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Abstract: In environmental noise control one commonly employs the A-weighted sound 

level as an approximate measure of the effect of noise on people. A measure that is more 

closely related to direct human perception of noise is the loudness level. At constant  

A-weighted sound level, the loudness level of a noise signal varies considerably with the 

shape of the frequency spectrum of the noise signal. In particular the bandwidth of the 

spectrum has a large effect on the loudness level, due to the effect of critical bands in  

the human hearing system. The low-frequency content of the spectrum also has an effect 

on the loudness level. In this note the relation between loudness level and A-weighted 

sound level is analyzed for various environmental noise spectra, including spectra of traffic 

noise, aircraft noise, and industrial noise. From loudness levels calculated for these 

environmental noise spectra, diagrams are constructed that show the relation between 

loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show 

that the upper limits of the loudness level for broadband environmental noise spectra are 

about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond 

to the loudness levels of pure tones. The diagrams are useful for assessing limitations and 

potential improvements of environmental noise control methods and policy based on  

A-weighted sound levels. 
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1. Introduction 

Environmental noise has serious effects on the health of people. Health effects considered by the 

World Health Organization include annoyance, sleep disturbance, and cardiovascular disease [1,2]. 

Exposure-response relations for these end points indicate that the prevalence of noise-related health 

effects gradually increases with increasing noise exposure [1,3,4]. 

Noise exposure for the exposure-response relations is represented by an A-weighed sound level 

(averaged over the day, evening, and night periods). The A-weighted sound level is related to health 

effects of environmental noise, but is only a limited representation of direct perception of noise. A 

quantity that is more closely related to the direct perception of noise is the loudness level. However, 

while annoyance caused by environmental noise is related to the loudness of the noise [5], it also 

depends on other acoustic and personal factors. Similarly, sleep disturbance by environmental noise 

may be related to the loudness of the noise but also depends on other factors. 

The A-weighting curve for rating noise was originally derived from an equal-loudness contour for 

pure tones, the 40 phon Fletcher-Munson curve [6], so equal A-weighted sound levels would 

approximately correspond to equal loudness. There have been several revisions of the equal-loudness 

contours for pure tones [7-9]. Further, calculation methods have been developed for broadband noise 

(see Section 2), which show that the shape of the spectrum has a large effect on the loudness. If one 

considers loudness level variations at constant A-weighted sound level it becomes clear that the  

A-weighted sound level is only a limited representation of human noise perception. For example, 

several authors have reported that A-weighting underestimates loudness at low frequency (LF), and 

therefore would be inappropriate for LF environmental noise control [10-13]. Various other studies on 

annoyance caused by LF noise have been reported [14-20], but a clear picture about the relation 

between loudness and annoyance by LF noise does not emerge from these studies. A complicating 

factor is that annoyance depends also on other acoustic characteristics than loudness. For example, 

tonal noise is found to be more annoying than broadband noise at the same sound level [21-23]. In 

particular LF noise often has tonal components (for example, noise from 50 Hz transformers [24]), so 

tonality and LF character may interfere [25]. 

For assessing limitations and potential improvements of current noise control methods based on the 

A-weighted sound level, it would be useful to have a global picture of the ranges of loudness levels 

that occur in practice, for various types of environmental noise such as traffic noise, aircraft noise, and 

industrial noise. A relevant question is: how much does the loudness level vary in practice at constant 

A-weighted sound level? The analysis presented in this note provides an answer to this question. It 

should be noted that we do not suggest that the loudness level is a better indicator of environmental 

noise than the A-weighted sound level is, as ‘corrected’ A-weighted levels may be just as good as 

loudness levels. 

A distinction should be made between outdoor levels and indoor levels. The exposure-response 

relations for the health end-points of environmental noise are based on outdoor levels, measured or 

calculated at the most-exposed façade of a dwelling. The façade levels are an approximation for the 

‘true’ noise exposure of people. A possible improvement of this approximation is to take into account 

also indoor levels, since noise-related health effects may originate to a large extent from indoor noise 

levels. For sleep disturbance indoor levels in bedrooms play a role. Therefore, this note also considers 
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indoor levels, calculated from outdoor levels and a typical spectrum of façade insulation. However, the 

effect of façade insulation on environmental noise annoyance is a complex issue, since various  

non-acoustic factors also play a role, such as expectations of people with respect to the insulation, and 

the opening and closing of windows. A further complication of indoor levels is the spatial variations in 

LF sound fields in rooms, with pronounced regions of high and low sound levels due to standing  

waves [26].  

