
1SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

www.nature.com/scientificreports

Accelerating next generation
sequencing data analysis with
system level optimizations
Nagarajan Kathiresan, Ramzi Temanni, Hakeem Almabrazi, Najeeb Syed, Puthen V. Jithesh   
& Rashid Al-Ali

Next generation sequencing (NGS) data analysis is highly compute intensive. In-memory computing,
vectorization, bulk data transfer, CPU frequency scaling are some of the hardware features in the
modern computing architectures. To get the best execution time and utilize these hardware features,
it is necessary to tune the system level parameters before running the application. We studied the
GATK-HaplotypeCaller which is part of common NGS workflows, that consume more than 43% of
the total execution time. Multiple GATK 3.x versions were benchmarked and the execution time
of HaplotypeCaller was optimized by various system level parameters which included: (i) tuning
the parallel garbage collection and kernel shared memory to simulate in-memory computing, (ii)
architecture-specific tuning in the PairHMM library for vectorization, (iii) including Java 1.8 features
through GATK source code compilation and building a runtime environment for parallel sorting
and bulk data transfer (iv) the default ’on-demand’ mode of CPU frequency is over-clocked by using
’performance-mode’ to accelerate the Java multi-threads. As a result, the HaplotypeCaller execution
time was reduced by 82.66% in GATK 3.3 and 42.61% in GATK 3.7. Overall, the execution time of NGS
pipeline was reduced to 70.60% and 34.14% for GATK 3.3 and GATK 3.7 respectively.

The impact of next generation sequencing (NGS) technologies in revolutionizing the biological and clinical
sciences has been unprecedented1, 2. Such projects are generating large volumes of data that need careful analysis
to identify the variants that differ individually or at a population scale. However, the analysis of high throughput
genome sequencing data is computationally demanding involving multiple steps with several sequential oper-
ations using open source or proprietary software tools. It is imperative to use High Performance Computing
(HPC) systems to improve the performance and speedup of the workflow execution for timely and fast analysis of
the data3, 4. It is also important to increase resource utilization efficiency and improve the throughput when ana-
lyzing data from multiple samples, which can be achieved through parallel execution5. Furthermore, automation
of the workflow using schedulers provide robustness and ease of operations6. The application tools that are from
part of such a workflow generally have diverse characteristics such as being compute, memory or Input/Output
(I/O) intensive. When implementing a workflow system, these characteristics need to be addressed differently.
For example, tools that are compute intensive may be accelerated through the use of high frequency processors;
in-memory operations help in managing memory intensive tools; and a parallel file system may help in the case
of I/O intensive tools7, 8. Such heterogeneity makes it hard to implement optimal workflows for large scale pro-
cessing of huge volumes of data.

The variant detection workflows are wildly used by the research community. Burrows-Wheeler Aligner
(BWA)9 is developed by Wellcome Trust Sanger Institute and the Genome Analysis ToolKit (GATK)10 is devel-
oped by the Broad institutes are among the most used tools in the NGS workflow11. There are two major steps
in these workflows: genome alignment or mapping and variant discovery10. Examples of publicly available tools
that are commonly used to achieve these goals in workflows construction following the recommendations
include BWA and GATK respectively. There are several ways to improve the performance of these tools. For
example, the execution time of genome alignment using BWA can be improved by parallelization that includes:
(a) thread-parallelization by using multi-threads12, (b) data-parallelization by splitting the input into distinct
chunks or intermediate data followed by processing the chunks one-by-one within or across the node13, and
(c) data-parallel with concurrent execution by splitting the data into disjoint chunks then, distributing the

Biomedical Informatics, Research Branch, Sidra Medical and Research Center, Post Box No. 26999, Doha, Qatar.
Correspondence and requests for materials should be addressed to N.K. (email: nkathiresan@sidra.org)

Received: 11 April 2017

Accepted: 20 July 2017

Published online: 22 August 2017

OPEN

http://orcid.org/0000-0001-7747-0930
mailto:nkathiresan@sidra.org

www.nature.com/scientificreports/

2SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

intermediate data (chunks) across multiple CPUs and executing multi-threads within a CPU on a cluster envi-
ronment14. The modern HPC architectures contains multi-cores within a CPU and multi-CPUs are available
within a single node. Due to this modern architecture features, (i) data-parallelization can be implemented
across multi-CPUs, and (ii) thread-parallelization can be done within a CPU, then these two implementa-
tions (i and ii) will be repeated concurrently across all the CPUs within node. Thus the data-parallelization,
thread-parallelization and concurrent execution steps are possible within a node.

The genome alignment requires large amount of memory that are addressed by modern HPC systems.
Non-Uniform Memory Access (NUMA) based multi-CPU is the features of modern HPC architecture and
more than 2 Terabyte of main memory can be possible within a single node. To improve the execution time,
in-memory computation and data-parallelization are prerequisite for genome alignment15. In addition to
data-parallelization (e.g. distribution of independent chunks of data across the CPUs), concurrent paralleliza-
tion (e.g. multi-threading) is implemented in multi-core CPUs of modern HPC systems5, 14. These types of BWA
optimizations are done in our earlier paper3, 14 in the traditional HPC system. These implementations simulate
in-memory computing concept, which may bring better performance benefit but fails in resource utilization14.
To address this issue, we proposed optimization of data intensive computing model by using optimal number of
multi-threads for every sample execution and processing multiple samples within a node in an empirically paral-
lel manner3. Thereby, the execution time will be improved, multiple-samples are processed at the same time and
optimal utilization of the computing resources are achieved3, 5, 14.

Most of the variant discovery algorithms fail to scale-up on multi-core HPC systems and this results in
multi-threading overhead, poor scalability and underutilization of HPC resources16. To address these challenges,
data-parallelization and pipeline parallel execution models are implemented in ref. 5 and an optimized data par-
tition method was used in refs 3 and 15. Partitioning the data into multiple segments for data-parallelization
and distributing the segments across different CPUs for pipeline parallel execution are challenging tasks.
Additionally, merging of all the partial output files into a resultant file in the same order of file split is more impor-
tant (when the mapped files are sorted) to ensure the correctness of the results. The optimized data partition uses
granularity-based and individual-based partitioning methods. Generation of optimal number of small chunks for
the best performance and resource utilization has been a matter of debate3, 6, 15. The selection of optimal number
of chunks may vary across the clusters. Once the optimal number is derived, the sample data need to be split into
multiple chunks for the genome analysis with the reference genome. The cache fusion was used to improve the
performance of genome alignment, choke elimination was used to eliminate the waiting time in the workflow and
the framework of merged portion algorithm was invoked for better performance and optimal resource utilization
in an optimized data portion model17.

