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Abstract

Genes act in concert via specific networks to drive various biological processes, including progression of diseases such as
cancer. Under different phenotypes, different subsets of the gene members of a network participate in a biological process.
Single gene analyses are less effective in identifying such core gene members (subnetworks) within a gene set/network, as
compared to gene set/network-based analyses. Hence, it is useful to identify a discriminative classifier by focusing on the
subnetworks that correspond to different phenotypes. Here we present a novel algorithm to automatically discover the
important subnetworks of closely interacting molecules to differentiate between two phenotypes (context) using gene
expression profiles. We name it COSSY (COntext-Specific Subnetwork discoverY). It is a non-greedy algorithm and thus
unlikely to have local optima problems. COSSY works for any interaction network regardless of the network topology. One
added benefit of COSSY is that it can also be used as a highly accurate classification platform which can produce a set of
interpretable features.
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Introduction

Biological systems are complex in nature; individual molecular

components (e.g., genes and proteins) interact with each other in

specific networks to exert their functions. The development of new

technologies and powerful computational algorithms to sequence

and characterize genomes have enabled researchers to acquire and

analyze tens of thousands of ‘omic’ data points across the genetic

and epigenetic changes within biological systems. One of the main

difficulties in the gene expression analysis is the size of the ‘omic’

data. Due to the large number of genes, the complexity of the

algorithms becomes very high.

The common practice is to rank the individual genes according

to a similarity or dissimilarity score and then use the important

genes for prediction. However, Risch (2000) suggested that a

combination of genes is more apt for common disease classification

than individual genes [1]. Marchini, Donnelly, and Cardon (2005)

illustrated the effect that gene-gene interactions have on complex

diseases [2]. Moreover, recent research suggests that molecular

networks, rather than random sets of genes, can help find

underlying physiological states associated with disease and

understand complex biological processes [3]. Such approaches

are more objective and robust in their ability to discover sets of

coordinated differentially expressed genes among pathway mem-

bers and their association to a specific biological phenotype. These

analyses may provide new insights linking biological phenotypes to

their underlying molecular mechanisms, as well as suggesting new

hypotheses about the pathway membership and connectivity.

For this reason, researchers are now concentrating on gene-gene

interactions instead of on individual gene analyses. Geman et al.

(2004) introduced the relative expression reversal concept of top-

scoring pair (TSP) as a classification approach for gene expression

profiles [4]. They attempted to figure out the pairs of genes whose

expression levels typically invert from one class to another. This

concept has been improved by majority voting of the k top scoring

pairs (k-TSP) [5]. Chopra et al. (2010) also introduced their

version of gene-pairing which they call doublet [6]. Instead of using

only the inverse relations of the expression levels, they provided a

framework for using different kinds of relations between two genes.

Methods that extended the same concept for finding triplets [7]

and other combinations of gene pairs [8,9] have been developed.

Although these methods produce highly accurate results, they

only consider the interaction of a few genes at a time which is still a

small number to imply the biological process of a disease.

Conversely, gene set enrichment analysis methods such as the

Gene Set Enrichment Analysis (GSEA) [10] have improved the

ability to identify candidate genes that are correlated with a disease

state by exploiting the idea that gene expression alterations might

be revealed at the level of biological pathways or co-regulated gene

sets, rather than at the level of individual genes. However, the

interactions (or topology) of the identified subset of genes within

the predefined gene sets are not captured by these methods.

The availability of large-scale molecular interaction data such as

those collected in KEGG (Kyoto Encyclopedia of Genes and

Genomes) [11] and STRING (Search Tool for the Retrieval of

Interacting Genes/Proteins) [12] provides an opportunity to
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incorporate these interactions into omic data analysis. The

advantage of these network-based approaches is that they can

fully describe the complex biological processes driving disease

phenotypes. Most network-based approaches attempted to identify

informative subnetworks - a set of genes that interact directly and

have differential expression patterns - for disease classification.