The article is organized as follows. Section 2 describes standard methods for calculating loudness, 

both loudness of pure tones and loudness of broadband noise spectra. Section 3 presents the analysis of 

loudness levels calculated for various spectra of environmental noise, including pure tones in  

Section 3.2, band-limited noise in Section 3.3, and broadband noise representative of traffic noise, 

aircraft noise, and industrial noise in Section 3.4. Conclusions are presented in Section 4. 

2. Calculation Methods 

The international standard ISO 226:2003 [8], which is an updated version of ISO 226:1987 [7], 

presents a mathematical relation between the loudness level, in phon, the frequency, and the sound 

pressure level of pure tones. The relation defines equal-loudness contours as a function of frequency 

and sound pressure level, covering the frequency range from 20 to 12,500 Hz. The relation applies to 

binaural perception by persons between 18 and 25 years, with normal hearing, under free field 

listening conditions. The human hearing threshold as a function of frequency is also specified by the 

two versions of the standard. The ISO 226:2003 standard is based on an extensive set of experimental 

loudness studies performed in various countries [9]. The equal-loudness contours according to ISO 

226:2003 deviate from the contours according to the (withdrawn) standard ISO 226:1987, which is based 

on older measurements [27]. 

Environmental noise usually consists of sound signals with a broad spectrum, covering both the low 

frequency region, say between 20 Hz and 200 Hz (various definitions of the LF region exist), and the 

higher frequency region up to about 5 or 10 kHz. The A-weighted spectrum of noise emitted by road 

vehicles (passenger cars, trucks) has the highest levels in the frequency bands around 1 kHz. With 

increasing distance from the source, however, the spectrum gets a stronger LF signature, due to 

frequency-dependent air absorption and screening attenuation by obstacles such as noise barriers and 

buildings [28-31]. A notorious example of LF noise is the noise generated by an aircraft during the start of 

the take-off roll on the runway [12,32,33]. This type of aircraft noise is sometimes referred to as aircraft 

groundnoise. Various industrial noise sources also generate noise spectra with strong LF components. 

The calculation or prediction of the loudness of a noise signal with a broad spectrum is a complex 

problem. The theory of psychoacoustics describes the human hearing system as a set of auditory  

band-pass filters, corresponding to a set of contiguous frequency bands that are called critical  

bands [34]. Each critical band corresponds to a separate area on the basilar membrane in the inner ear. 

Critical bands are related to auditory masking: two tones within a critical band are perceived as a 

single sound while two tones that are not within the same critical band are perceived as two separate 

tones with a larger total loudness. Loudness of broadband noise also depends on the critical bands. If 

the bandwidth of band-limited noise is gradually increased, loudness stays about the same for 
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bandwidths smaller than the critical bandwidth and increases for bandwidths larger than the  

critical bandwidth. 

There exist two standard methods for calculating loudness of (steady) broadband noise [35], a 

method described in the ANSI S3.4-2007 standard [36] and a method described in the DIN 

45631:1991/ISO 532B standard [37,38].  

The ANSI standard is based on a recently developed loudness model [39,40]. The standard can be 

used to calculate loudness from the spectrum of a sound signal, consisting of pure tones and/or noise 

bands such as 1/3-octave bands. The standard applies to binaural listening by persons with normal 

hearing in free field conditions (the method can also be used for monaural listening and diffuse field 

conditions, but this is not considered here; it was verified that the difference between free field and 

diffuse field results is of the order of 1 phon at most, in the cases considered in this article). 

The DIN standard is based on a loudness model developed by Zwicker [41]. The standard can be 

used to calculate loudness from a 1/3-octave band spectrum for stationary sounds, for free field or 

diffuse field listening conditions. Loudness calculated with this standard is sometimes referred to as 

Zwicker loudness. 