Methodology and Benchmarking Environment
Systems & Software environment.  Intel Sandy Bridge system that has four E5-4650 CPUs @ 2.7 GHz,
8 physical cores per CPU, totaling 32 cores used for benchmarking. This system has NUMA architecture with
256 GB DDR3 memory and Red Hat Enterprise Linux (RHEL, version 6.4) is an operating system. We used dif-
ferent versions of Java (1.7 and 1.8) and GNU Compiler 5.2.0 for our benchmarking experiment.

Dataset used for benchmarking. 

	 1.	 Reference genome: Human genome reference build GRCh3718, gold standard INDELs-Insertion and
Deletions (Mills_and_1000G_gold_standard.indels.vcf.gz)19 and variant database build 138 (dbSNP,
dbsnp_138.vcf.gz)20 are the set of genome reference files. Additionally, the TruSeq universal adapter21 is
used for trimming the paired-end sequencing.

	 2.	 Input dataset:

(a)	 GCAT genome data: Genome Comparison & Analytics Testing (GCAT)22, 23 provides a bench-
marking datasets. We used 10 different genome datasets (gcat set 037–039, 041–046 and 049) for
benchmarking which covers the sequence length of 100 base pairs and 150 base pairs, for both paired
end large-indel data set. These data set are used to optimize the HPC system tuning parameters that
includes (i) performance tuning in the Java parallel garbage collection, (ii) performance effect of CPU
frequency scaling and (iii) kernel shared memory tuning. We used this GCAT data to tune our HPC
system because of (a) standard and universal dataset for benchmarking (b) the execution time is very
small (e.g. 1–3 hours) and (c) dataset is in few MB size. Hence, we can more frequently modify the
various HPC system parameters for better execution time before running the larger genome data (e.g.
platinum genome) in a production environment.

(b)	 Platinum genome project data24, 25: To compare the real-time performance improvement and the
optimization benefits, we used the platinum genome data from Illumina HiSeq X10 sequencers. More-
over, these platinum genome data set are relatively similar characterization to the above said GCAT
data, but the volume of data are huge (65–110 GB, pair-ended and large indels) and the execution time
are in days (1–6 days). We used this data set to compare the execution time of (i) baseline perfor-
mance and (ii) architecture aware tuning of GATK results. We used 3 different data set from Illumina
Whole-Genome sequencing project26.

	 3.	 Data coverage: The mean/median coverage of (a) GCAT genome data has 10 different mean/median values
(13.66, 21.34, 22.19, 25.34, 22,21, 25.18, 23.43, 23.39, 24.35 and 24.26) and (b) platinum genome are 3 differ-
ent mean/median values (51.61, 49.753 and 54.35) for the better benchmarking results. The mean/median
coverage are calculated using Picard tools27 and the example script are available in Supplemental Data IV.

http://IV

www.nature.com/scientificreports/

3SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

Benchmarking methodology.  HaplotypeCaller for performance benchmarking.  Amdahl’s law rec-
ommends to optimize the most time consuming part of the code in the application28. Additionally, the over-
all speedup of the application will be improved when the most time-consuming part of the code is optimized.
Therefore, the optimization strategy should be a part of the code where the work will pay-off with the biggest gain
in the performance. As per our NGS workflow, the HaplotypeCaller is consuming more than 43% of the total
execution time and hence we selected the HaplotypeCaller for benchmark evaluation and optimization.

Performance evaluation metrics.  The performance evaluation is based on the application execution time. In a parallel
and distributed computing environment, the workload is distributed across the CPUs and the total CPU time is more
than the “real-time”. Hence, the “real-time” (e.g. UNIX command time −p) is used to measure the execution time.

List of workflow modules and different type of parallelization.  The BWA9 and GATK10 are the
two modules that are used in our NGS workflow. The BWA is a popular genome alignment tool and it consists
of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. These algorithms supports (i) thread paralleli-
zation (ii) data-parallelization and (iii) data-parallel with concurrent execution3, 14, 29. The GATK supports two
type of parallelization: (i) data parallelization and (ii) thread parallelization. The ‘data parallelization’ is controlled
by number of “data threads” per process by using −nt = 〈number of data threads〉 at runtime. The
‘thread parallelization’ is controlled by the number of “CPU threads” that are allocated per data threads. This
thread-parallelization is controlled by using −nct = 〈number of CPU threads〉 option during the runt-
ime. To understand the best parallelization performance, we tested the BWA and GATK with varying number
of cores from 1 to N and used the optimal number of cores for this performance case studies. The summary of
various parallelization strategies are summarized in Supplemental Data I.

Workflow implementation for genome mapping.  The preliminary step is to mapping the genome
sequencing data in the form of FASTQ files into Sequence Alignment/Map (SAM) format or BAM (Binary version
of SAM) format, marking the duplicates, merging and sorting the genome data and the genome variant discovery30.
For the genome alignment, we used BWAKIT31, which is an open-source tool that includes the pre-compiled
×86_64 binaries of Seqtk32, SAMtools33, Trimadap34, BWA-MEM35 and Samblaster36. Seqtk is a fast and light-
weight toolkit for processing sequences in the FASTA/ FASTQ format. Trimadap is used for trimming the adapter
sequence from the FASTQ files. The latest version of BWA algorithm is BWA-MEM that provides fast and accu-
rate alignment of genome sequence, supporting long-query and split-alignment4, 13. Samblaster helps in marking
duplicates as removing duplicates is important to mitigate the effects of polymerase chain reaction (PCR) amplifi-
cation, and reducing the number of reads to be processed during variant discovery. Sambamba is optionally used
for indexing37.

Some modification in the GATK best practices workflow.  We used the TruSeq universal adapter21, 32 for trimming
the paired-end sequencing, which is part of the BWAKIT package. We preferred to use Samblaster36 (stand-alone
tools) for duplicate marking because it performs significantly better than Picard27. Additionally, the execution
time and memory usage of Samblaster is better than Picard. Moreover, the results obtained from Samblaster is
nearly identical results of Picard36.

As a summary, BWA 0.7.15, BWAKIT 0.7.15, SAMtools 1.3, seqtk 1.0, samblaster 0.1.20, V8: 3.16.14 and K8:
0.2.1 are the version history, which we used during our benchmarking. The example BWAKIT pipeline is available
in Supplemental Data VI.