These approaches attempted to find these subnetworks using a

greedy approach, starting with a small network (typically a single

node) and adding nodes greedily until the score is improved [13–

16]. However, they may suffer from local-optima problems and

may not even work for a sparse network such as KEGG because

their greedy expansion process could halt imgmaturely due to

sparse connectivity. Alternatively, some approaches, such as

DIRAC (Differential Rank Conservation)[17], utilized user-

defined and pre-partitioned subnetworks for classification.

Here we propose a novel COntext-Specific Subnetwork

discoverY (COSSY) algorithm to automatically discover the

important subnetworks to differentiate between two phenotypes

(context). COSSY finds the important subnetworks using a non-

greedy approach. Unlike the greedy approach, our approach first

divides the network, and then ranks the subnetworks based on the

biological context of interest. We demonstrate that COSSY works

for any network regardless of its topology. We show that COSSY is

capable of identifying discriminative subnetworks while achieving

classification results comparable to those of other state-of-the-art

methods. Finally, we illustrate that the subnetworks identified by

COSSY provide meaningful biological insights from high-

throughput datasets.

COSSY Algorithm
Let G~(V ,E) be a molecular interaction network (graph)

where each vertex in V denotes a molecule (or a set of molecules)

and each edge in E denotes an interaction between molecules. A

molecule can be a gene, a protein, a nucleic acid or a similar

biochemical object. Let D be the training dataset containing the

microarray expression profiles of M samples, where each profile

consists of N probes. D can be represented as an N|M matrix

where eij denotes the expression value of the i-th probe,

i[f1,2,:::,Ng, in the j-th sample, j[f1,2,:::,Mg. The row vector

pi~½ei1,ei2,:::,eiM � thus represents the i-th probe across M

samples and the column vector xj~½e1j ,e2j ,:::,eNj �T represents

the j-th sample across N probes. Let y~½y1,y2,:::,yM � be the

vector of the class labels (context) for M samples where

yi[fpositive,negativeg. Our task is to find the subnetworks

(subgraphs) of G to predict the class (context) of a new sample

xnew~½e1,e2,:::,eN �T .

To give an overview, we first partition the molecular interaction

network G to generate the molecular interaction subnetworks.

Each subnetwork is then ranked using a clustering approach and

finally the top T subnetworks vote to predict the context of the

new sample, xnew (Figure 1).

Molecular Interaction Subnetwork (MIS)
We use a biological knowledge-base in the form of a network in

order to get biologically interpretable results. An important

property of such a network is that it shows how a group of

molecules interact with each other, often performing a molecular

function. However, it is not necessary for all the molecules in a

network to interact with each other. For example, some of the

genes in the thyroid cancer pathway in KEGG (id: hsa05216) are

not connected (Figure 2). Traditional pathway analyses consider

all the molecules (genes) in the same pathway together. We believe

that the non-interacting set of molecules should be considered

separately. Therefore, we propose to include only the interacting

Figure 1. Overview of COSSY. Communities are extracted from the molecular interaction network to generate Molecular Interaction Subnetworks
(MISs)(A–B). Each MIS is mapped to microarray probes and all the samples are clustered according to the expression pattern of a certain number of
highly differentially expressed probes (3 probes in this example figure). MISs are ranked by the entropy score which is lowest when every cluster
contains only one type (phenotype) of samples (C–D). Finally, the top T MISs cast votes to predict the context (phenotype) of a new sample. The
voting depends on the proportion of different types of samples in the cluster closest to the new sample (E–G).
doi:10.1371/journal.pone.0084227.g001

Context-Specific Subnetwork Discovery

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84227



molecules in a candidate set, which we call the Molecular Interaction

Subnetwork (MIS).