3. Analysis of Loudness Levels for Various Noise Spectra 

This section presents an analysis of loudness levels calculated for various noise spectra. Pure tones 

are considered in Sections 3.1 and 3.2. Band-limited noise spectra are considered in Section 3.3. 

Broadband noise spectra that are representative for various types of environmental noise sources in 

practice are considered in Section 3.4. 

3.1. Pure Tones—Equal Loudness Contours and Equal Sound Level Contours 

Figure 1a shows equal-loudness contours of pure tones at 10, 20, …, 90 phon, as a function of 

sound pressure level and frequency, according to ISO 226:2003 and ISO 226:1987. The graph also 

shows the hearing threshold and the A-weighting curve (drawn through the point at 60 dB and 1 kHz). 

In the range from 20 Hz to 1 kHz, the ISO 226:2003 contours are considerably steeper than the ISO 

226:1987 contours. The A-weighting curve closely follows the 60 phon ISO 226:2003 contour below 

1 kHz.  

Figure 1b shows the same contours as in Figure 1a, but now as a function of A-weighted sound 

level and frequency. The 60 phon ISO 226:2003 contour below 1 kHz is now a horizontal line in  

good approximation. 

Figure 2a shows the inverse contours of Figure 1b: contours of equal A-weighted sound level at 10, 

20, …, 90 dB as a function of loudness level and frequency, according to ISO 226:2003 and ISO 

226:1987. In this graph the 60 dB ISO 226:2003 contour below 1 kHz is a horizontal line in good 

approximation. Consequently, the A-weighted sound level is an accurate indicator of loudness for 

levels around 60 dB (below 1 kHz). Above 60 dB loudness slightly increases with decreasing 

frequency, and below 60 dB loudness slightly decreases with decreasing frequency, according to ISO 

226:2003. The standard ISO 226:1987 yields a larger loudness increase with decreasing frequency in a 

large region of the frequency—A-weighted sound level diagram. This LF loudness increase has been 

described as an ‘underestimation by the A-weighting of LF loudness’ [10,11]. Since ISO 226:2003 
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yields a smaller loudness increase than ISO 226:1987 does, we included contours of both standards in 

Figures 1 and 2.  

Figure 1. Equal-loudness contours and hearing threshold of pure tones, as a function of 

frequency and sound pressure level (a) and A-weighted sound level (b), according to ISO 

226:2003 and ISO 226:1987. The thick line represents the A-weighting curve. 

 

Figure 2. Contours of equal A-weighted sound level as a function of frequency and 

loudness level, according to ISO 226:2003 and ISO 226:1987 (a) and according to ISO 

226:2003 and ANSI S3.4-2007 (b). 
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Figure 2. Cont. 

 

 

Figure 2b compares the ISO 226:2003 contours from Figure 2a with the corresponding contours 

according to the standard ANSI S3.4-2007. The ANSI standard more or less agrees with ISO 226:2003, in 

particular on the constant loudness of the 60 dB contour below 1 kHz, except below 31 Hz. 

3.2. Pure Tones—Loudness as a Function of Sound Pressure Level 

Figure 3a shows the loudness level as a function of sound pressure level, for pure tones with 

frequencies 1000, 125, 63, and 31 Hz, according to ISO 226:2003. Figure 3b shows the corresponding 

curves for loudness (N), which is related to loudness level (LN) by: 

10/)40(
2


 NL

N  (1)  

so a loudness level change of 10 phon corresponds to a factor of 2 in loudness. The solid lines in 

Figures 3a and b represent the 0.3 power law for loudness [42]:  

10/3.0
10 pL

KN   (2)  

where Lp is the sound pressure level and K is a constant. Equations (1) and (2) yield the following 

expression for the loudness level as a function of sound pressure level:  

2lg

lg10
40

2lg

3.0 K
LL pN   (3)  

where ‘lg’ denotes logarithm to the base 10. Consequently, the power law in Figure 3a is a straight line. 

The slope is unity, since 0.3/lg2 = 1. The constant K has been chosen such that the loudness level for 

60 dB is 60 phon, i.e., the value for 1 kHz. This gives K = 0.063 (to distinguish the dashed and solid 

lines, K = 0.060 has been used for the graph). Consequently, the 0.3 power law corresponds to LN = Lp 

for 1 kHz, in agreement with the definition of the loudness level of a tone as the sound pressure level 

of an equally loud 1 kHz tone. 