Workflow implementation for variant discovery.  For the variant discovery stage, we focused on the iden-
tification of Single Nucleotide Variants (SNV) and small INDELs using GATK. The analysis-ready BAM files are the
input for the variant discovery phase. We have used the following modules from GATK for our variant discovery.

	 1.	 Realigner TargetCreator: The analysis-ready BAM files are locally re-aligned using this step. The rea-
ligned intervals are produced after the successful execution. The misalignment to the reference genome are
identified using the realigned interval which are very useful in SNPs detection.

	 2.	 IndelRealigner: It perform the local realignment of the genome reads within small INDELs and its pro-
duces the realigned BAM files. Note that, starting from GATK 4.0, this Indel realignment step will be no
longer part of the NGS workflow.

	 3.	 BaseRecalibrator: The base recalibration table will be generated to minimize the systematic errors.
	 4.	 PrintReads: A sequence of read data is written by the ReadWalker algorithm. This algorithm reads a recali-

bration table and the realigned BAM files. It produces a realigned, re-calibrated BAM files, which includes
filtering, merging and subsetting of the genome data for the meaningful genome analysis.

	 5.	 HaplotypeCaller: The ActiveRegionWalker algorithm is used for local re-assembly of haplotypes and it is
possible to call the SNPs and small INDELs simultaneously. The variant validation is an important stage in
this genome analysis and it’s possible to reassemble the reads when any variants are detected.

	 6.	 Variant Recalibrator: The LocusWalker algorithm is used to build a recalibration model. It is useful for
variant quality analysis and filtering purposes.

	 7.	 Analyze Co-variates: The variant analysis plots are created to visualize the base recalibration results.

We developed and automated the genome variant discovery pipeline to process multiple genomic samples in
our HPC environment. The automation of the workflow is developed based on the job dependency conditions.

http://I
http://VI

www.nature.com/scientificreports/

4SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

The example workflow scripts are available in https://github.com/sidratools/Genome-workflow and the summary
of the NGS workflow is shown in Fig. 1.

Over the last three years, there are two major versions of GATK (GATK 3.x and GATK 4.0) are released. The
Java 1.7 and Java 1.8 are used to develop GATK 3.5 (and older versions) and GATK 3.6 (and later versions) respec-
tively. To understand the best execution time of GATK, the two different implementations (Java 1.7 and Java 1.8)
of the GATK 3.x are used to build the NGS workflow and benchmarked with various system level optimizations.
Since the GATK 4.0 implementation was completely different from GATK 3.x, we are not compared the execution
time of GATK 3.x to GATK 4.0. Moreover, the GATK 4.0 is supported for the Spark architecture which is different
from the traditional HPC systems.

The GATK 3.5 and the older versions are not developed with Java 1.8. But, the GATK 3.6 and GATK 3.7 are
developed using Java 1.8. To understand the performance benefit of Java 1.8, we compiled the GATK 3.5 and
other older versions using Java 1.8 and benchmarked with JDK 1.8 runtime environment. We benchmarked
GATK 3.3, 3.4 and 3.5 versions with Java 1.8 support. For every version of these GATK, we used two different
executables: (i) pre-compiled jar file (referred as “GATK 3.x_jar”) (ii) source code compiled GATK executable
(referred as “GATK 3.x_src”). The GATK PrintReads and HaplotypeCaller execution time of these various
versions are summarized in Supplemental Data II. We selected the source code compiled GATK 3.3 executable for
benchmarking this workflow implementation because of it is more stable, bug free and 23% better performance
than other versions. The execution time of GATK 3.3 version is compared to the latest GATK 3.7 version for this
system level optimization of NGS workflow.

Results
Baseline performance.  To provide a baseline results for the system level optimization, we listed the vari-
ous job steps for the NGS workflow, its’ associated software tools or modules, application parameters, input and
output file formats, job dependency conditions, recommended number of cores and the percentage of execution
time (for each of the steps) are given in Table 1. These execution timings are obtained from various performance
engineering case studies that are conducted previously3, 5, 8, 14. The PrintReads and HaplotypeCaller consume 25%
and 43% of the execution time respectively and totaling >65% of time in the NGS workflow.

Performance tuning in Java and garbage collection.  Execution time of GATK 3.3.  We benchmarked
the execution time of GATK 3.3 during the changes of various parameters which includes, Java version, garbage
collection, heap and stack size of Java virtual machine that are summarized as follows:

	 1.	 Java stack size: By default, the Java stack size (e.g. −Xss10m) is same as that of the operating system stack
size (i.e, 10 Mb). With the increase of stack size, we did not observe any improvement in the GATK execu-
tion time (data not shown).

	 2.	 Java heap size: We observed there is no changes in the GATK execution time when the heap memory is re-
duced <50% of the main memory available in the benchmarking system. Further, we observed the GATK
execution was failed for the larger genome data (e.g.: platinum genome) when the heap memory is <50%
of the main memory size. Hence, we recommended to use at-least 50% of the main memory for the heap
size.

	 3.	 Parallel garbage collection: In a multi-CPU system, the parallel garbage collection (−XX: +UseParal-
lelGC and −XX:ParallelGCThreads = ‘no. of CPU threads’) gives the best execution time.
Further, it is recommended to increase upto maximum number of CPU threads (as per the benchmarking
system architecture) when the number of cores are large. We observed the GATK execution time was
improved upto 28%, when the parallel garbage collection uses 32 CPU threads.

	 4.	 CMS garbage collection: Asynchronous operations is the feature of CMS garbage collection in the
modern multi-core architecture. All the threads can independently progressed when this CMS garbage
collection is invoked by using −XX: +CMSParallelRemarkEnabled. It is referred as low latency
garbage collection and mostly used in modern HPC architectures. We observed, the execution time

Figure 1.  Next Generation Sequencing analysis workflow for the discovery of new functional variants.

https://github.com/sidratools/Genome-workflow
http://II

www.nature.com/scientificreports/

5SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

between CMS garbage collection and parallel garbage collection are comparable and gives the similar
execution time.

	 5.	 Out of memory error in Java 1.7: The Permanent Generation (PermGen) space is used to store the Java
class objects. The PermGen will be running out of the space when more Java class objects are loaded. As
a result, either the application may not start or it will fail at java.lang.OutOfMemoryError. To
eliminate these errors, the PermGen space can be re-defined or increased using the option −XX:Max-
PermSize = ‘size of PermGen’. Sometimes, the preallocated PermGen space may not be sufficient
(e.g. −XX:MaxPermSize = 512m) due to more Java class objects will be loaded at runtime or memory
leak due to the poor coding of the applications. We observed the OutOfMemoryError during the execu-
tion of the HaplotypeCaller in the standard gCVF mode (−variant_index_type = LINEAR and
variant_index_parameter = 128000). Moreover, the HaplotypeCaller in the standard gVCF mode
consume huge memory, additional class objects files and third party libraries (e.g. PairHMM libraries) are
loaded at runtime. As a result, when the PermGen space is limited or exceeded the preallocated size and
the HaplotypeCaller will keep crashing with java.lang.OutOfMemoryError.

