)

grading. Aiming at these two points, this study employs a CNN
to learn independent features from raw retinal images. They
are then fed into a GCN with an established graph from its
K nearest neighbors. To draw similar samples closer to each
other, the DGCN model attaches a gc loss on each mini-batch
to achieve this goal. Furthermore, this study designs a pairwise
label estimator for given pairwise retinal features and involves
pseudo-labels into a pc loss on each pair of samples. DGCN
also realizes the transformation-invariant characteristics of
the network by a transformation-invariant loss to preserve
identical information. Finally, this study calculates the distances
between each sample to a few previous samples. This contains
precise annotations and determines the category by annotating
the matched sample, which has the smallest distance to the
target images. Compared with existing DR grading methods,
the advance of our DGCN is that it has excellent capability to
automatically learn discriminative information from unlabeled
data, which is the easiest data to obtain.

Although the DGCN model performs well in automated
diabetic retinopathy diagnosis without the aid of professional
annotations, it remains a weakness for models trained
by full labels. This method also has limitations on the
DR grading task, including redundant training times,
guidance of annotated data in applications, and lower
sensitivity performance. In general, this study opens a
novel economical method for automated disease diagnosis
without needing professional manpower. It may produce
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FIGURE 2 | Receiver operating characteristic (ROC) curves on EyePACS-1 (A) and Messidor-2 (B) for the presence of referable diabetic retinopathy (moderate or
worse diabetic retinopathy or referable diabetic macular oedema). The AUC values are shown in the right bottom area.

FIGURE 3 | The t-distributed Stochastic Neighbor Embedding (t-SNE) performance on EyePACS-1 (A) and Messidor-2 (B). The category division follows the ROC
curve, and moderate and worse diabetic retinopathy is recognized by DR.

more practical performance when utilizing few annotated data
and large-scale unlabelled samples, which will be exploited
in future studies.

This study elaborates on the effectiveness of deep learning
technology in automated diabetic retinopathy diagnosis without
manual annotations, rather than fully labeled data, as in previous
methods. The feasibility of this research provides a novel ideology
for computer-aided systems with economic and easy operability.
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