The ISO 226:2003 loudness levels and loudness values in Figures 3a and 3b agree with the 0.3 

power law for 1 kHz. For low frequency, deviations occur from the 0.3 power law: in Figure 3a the 

dashed lines are shifted to higher sound pressure levels and are also steeper. The shift disappears if  

A-weighting is applied to the sound pressure level, as shown in Figure 3c. The lines cross each other at 
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the point at 60 phon and 60 dB. The slope at 31 Hz is about a factor of 2 larger than the slope at 1 kHz. 

This implies that a 0.6 power law holds at 31 Hz. These results are used in Section 3.4. 

Figure 3. Loudness level (a) and loudness (b) as a function of sound pressure level, and 

loudness level as a function of A-weighted sound level (c), for pure tones with frequencies 

1000, 125, 63, and 31 Hz, according to ISO 226:2003 (dashed lines), and the 0.3 power 

law (solid line). 

 

3.3. Band-Limited Noise 

Figure 4 shows six spectra with sound energy confined to a single 1/3-octave band. Figure 5  

shows loudness levels calculated for these spectra with ANSI S3.4-2007 and DIN 45631-1991, for  

A-weighted sound levels of 20, 40, 60, and 80 dB (the spectra shown in Figure 4 are normalized to 

zero A-weighted sound level). The loudness levels in Figure 5 are plotted as a function of the 

difference between the C-weighted sound level and the A-weighted sound level, denoted as C–A for 

simplicity. Quantity C–A is an indicator of the LF content of a spectrum [10,43], and the values of  

C–A for the six spectra are given in the legend of Figure 4. The ANSI curves in Figure 5 show that the 

loudness level is approximately constant at 60 dB, increases with C–A for 80 dB, and decreases with 

C–A for 20 and 40 dB. This corresponds directly to the behavior of loudness of pure tones as a 

function of frequency, shown in Figure 2b. The DIN curves in Figure 5 show a larger increase of 

loudness level with C–A, similar to the loudness level of pure tones according to ISO 226:1987, shown 

in Figure 2a. 
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In Section 2 it has been indicated that the standard ISO 226:2003 is an updated version of the older 

ISO 226:1987 standard. Since the ANSI S3.4-2007 standard agrees with ISO 226:2003 for pure tones, 

the ANSI standard has been used for the results presented in the remainder of this article for  

band-limited noise spectra and broadband noise spectra. 

A spectrum of environmental noise usually covers a wide frequency range, rather than a single  

1/3-octave band, so it is important to include the effect of bandwidth on loudness levels in this study. 

In the remainder of this section the bandwidth of a simple spectrum is varied in a systematic way, 

while in Section 3.4 more realistic broadband spectra are considered. 

Figure 4. Six spectra with sound energy confined to a single 1/3-octave band. Values of 

the difference between the C-weighted sound level and the A-weighted sound level, 

denoted as C–A, are indicated in the legend. 

 

Figure 5. Loudness level as a function of C–A, calculated with ANSI S3.4-2007 and DIN 

45631-1991 for the spectra shown in Figure 4, for A-weighted sound levels of 20, 40, 60, 

and 80 dB. 

 

Figure 6 shows four band-limited noise spectra, corresponding to a rectangular band-pass filter 

covering one, three, nine, and fifteen 1/3-octave bands. Figure 7 shows the loudness level calculated 
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for these spectra as a function of C–A, for A-weighted sound levels of 20, 40, 60, and 80 dB (Figure 6 

is for 60 dB) and center frequencies of 31, 63, 125, 250, 500, and 1000 Hz (Figure 6 is for 250 Hz). 

The various combinations yield 21 different spectra. 

Figure 6. Four rectangular noise spectra, with acoustic energy confined to one, three, nine, 

and fifteen 1/3-octave bands. 

 

Figure 7. Loudness level as a function of C–A, calculated with ANSI S3.4-2007 for the 

spectra shown in Figure 6, for A-weighted sound levels of 20, 40, 60, and 80 dB, and 

center frequencies of 31, 63, 125, 250, 500, and 1000 Hz (see the text). 