	 6.	 Java 1.8 features: Java 1.8 is recommended to eliminate the PermGen limitations and runtime issues
(java.lang.OutOfMemoryError). The PermGen space was removed in JDK 1.8 and the virtual
machine size was very small (small VM). As a result, OutOfMemoryError is eliminated in Java 1.8.
Additionally, the parallel array sorting and bulk data transfer operations are important features which
are more beneficial for our NGS workflow. Java 1.8 support was included from GATK 3.6 version and not
officially supported until GATK 3.5 or older versions. We used Java 1.8 for compilation of GATK 3.3, 3.4
and 3.5 versions and JDK 1.8 is used as a runtime environment. Moreover, all our benchmarking experi-
ments are successfully run with Java 1.8, eliminated OutOfMemoryError for the HaplotypeCaller in the
standard gVCF mode and demonstrated the best performance.

	 7.	 Java temporary I/O file directory: The temporary I/O file directory can be a local file system (/tmp) or a
parallel file system (/gpfs) that can be modified at runtime using −Djava.io.tmpdir = ‘direc-
tory location’. When the local file system is used, all the Java threads writes a temporary files into a

Step ID Job step name
Application
name

Application
module Input file name Application parameters

Output file
name

Recommended
no. of cores

Job
dependency
condition

% of
execution
time

S1 Map to
Reference BWA KIT

Seqtk, trimadap,
SamTools, bwa
mem, samblaster

*.fastq.gz Default *.bam N/M — 6.5%

S2 Build a standard
BAM INDEX sambamba Index *.bam Default *.bam.bai 1 S1 0.5%

S3 Realigner
TargetCreator GATK Target creator *.aln.bam

−T
RealignerTargetCreator,
−R hs37d5.fa, −known
Mills_and_1000G_ gold_
standard.indels.vcf.gz,

*.realigner.
intervals 4 or 8 S2 3%

S4 Indel Realigner GATK INDEL
*aln.bam,
*.realigner.
intervals

−T IndelRealigner, −R
hs37d5.fa, −known
Mills_and_1000G _gold_
standard.indels.vcf.gz,
−knownIntervals

*.realigned.
bam 1 S3 2%

S5 Base
Recalibrator GATK Base Recalibration *.realigned.

bam
−T BaseRecalibrator, −R
hs37d5.fa, −knownSites
dbsnp_138.vcf.gz

*.recal.table N/M S4 13%

S6 Print Reads GATK Analyse the Reads
*.realigned.
bam, *. recal.
table

−T PrintReads, −R
hs37d5.fa, −BQSR

*.realigned.
recal.bam 2 or 4 S5 25%

S7 Haplotype
Caller GATK Haplotype *.realigned.

recal.bam

−T HaplotypeCaller, −R
hs37d5.fa, −pairHMM
VECTOR_LOGLESS_
CACHING, − −emitRef
Confidence GVCF,
− −variant _index_type
LINEAR, − −variant_
index_parameter
128000, − −dbsnp
Mills_and_1000G_ gold_
standard.indels.vcf.gz

*.raw.snps.
indels.g.vcf 4 or 8 S6 43%

S8 Variant
Recalibrator GATK Variant

recalibration
*.realigned.
bam, *.recal.
table

−T BaseRecalibrator,
−R hs37d5.fa, −known
Mills_and_1000G_
gold_standard.indels.vcf.
gz, −BQSR

*.after_
recal. table N S5 6%

S9 Analyze
Covariates GATK Analyse the variant

*.recal.table,
*.after_ recal.
table

−T AnalyzeCovariates
−before −after

*.recal_
plots. pdf 1 S8 1%

Table 1.  Computational steps, dependency conditions and their execution time in the NGS workflow. Where,
N is the total number of cores and M is the number of CPUs.

www.nature.com/scientificreports/

6SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

local disk within a computing system. Alternatively, all the computing system within a cluster can access a
parallel file system and all the Java threads can write a temporary files into a parallel file system directories
simultaneously. The GATK execution time is −21% poor and 5% better for Java 1.7 and Java 1.8 respective-
ly, when a parallel file system (/gpfs) is used as a temporary I/O file directory. The performance penalty
for Java 1.7 is more when the Java I/O temporary directory is a parallel file system (/gpfs) because of the
HaplotypeCaller generate the intermediate files that are <512 KB which is much lesser than our parallel
file system block size (i.e., the disks are formatted with 512 MB block size). The parallel file system is trying
to occupy complete 512 MB block size while wring the temporary file and it’s creates more overhead when
writing a intermediate files. When the Java 1.8 is used without temporary I/O file directory, the GATK
execution time was improved >52% due to Java 1.8 caching features. We observed the same performance
behavior for the local file system too.

Execution time of GATK 3.7.  The latest version of GATK 3.7 execution time is compared with the following
benchmarking experiments: (i) pre-compiled GATK 3.7 jar file and (ii) the GATK 3.7 source code compiled
executable are run with parallel garbage collection with 32 CPU threads. Since the development of GATK 3.7
uses Java 1.8 features, the heap memory configuration and Java temporary I/O directory are not included for our
benchmarking experiment.

All the GATK 3.3 and GATK 3.7 performance results using Java, parallel garbage collection, Java temporary
I/O directory execution timings are summarized in Table 2.

Performance effect of CPU frequency scaling.  The dynamic frequency scaling is used to modify the
CPU frequency ‘on-the-fly’ without shutdown or rebooting the system38. We performed couple of CPU frequency
tuning benchmarks based on in-built CPU governor readily available in the Linux kernel such as ‘performance
mode’ and ‘on-demand mode’. First, all the CPU frequencies from ‘on-demand mode’ (default) is modified into
‘performance mode’. To measure the GATK execution time, an experiment was conducted in 4 socket CPU (E5-
4650) running at 2.7 GHz and the theoretical power consumption of every CPU is 130 W power. The GATK
3.3 and GATK 3.7 of HaplotypeCaller with parallel garbage collection and 32 CPU threads are used for this
benchmarking. When the CPU frequency is enabled as ‘performance mode’, all the 4 sockets consumed 520 W
(4 × 130 W) power because of all the cores are running (always) at 2.7 GHz. We observed, more than 48% of the
execution time was improved in GATK 3.3 and GATK 3.7 version when the CPU frequency is modified as a “per-
formance mode”. The performance drop during the ‘on-demand’ mode is due to the Java threads are not always
active and resulting, the CPU frequency is switching between “power-saving” or “on-demand” mode (CPU run at
1.8 GHz) to a “performance mode” (CPU run at 2.7 GHz). This benchmark experiment recommend us to enable
the CPUs on “performance mode” always. This recommendation is common for any Java based applications and
especially for this GATK workload. We used Intel Gadget tool39 to measure the power consumption. We provided
the example script to set all the CPUs in the performance mode and it’s available in https://github.com/sidratools/
Genome-workflow. The summary of the HaplotypeCaller execution time and electrical power consumption are
shown in Table 3.

Performance tuning in kernel shared memory.  We used the HaplotypeCaller for the kernel shared
memory benchmarking because of (i) the execution time of HaplotypeCaller is more than other steps in the NGS
workflow and (ii) the vectorization and advance vectorization libraries are taking advantages of kernel shared

GATK version Java version Parallel GC option
Java temporary I/O
directory

HaplotypeCaller execution
time (in Hours)

GATK3.3_src

Java 1.7 N/A /tmp 5.26

Java 1.7 Parallel GC = 32 /tmp 3.81

Java 1.7 Parallel GC = 32 /gpfs 5.03

GATK3.3_src

Java 1.8 Parallel GC = 32 /gpfs 4.78

Java 1.8 Parallel GC = 32 — 2.51

Java 1.8 CMS GC — 2.52

GATK 3.7_jar Java 1.8 Parallel GC = 32 — 1.17

GATK 3.7_src Java 1.8 Parallel GC = 32 — 1.14

Table 2.  Performance effect of Java, parallel garbage collection and temporary I/O directory tuning parameters.

GATK version Type of CPU frequency scaling HaplotypeCaller execution time (in Hours) Power (in KWh)

GATK 3.3_src
Performance 2.51 1.34

On-demand 3.72 0.47

GATK 3.7_src
Performance 1.14 0.59

On-demand 1.49 0.19

Table 3.  Performance effect of CPU frequency scaling in the HaplotypeCaller.

https://github.com/sidratools/Genome-workflow
https://github.com/sidratools/Genome-workflow

www.nature.com/scientificreports/

7SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

memory communication. Furthermore, most of the Bioinformatics applications are multi-threaded, executed
within a single computing system, share a main memory across all the multi-threaded and a data transfer can
take advantages of shared memory communication. To get the best execution time, it is necessary to tune the
kernel shared memory, network read/write buffer size and read/write memory parameters of TCP/IP communi-
cation. The default kernel shared memory size will be very small (normally ≤4 GB) depending on the computing
system architecture and the operating system versions. We increased the kernel shared memory from 4 GB (i.e.,
default size for our benchmarking system) to 128 GB (i.e., upto 50% of main memory). Also increased read/
write memory buffer size of TCP/IP communication40 to achieve the maximum performance benefit of Java
1.8 caching features. The following kernel shared memory parameters are used to get the best execution time of
GATK-HaplotypeCaller40, 41:

kernel.shmmax = 137438953472
net.core.wmem_ max = 16777216
net.core.rmem_ max = 16777216
net.core.wmem_default = 16777216
net.core.rmem_default = 16777216
net.ipv4.tcp_mem 16777216 16777216 16777216
net.ipv4.tcp_wmem = 4096 87380 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_low_latency = 1

=

To demonstrate the performance impact of kernel shared memory with Java 1.8 features, the GATK 3.3 and
GATK 3.7 versions are used for the following benchmark test: (a) The kernel shared memory is modified into
4 GB, 8 GB, 64 GB and 128 GB sizes and (b) for every kernel shared memory modifications, the HaplotypeCaller
executed with 32 CPU threads (−nct = 32) and 32 parallel garbage collection threads. We observed significant
performance improvement (>74%) for the GATK 3.3 and 22% improvement for the GATK 3.7. The summary of
results are shown in Table 4.

Architecture-specific tuning in the GATK-HaplotypeCaller.  The HaplotypeCaller uses PairHMM ker-
nel implementation for better execution time on the modern HPC architecture. The GATK source code supports
VectorPairHMM implementations to take advantage of modern HPC vectorization and advance vectorization
features. We compiled the GATK 3.3 and GATK 3.7 source-codes using apache Maven42, 43 with architecture
aware PairHMM implementations. We used (a) vectorization and (b) advanced vectorization compiler flags to
generate architecture aware HaplotypeCaller executable.

PairHMM implementation in GATK 3.3.  The best optimization includes parallel garbage collection, Java 1.8 fea-
tures, Java temporary I/O tunings, kernel shared memory parameters, CPU frequency scaling and parallelization
of GATK using CPU threads are added into the GATK 3.3 runtime. The GATK 3.3 unoptimized pre-compiled jar
file with CPU threads = 32 is compared to the optimized GATK 3.3 executable with the following 6 case studies:
(i) Best optimization with CPU threads = 32, (ii) Best optimization with CPU threads = 8, (iii) Best optimization
with vectorization instructions using CPU threads = 8, (iv) Best optimization with vectorization instructions
using CPU threads = 32, (v) Best optimization with advance vectorization instructions using CPU threads = 8
and (vi) Best optimization with advance vectorization instructions using CPU threads = 32.

The PairHMM implementations using vectorization and advanced vectorization of HaplotypeCaller execution
bring the performance benefit of 8% and 17% respectively for CPU threads = 8. The advance vectorization brings
36% better performance for larger number of cores (e.g. CPU threads = 32) and this is 180% better execution time
when compared (using similar number of CPU threads) to the best optimization results. The complete summary
of results are shown in Fig. 2.

To study the performance impact of GATK execution time for the PairHMM implementation, the
HaplotypeCaller was benchmarked with advanced vectorization. We used 32 CPU threads, 0 to 128 GB heap
memory and GCAT data for this benchmarking. We used 4 different benchmarking experiments that are summa-
rized in Table 5. As a result, the PairHMM library with heap memory configuration is required to get the reduced
HaplotypeCaller execution time.