 

 

Figure 7 shows that, at low values of C–A, the loudness level increases with increasing bandwidth. 

This is due to the effect of critical bands in human hearing (see Section 2). The loudness level is 15 to 

20 phon higher for a spectrum of fifteen 1/3-octave bands than for a spectrum of a single 1/3-octave 

band. With increasing C–A, the loudness level increase with bandwidth becomes smaller. The 

loudness level increase is related to the number of critical bands covered by the spectrum, i.e., the ratio 

of the spectrum bandwidth to the critical bandwidth. With decreasing frequency, 1/3-octave bands 
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become narrower while the critical bandwidth levels off at 100 Hz below a frequency of 500 Hz. For 

C–A values larger than 15 dB the effect of increasing the bandwidth from one to three 1/3-octave 

bands is small (see Figure 7), which reflects the fact that a spectrum of three 1/3-octave bands is 

narrower than a critical band at low frequency. These results are used in Section 3.4. 

3.4. Broadband Spectra 

Figure 8a shows six linear broadband noise spectra with gradients ranging from −10 dB/octave to  

+5 dB/octave. The spectra roughly cover the range of (average) gradients of broadband environmental 

noise spectra in practice [11,13,32,44], although the spectra are often not linear. Examples of 

approximately linear spectra are aircraft groundnoise spectra measured in communities near an  

airport [32], with a gradient of about −5 dB/octave, and the sound pressure level decreasing from 

65−80 dB at 20 Hz to 20–30 dB at 8 kHz. Other environmental noise spectra are more or less linear up 

to a frequency of typically 1 kHz or 2 kHz, and fall off more steeply above this frequency. Of course, 

many environmental noise spectra have a more complex shape. Moreover, the shape of the spectrum 

changes with increasing distance from the noise source, due to frequency-dependent atmospheric 

propagation attenuations (see Section 2). Although the six spectra in Figure 8a do not represent the 

wide variety of spectrum shapes of environmental noise, they can be used to study the effect of LF 

content on the loudness of broadband environmental noise. Results of calculations for other spectra 

(not shown here), including spectra with a steep decay above 1 kHz and/or below 100 Hz, indicate that 

the conclusions about the effects of bandwidth and LF content on loudness presented in this section are 

valid for broadband environmental noise spectra in general. It should be noted that we ignore the effect 

of background noise, which may affect the loudness levels. 

The LF content of the spectra shown in Figure 8a is represented by parameter C–A. The values of 

C–A are indicated in the legend, and range from −1.6 dB to 29 dB. In practice, the value of C–A for 

road traffic noise is typically between zero and 18 dB [13]. For other noise sources, such as some LF 

industrial sources, larger values of C–A occur. Unpublished results of outdoor measurements 

performed by the Dutch consultancy firm Peutz, reported in 2003 to the Dutch Ministry of 

Environment, yielded the following ranges of C–A: 2–15 dB for road traffic noise, 1–15 dB for rail 

traffic noise, 9–21 dB for ship noise, 2–13 dB for aircraft noise (not including aircraft groundnoise), 

and 6–24 dB for various types of industrial noise. Indoor measurements resulted in larger values of  

C–A. Recently reported aircraft groundnoise spectra [32], measured outdoors in a community at  

2 to 3 km from the fifth runway of Schiphol airport for B737, B747, and MD11 aircraft departures, 

yield values of C–A in the range 14–22 dB.  
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Figure 8. Six linear outdoor 1/3-octave band spectra normalized such that the A-weighted 

sound level is zero (a), and corresponding indoor spectra normalized to zero outdoor  

A-weighted sound level (b). Values of LF parameter C–A and façade insulation I are 

indicated in the legend. 

 

The spectra shown in Figure 8a are assumed to represent outdoor noise, for example noise at the 

façade of a house, originating from outdoor noise sources such as traffic and industrial sources. Figure 

8b shows corresponding indoor spectra, calculated with the façade insulation spectrum shown in 

Figure 9a. This façade insulation spectrum should only be considered as a typical representative 

example, as insulation spectra in practice show large variations. The increase of façade insulation with 

frequency is a typical characteristic of façade insulation spectra. 