PairHMM library implementation in GATK 3.7.  To understand the performance improvement in the GATK 3.7
version, the architecture aware PairHMM library is enabled in the HaplotypeCaller and repeated the experiment
using GCAT and platinum genome data. All the experiment results are summarized in Table 6. The vectorization

Kernel shared
memory size

HaplotypeCaller execution
time for GATK 3.3 (in Hours)

HaplotypeCaller execution
time for GATK 3.7 (in Hours)

4 GB 4.36 1.39

8 GB 3.01 1.39

64 GB 2.84 1.18

128 GB 2.51 1.14

Table 4.  Performance effect of kernel shared memory.

www.nature.com/scientificreports/

8SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

and advance vectorization binaries gives the similar results. The PairHMM library implementation in the
HaplotypeCaller with CPU threads = 8 gives the best GATK 3.7 execution time, which is 26% and 74% better
than without PairHMM impementation for GCAT and platinum genome data respectively. We observed that, the
CPU threads = 32 brings scalability limitations and hence we benchmarked with CPU threads = 8 for this GATK
3.7 version. Further, we observed that the optimized HaplotypeCaller execution time in the GATK 3.7 version is
slightly better (1.7% reduced execution time) than Java 1.8 implementation of GATK 3.3.

Based on all the above case studies, we provided the set of recommended values for the generic HPC architec-
ture in Table 7 and this may be useful for basic tuning in any one of the computing system.

Discussion
We observed that the execution time of GATK improved (more than 50% for GATK 3.3 and slight improve-

ment for GATK 3.7) during various tuning in parallel garbage collection. We also noticed that GATK 3.3 failed
due to insufficient memory unless the heap memory is increased from default value. Since the GATK 3.7 has Java
1.8 features, we are not observed any GATK failure due to insufficient memory. Therefore, the parallel garbage
collection for GATK 3.3 is an important for automatically freeing objects that are no longer referenced by the
Java program. To get the best performance benefit of parallel garbage collection, the heap memory size may be

Figure 2.  Performance impact of PairHMM vectorization in the GATK 3.3 HaplotypeCaller using architecture
aware implementation.

Benchmarking case
study name

PairHMM
library

Heap memory
prerequisite

Committed
heap memory

CPU
utilization

HaplotypeCaller
execution time (in hours)

Without PairHMM
and No heap memory No 0 GB 14.3 GB upto 40% 2.51

Without PairHMM
and with heap
memory

No 128 GB 48.5 GB upto 73% 2.34

With PairHMM and
No heap memory Yes 0 GB 12 GB upto 58% 1.18

With PairHMM and
with heap memory Yes 128 GB 50.3 GB upto 72% 0.912

Table 5.  Performance impact of PairHMM library with heap memory implementation in the GATK 3.3
HaplotypeCaller.

PairHMM library
Execution time of HaplotypeCaller
using GCAT genome data (in Hours)

Execution time of HaplotypeCaller
using Platinum genome data (in Hours)

No PairHMM library 1.14 30.43

VectorPairHMM library 0.902 17.46

Table 6.  Performance effect of PairHMM library implementation in GATK 3.7 HaplotypeCaller.

www.nature.com/scientificreports/

9SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

increased or filled to a certain level, which is possible through the Java command line. The memory request can be
invoked by using −Xms, (e.g −Xms32g) and the maximum level can be set by using −Xmx, (e.g. −Xmx128g).
Note that the error “Not enough memory to run GATK” is common at GATK run-time which can be
solved by increasing the Java heap memory size (upto 50% of the main memory). For example: When the HPC
system has 256 GB of main memory, the heap memory can be increased upto 50% (−Xmx128g, −Xms128g).

Most of the modern Linux operating systems support dynamic frequency scaling to save electrical power and
thermal energy. By default, “on-demand” mode is active in the modern operating system38. We observed, more
than 48% of the execution time was dropped (both GATK versions) when the CPUs are running at “on-demand”
mode. To get the best performance, we recommend to set the CPUs in “performance mode” for our NGS
workflows.

The HaplotypeCaller uses PairHMM library for better performance. The GATK source code sup-
ports VectorPairHMM implementation and the source code is available in GATK distribution direc-
tory “public/VectorPairHMM/”. To optimize the PairHMM library, the architecture specific compiler
flags (e.g. −march = core-avx2, −xAVX, −mAVX, −xAVX2, −msse4.1, −march = core-avx,
−march = core-avx2) can be used depends on the target architecture that will generate the VectorPairHMM
library. The new Java classes are created with “vector logless caching” or “logless caching” algorithms that can
improve the VectorPairHMM. Our benchmarking HPC systems are Intel Xeon processors and the vectorization
(e.g. SSE 4.1) and advanced vectorization (e.g. AVX, AVX2) are possible to tune the GATK for the architecture
aware implementations. The GNU compiler versions ≥4.8 or Intel compiler can be used to support the advanced
vectorization instructions. After the above architecture aware GATK source-code compilation, the “libVec-
torLoglessPairHMM.so” library was generated which can be invoked at Java run-time using “−Djava.
library.path = /VectorPairHMM/src/main/c++”. This architecture-aware PairHMM library is used
by Java kernel, which can be accelerated the performance of HaplotypeCaller at runtime. We observed upto 180%
and 74% improvement in the HaplotypeCaller execution time for the architecture-aware binaries of GATK 3.3
and GATK 3.7 respectively. As a result, the various optimization in the GATK 3.3 brings the improved execution
time which is closer to GATK 3.7 results. Further, the optimized HaplotypeCaller GATK 3.7 execution time can
be improved upto 124% compared to unoptimized GATK 3.7 pre-compiled jar binary.

We summarized the architecture-specific tuning of HaplotypeCaller which includes (i) the procedure for
GATK source code compilation, (ii) architecture specific compiler flags, (iii) configuration options to generate
VectorPairHMM library and (iv) example job submission script for architecture aware PairHMM implementation
are provided in the Supplemental Data III. Additionally, the generated gVCF files from unoptimized pipeline is
compared to optimized pipeline using vcftools44, 45. We observed more than 99.993% of same variants listed across
the optimized and unoptimized gVCF files. The small variation in the gVCF files are (i) 0.000685145883% of
REF mismatches and (ii) 0.007758959268% of ALT mismatches. All the GATK runs are with non-deterministic
execution and this is due to multi-threading (−nt or −nct options) and hence the samll variations are acceptable.
The summary of vcf-compare results are available in the Supplemental Data III. Furthermore, the performance
optimization of (i) Java and garbage collection (ii) CPU frequency scaling and (ii) tuning kernel shared memory
parameters are common for any application modules of the GATK pipeline. To understand these performance
impact, the complete NGS pipeline using GATK 3.7 version was executed with optimized and unoptimized ver-
sions. We observed, the execution time of NGS pipeline reduced by 34.14% using the above changes in the system
level optimizations. The complete summary of performance impact is listed in Supplemental data V.