The strong frequency dependence of façade insulation can be understood from the expression for 

the transmission loss R for a solid wall (and normal sound wave incidence): 






















2

2
1lg10)(

Z

m
R


  (4)  

which is commonly referred to as the mass law for sound transmission [28,45,46]. Here, m is the mass 

of the wall per unit area, Z is the impedance of air, and  is the angular frequency of the transmitted 

sound wave. For  >> 2Z/m the transmission loss increases by 6 dB per octave. For example, for  

m = 50 kg/m
2
, the expression yields a transmission loss of 12 dB at 10 Hz and about 50 dB at 1 kHz. 

Sound transmission through the façade of a house depends not only on the walls, but also on various 

structural elements and openings in the façade (air ventilation, windows, sealing), which limit the 
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façade insulation spectrum at high frequency. Consequently, façade insulation spectra in practice show 

large variations [47-52], depending on the wide variety of façade structures of houses.  

Moreover, opening and closing of windows of houses plays an important role in the variations of 

façade insulation.  

Values of the broadband A-weighted façade insulation, denoted with the symbol I, are indicated in 

the legend of Figure 8a. With increasing C–A, façade insulation I decreases. This is shown graphically 

in Figure 9b. Façade insulation I decreases linearly with C–A, except for negative values of C–A.  

Figure 9c shows how C–A varies with the gradient of the linear spectrum. Again the behavior is 

approximately linear for positive values of C–A, corresponding to negative gradients. The linear 

behavior in Figures 9b and 9c was verified also for other negative gradients than those represented in 

Figure 8a. 

Figure 9. Spectrum of façade insulation used in this study [16] (a), A-weighted façade 

insulation I as a function of C–A (b), and value of C–A as a function of the gradient of the 

linear spectrum (c), for the six spectra shown in Figure 8a. The straight lines are guides to 

the eye. 

 

Figure 10 shows loudness levels calculated with the ANSI S3.4-2007 standard for the spectra 

shown in Figures 8a and 8b, for A-weighted sound levels of 20, 40, 60, and 80 dB. These values of the 

A-weighted sound level represent outdoor noise: the spectrum shapes shown in Figures 8a and 8b have 

been shifted such that they correspond to outdoor A-weighted sound levels of 20, 40, 60, and 80 dB. 

Only in this way the increase of indoor loudness with increasing LF parameter C–A, at constant 
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outdoor A-weighted noise level, is taken into account. It should be noted that the indoor values of C–A 

were calculated for the indoor spectra (to show the enhanced indoor LF content), but the 

corresponding outdoor values of C–A follow from the legends of Figures 8a and 8b. It should also be 

noted that high values of C–A are often associated with low sound levels at large distance from a noise 

source, due to the frequency-dependent atmospheric propagation attenuations mentioned in Section 2. 

Figure 10 shows that the outdoor loudness level is constant or decreases with increasing  

C–A, except for values of C–A below 2 dB. The indoor loudness level, however, increases with 

increasing C–A, except for C–A above 25 dB and A-weighted sound levels of 60 and 80 dB. This 

behavior can be interpreted in terms of three effects. 

First, the loudness level of pure tones or single 1/3-octave bands increases with C–A for  

A-weighted sound levels above 60 dB and decreases with C–A below 60 dB (see Sections 3.1−3.3). 

Second, an increase of the bandwidth of the spectrum causes an increase of the loudness level (see 

Section 3.3), but since the increase is larger at small values of C–A than at large values, the effect of a 

bandwidth increase is also a decrease of the slopes of the curves (see Figure 7). This explains why the 

slopes of the outdoor curves in Figure 10 are smaller than the slopes for pure tones and single  

1/3-octave bands. The third effect that plays a role is the effect of façade insulation. Façade insulation 

decreases with increasing C–A (see Figure 9b), and this causes an increase of indoor loudness level 

with C–A at constant outdoor A-weighted sound level. The slopes of the indoor curves in Figure 10 

are considerably larger than the slopes of the outdoor curves, which indicates that the effect of façade 

insulation on indoor loudness is an important effect. 

Figure 10. Loudness level as a function of C–A calculated with ANSI S3.4-2007 for the 

spectra shown in Figures 8a and 8b, for outdoor A-weighted sound levels of 20, 40, 60, and 

80 dB. 