Conclusion
The execution time of GATK-HaplotypeCaller was reduced using various system level optimizations. We used
GATK 3.3 and GATK 3.7 versions of HaplotypeCaller for benchmarking which supports (by default) Java 1.7
and Java 1.8 respectively. The Java 1.8 features are enabled at GATK 3.3 runtime and benchmarked to com-
pare with GATK 3.7. The GATK 3.3 source-code compiled executable are optimized at the system level which
includes (i) the parallel garbage collection with heap memory configuration, (ii) the scalability limitation in the

Parameter Name Recommended value
Expected % performance
improvement (in % Remarks

Java heap size upto 50% of main memory N/A
GATK execution may fail due to
insufficient memory when the heap
size is small

Parallel garbage
collection

ParallelGC and
ParallelGCThreads = ‘Totalnumberofcores’

upto 28% N/A

CMS garbage
collection CMSParallelRemarkEnabled upto 28% Useful in modern HPC architecture

Java 1.8 N/A upto 52% Don’t use java.io.tmpdir

CPU frequency
scaling Performance mode upto 45% By default, modern HPC

architecture uses on-demand mode

Kernel shared
memory upto 50% of main memory upto 48% N/A

PairHmm library
with heap memory java.library.path = ‘VectorPairHMMlibrarypath’ upto 145% Use architecture specific libraries for

GATK HaplotypeCaller

Table 7.  General recommendation for the generic HPC system.

http://III
http://III
http://V

www.nature.com/scientificreports/

1 0SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

GATK-HaplotypeCaller, (iii) the optimal Java I/O temporary directory and (iv) Java 1.8 features for parallel array
sorting and bulk data transfer are helped to reduce the execution time by (i) 28%, (ii) 18%, (iii) 24%, and (iv)
34% respectively. These are all some of the features in Java 1.8 and the overall HaplotypeCaller execution time
was reduced upto 34%. The advanced vectorization in the PairHMM library and the CPU frequency scaling are
common features for GATK 3.3 and GATK 3.7 versions. We observed, 64% and 33% of reduced execution time
in GATK 3.3 and 43% and 24% of reduced execution time in GATK 3.7 for PairHMM library and CPU frequency
scaling implementations respectively. Moreover, the GATK 3.7 execution time is slightly better (1.7% reduced
execution time) than the optimized Java 1.8 implementation of GATK 3.3.

References
	 1.	 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nature

Reviews Genetics 17, 333–351 (2016).
	 2.	 Ashley, E. Towards precision medicine. Nature Reviews Genetics 17, 507–522 (2016).
	 3.	 Al-Ali, R., Kathiresan, N., El Anbari, M., Schendel, E. & Zaid, A. Workflow optimization of performance and quality of service for

bioinformatics application in high performance computing. Journal of Computational Science 15, 3–10 (2016).
	 4.	 Kawalia, A. et al. Leveraging the power of high performance computing for next generation sequencing data analysis: tricks and

twists from a high throughput exome workflow. PloS one 10(5) (2015).
	 5.	 Kathiresan, N., Al-Ali, R., Jithesh, P. V., AbuZaid, T., Temanni, R. & Ptitsyn, A. Optimization of data-intensive next generation

sequencing in high performance computing. In Bioinformatics and Bioengineering (BIBE), IEEE 15th International Conference on,
1–6, IEEE (2015).

	 6.	 Bux, M. & Leser, U. Parallelization in scientific workflow management systems. arXiv preprint arXiv:1303.7195 (2013).
	 7.	 Prabhakaran, A. et al. Infrastructure for Deploying GATK Best Practices Pipeline, Intel White Paper 2016 (Date of access:

24/11/2016) (Intel White paper, 2016).
	 8.	 Kathiresan, N. et al. Performance Benchmarking of Burrow-Wheeler Aligner on the Intel Xeon Processor E5 v3 family (Date of

access: 24/11/2015) (Intel White paper, 2015).
	 9.	 Li, H. & Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14), 1754–1760

(2009).
	10.	 Broad Institute. GATK best practices for the NGS Pipeline. (Date of access: 19/01/2016) (2016).
	11.	 Auwera, G. et al. From fastq data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current

Protocols in Bioinformatics, 11–10 (2013).
	12.	 Zhang, J. et al. Optimizing burrows-wheeler transform-based sequence alignment on multicore architectures. Cluster, Cloud and

Grid Computing (CCGrid), 13th IEEE/ACM International Symposium on, IEEE, 377–384 (2013).
	13.	 Li, Heng Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint arXiv:1303.3997 (2013).
	14.	 Kathiresan, N., Temanni, R. & Al-Ali, R. Performance improvement of bwa mem algorithm using data-parallel with concurrent

parallelization. In Parallel, Distributed and Grid Computing (PDGC), International Conference on 406–411, IEEE (2014).
	15.	 Dries, D. et al. Halvade: scalable sequence analysis with MapReduce. Bioinformatics 31(15), 2482–2488 (2015).
	16.	 Kelly, BenjaminJ. et al. “Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery

of human genetic variation in clinical and population-scale genomics”. Genome biology 16, (1 (2015).
	17.	 Choudhary, O. et al. Accelerating Comparative Genomics Workflows in a Distributed Environment with Optimized Data

Partitioning and Workflow Fusion. Scalable Computing:Practice and Experience 16(1), 53–70 (2015).
	18.	 Human Genome Reference. Chromosome Reference: Build GRCh37 (Date of access: 14/06/2016) (2015).
	19.	 1000G gold standards INDELs. The Mills and 1000G gold standard indels for variant discovery (Date of access: 14/06/2016) (2015).
	20.	 dbSNP138. The Single Nucleotide Polymorphism database (dbSNP), A public-domain archive, NCBI, dbSNP Build 138, USA, ftp://

ftp.ncbi.nlm.nih.gov/snp/ (2015).
	21.	 Schiemer, James Tufts University: Illumina TruSeq DNA Adapters De-Mystified (Date of access: 28/05/2017) (2016).
	22.	 Genome Comparison and analysis testing. standard genome data for benchmarking (Date of access: 19/01/2016) (2015).
	23.	 Highnam, Gareth et al. An analytical framework for optimizing variant discovery from personal genomes. Nature communications,

Nature Research 6 (2015).
	24.	 Platinum Genome data. Whole-genome sequencing project: Platinum Genomes (Date of access: 19/01/2016) (2015).
	25.	 Eberle, MichaelA. et al. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing

a three-generation 17-member pedigree. Genome Research, Cold Spring Harbor Lab 27(1), 157–164 (2017).
	26.	 Whole-genome sequencing project from Illumina, High-confidence variant calls from Platinum Genomes (Date of access:

28/05/2016) (2016).
	27.	 Picard, Command line tools for manipulating high-throughput sequencing (HTS) data, Broad Institute Cambridge, MA, https://

broadinstitute.github.io/picard/ (2014).
	28.	 Hill, MarkD. & Marty, MichaelR. Amdahl’s law in the multi-core era. IEEE Computer 41, 7 (2008).
	29.	 Li, H. & Homer, N. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in bioinformatics 11(5),

473–483 (2010).
	30.	 Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Briefings in bioinformatics 15(2),

256–278 (2014).
	31.	 BWAKIT, Self-consistent installation-free package of scripts for genome mapping using BWA MEM algorithm. Heng Li, Broad

Institute Cambridge, MA, USA. https://github.com/lh3/bwa/tree/master/bwakit (2015).
	32.	 Li, H. Seqtk: “A toolkit for processing sequences in FASTA/Q formats”. https://github.com/lh3/seqtk, (GitHub, year 2012).
	33.	 Samtools. SAM (Sequence Alignment/Map) format is a generic format for storing large nucleotide sequence alignments, github,

Samtools. http://samtools.sourceforge.net (2012).
	34.	 Trimadap: Fast but inaccurate adapter trimmer for Illumina reads, Heng Li, Broad Institute Cambridge, MA, USA. https://github.

com/lh3/trimadap (2014).
	35.	 BWAMEM. Burrow-Wheeler Aligner for pairwise alignment between DNA sequences, Heng Li, Broad Institute Cambridge, MA,

USA. http://bio-bwa.sourceforge.net (2014).
	36.	 Samblaster. samblaster: a tool to mark duplicates and extract discordant and split reads from sam files, Greg Faust, Ira Hall Lab,

University of Virginia, https://github.com/GregoryFaust/samblaster (2014).
	37.	 Tarasov, Artem, Vilella, Albert J., Cuppen, Edwin, Nijman, Isaac J. & Prins, Pjotr. Sambamba: fast processing of NGS alignment

formats, Oxford Univ Press Bioinformatics, 31, (12), 2032–2034 (2015).
	38.	 Kathiresan, N. & Narayanasamy, G. Implementation of green computing in ibm hpc software stack on accelerator based super

computing. In Proceedings of the ATIP/A* CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia
Lead the Way?, page 30. A* STAR Computational Resource Centre (2012).

	39.	 Intel Gadget. Intel Gadget tool for measuring the Power, Martin Dimitrov, Carl Strickland, Intel Corporation, USA, https://software.
intel.com/en-us/articles/intel-power-gadget-20 (2016).

	40.	 RedHat Linux. Setting Shared Memory, RedHat Linux, USA, https://goo.gl/4TSKe6 (2014).

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://github.com/lh3/bwa/tree/master/bwakit
https://github.com/lh3/seqtk
http://samtools.sourceforge.net
https://github.com/lh3/trimadap
https://github.com/lh3/trimadap
http://bio-bwa.sourceforge.net
https://github.com/GregoryFaust/samblaster
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://goo.gl/4TSKe6

www.nature.com/scientificreports/

1 1SCieNtifiC RePorTS | 7: 9058 | DOI:10.1038/s41598-017-09089-1

	41.	 ESnet. Linux tuning, ESnet: Energy Science Network, USA, https://fasterdata.es.net/host-tuning/linux/ (2014).
	42.	 Geraldine VdAuwera, Setting up your development environment: Maven and IntelliJ for GATK 3.x (Date of access: 19/01/2016)

(2014).
	43.	 Brien, T. O. et al. Maven: By example. an introduction to apache maven (2010).
	44.	 Danecek, Petr et al. The variant call format and VCFtools. Bioinformatics, 27, (15), 2156–2158 (Oxford Univ Press year 2011).
	45.	 HJ-Split, Freeware multiplatform file splitters, Freebyte, HJSplit organization, http://www.hjsplit.org/ (2014).

Author Contributions
N.K. designed the case studies, performed all experiments, analyzed data and wrote the manuscript; R.T.
developed the workflow model and edited the manuscript; H.A. and N.S. provided technical support for BWA
and GATK applications; P.V.J. edited and reviewed the manuscript and provided technical suggestions; R.A.A.
provided conceptual advice, technical suggestions and supervised the project. All authors discussed the results
and implications and commented on the manuscript at all stages.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-09089-1
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

https://fasterdata.es.net/host-tuning/linux/
http://www.hjsplit.org/
http://dx.doi.org/10.1038/s41598-017-09089-1
http://creativecommons.org/licenses/by/4.0/

	Accelerating next generation sequencing data analysis with system level optimizations

	Methodology and Benchmarking Environment

	Systems & Software environment.
	Dataset used for benchmarking.
	Benchmarking methodology.
	HaplotypeCaller for performance benchmarking.
	Performance evaluation metrics.

	List of workflow modules and different type of parallelization.
	Workflow implementation for genome mapping.
	Some modification in the GATK best practices workflow.

	Workflow implementation for variant discovery.

	Results

	Baseline performance.
	Performance tuning in Java and garbage collection.
	Execution time of GATK 3.3.
	Execution time of GATK 3.7.

	Performance effect of CPU frequency scaling.
	Performance tuning in kernel shared memory.
	Architecture-specific tuning in the GATK-HaplotypeCaller.
	PairHMM implementation in GATK 3.3.
	PairHMM library implementation in GATK 3.7.

	Discussion

	Conclusion

	Figure 1 Next Generation Sequencing analysis workflow for the discovery of new functional variants.
	Figure 2 Performance impact of PairHMM vectorization in the GATK 3.
	Table 1 Computational steps, dependency conditions and their execution time in the NGS workflow.
	Table 2 Performance effect of Java, parallel garbage collection and temporary I/O directory tuning parameters.
	Table 3 Performance effect of CPU frequency scaling in the HaplotypeCaller.
	Table 4 Performance effect of kernel shared memory.
	Table 5 Performance impact of PairHMM library with heap memory implementation in the GATK 3.
	Table 6 Performance effect of PairHMM library implementation in GATK 3.
	Table 7 General recommendation for the generic HPC system.