 

Figure 11 shows the loudness levels from Figure 10 as a function of A-weighted sound level rather 

than C–A. For the indoor loudness levels, indoor A-weighted sound levels were used here. Also 

included in the graph are the loudness levels from Section 3.3 for band-limited noise. The straight line 

represents the 0.3 power law at 1 kHz. The graph illustrates the loudness level increase due to a 

bandwidth increase, but also the change from the 0.3 power law behavior for 1 kHz tones or single  

1/3-octave bands to a 0.6 power law behavior for LF tones or single 1/3-octave bands (by the dots 
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below the straight line in Figure 11; cf. Figure 3c). For broadband environmental noise the graph 

shows loudness level variations of the order of 10 phon, at constant A-weighted sound level. 

Figure 11. Loudness levels from Figure 10 and from Section 3.3 as a function of  

A-weighted sound level. The straight line represents the 0.3 power law at 1 kHz. For 

clarity, filled symbols have been shifted by +1dB or −1dB from 20, 40, 60, and 80 dB. 

 

Figure 12. Schematic representation of Figure 11. The gray area represents the range of 

loudness levels of noise spectra in practice, and is bounded by the 0.3 power law for 1 kHz 

tones, the 0.6 power law for LF tones, and an upper curve for broadband noise. 

 

 

Figure 12 shows the graph in Figure 11 in a more schematic way. The gray area represents loudness 

levels of noise spectra considered in this article, both the spectra shown in Figures 8a and 8b and the 

band-limited spectra considered in Section 3.3. The gray area is bounded by the 0.3 power law for  

1 kHz tones or single 1/3-octave bands, the 0.6 power law for LF tones or single 1/3-octave bands 

(both power laws go through the point at 60 phon and 60 dB; see Section 3.2), and a curve that 

represents the highest loudness levels in Figure 11 [The curve is approximated by straight segments 

through the points (0,5), (20,35), (40,65), (60,85) and (82,105)]. 
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Loudness levels calculated for other broadband noise spectra (not shown here), including the 

spectra shown in Figures 8a and 8b with an additional decay of 15 dB per octave above 1 kHz and/or 

below 100 Hz, also fall in the gray area in Figure 12. The effect of introducing the additional decays is 

a change of loudness level of 6 phon at most. The change is negative for points near the upper 

boundary of the gray area, so the points stay within the gray area. It is concluded that the gray area 

covers loudness levels of environmental noise spectra that occur in practice. Levels of broadband 

spectra are concentrated in the upper part of the gray area (see Figure 11). 

The area below 20 dB and 20 phon in the graph is shown in light gray, for two reasons: (i) sound 

levels below 20 dB are not relevant for most practical situations, and (ii) the accuracy of loudness 

calculation standards is limited below 20 phon. 

4. Conclusions 

The effects of bandwidth and LF content on the loudness level of environmental noise have been 

analyzed in this article. In Figure 12 it has been shown that the upper limits of the loudness level for 

broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for pure 

tones (ignoring the region below 20 phon in the graph).  

The effect of bandwidth on the loudness level at constant A-weighted sound level has been  

shown in Figure 11. For broadband environmental noise, loudness level variations of the order of  

10 phon occur. 

The effect of LF content on the loudness level of broadband environmental noise has been shown in 

Figure 10. The variation of the loudness level with LF content depends on the shape of the spectrum, 

which is different for outdoor noise and indoor noise due to the frequency dependence of façade 

insulation. The outdoor loudness level remains constant or decreases with increasing LF parameter  

C–A, except for values of C–A below 2 dB. The indoor loudness level, however, increases with 

increasing C–A in a large part of the diagram. 

The analysis presented here may be used as a starting point for assessing limitations and potential 

improvements of environmental noise control methods based on A-weighted sound levels or loudness 

levels. A possible approach is to apply specific weightings, or penalties, for certain acoustic 

parameters, such as LF content, bandwidth, and tonality. Ultimately, such weightings or penalties 

should be based on noise annoyance studies, but considering the effect of the acoustic parameters on 

loudness may be helpful, since loudness is related to annoyance but is a less complex quantity than 

annoyance is. 
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