We further adjust the idea of an MIS for large number vertices

in a connected network. Some pathways such as the cell cycle

pathway in KEGG (id: hsa04110) contain a large number of genes

all of which are connected to each other, although different parts

of the pathway are annotated to have different functions. We

believe that, it would not be wise to assume that each and every

molecule in a large network responsible for a process would also be

responsible for another process. Instead, we reasonably assume

that a subset of molecules in one process may also affect the

development of another process. Hence, we propose to divide the

large network into pieces so that only the closely interacting

molecules are in the same subnetwork. An MIS will contain all the

molecules in such a subnetwork.

We utilize the community structure of a network –groups of

nodes within which the edge densities are high, but between which

they are low – to find the closely interacting subnetworks. We first

build a community dendrogram as described by [4]. Smaller

communities can be made by splitting the dendrogram from the

top. Modularity, a measure of the quality of a particular division of

a network, is based on the ratio of the number of edges within

groups to the total number of edges in the network. The division

improves as the modularity increases. Among all the available

ones, the pair of groups of nodes whose integration would produce

the highest modularity are joined until one group remains. This

process can be presented as a dendrogram whose division from the

top to the bottom would create smaller communities. If the

community size is within an appropriate range [minRange, maxRange],

we consider it as an appropriate community. If the size is above the

appropriate range, we cut the community dendrogram from the

top. So we get two small communities and we recursively do this

until the size is within the appropriate range. The partition process

discards any branch whose size goes below the appropriate range

and once the partition process is over, each node in the discarded

branch is individually merged with the closest appropriate

community. This merging step may cause some communities to

grow above the appropriate range. For each of these communities,

we create a new network taking all the nodes of the community

and the edges among them from the original network, and then we

apply the whole process to the new network. Algorithm 1, along

with Algorithm 2–4, describes the MIS generation process in

detail. The algorithm is illustrated in Figure S1 in Supporting

Document S1.

Figure 2. The thyroid cancer pathway in KEGG (ID: hsa05216). The top rectangle marked by C1 shows that REDPTC and TRK have an indirect
effect on the activation of Ras. Ras then activates BRAF, and BRAF phosphorylates MEK which in turn phosphorylates ERK. The result of this path is
proliferation survival. This pathway has five connected components (C1–C5). Among them, C2 is actually a subset of C1, and the others are fully
disconnected, i.e., there is no significant interaction between any pair of the components.
doi:10.1371/journal.pone.0084227.g002
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Feature Selection
It is necessary to map the molecules to the probes used in D. If

one molecule is mapped to multiple probes we include all of them

separately following the suggestion to consider each probe

independently [19]. An MIS is selected if its molecules are

mapped to at least a certain number of unique probes. Thus we

avoid the unreliable effect of a single or low number of probes. For

every selected MIS, we propose to take the same number of probes

to consider them equally in the next step. In this study, we choose

the five most differentially expressed probes in each MIS which we

call the representative probeset for the MIS. We estimate the

differential expression of a probe using a modified version of

Welch’s t-statistic score (Section S1 in Document S1).

As one molecule can be mapped to multiple probes and can be

in multiple nodes of some molecular interaction networks, the

representative probesets of MISs may overlap with each other. We

measure the overlap as the ratio of the number of common probes

in the representative probesets of the two MISs over the number of

probes in each representative probeset, overlap(MIS1,MIS2)~
jRP(MIS1)\RP(MIS2)j=jRP(MIS)j, where RP(.) denotes the

representative probeset of an MIS. We take two MISs with the

highest overlap and combine them into one MIS by taking a union

of all the molecules in both MISs. We continue to combine MISs

with the highest overlaps as long as they are significant (w60% in

this study).

Ranking
We rank the MISs based on the expression pattern of their

representative probesets. We cluster all the samples using the

expression values of the representative probeset. Each cluster

represents a separate pattern. If a specific pattern corresponds to a

class, we can expect that almost all the samples in the

corresponding cluster will be of the same class (Figure 3). Based

on this behavior, we propose an entropy-based score to rank the

MISs.

Let us consider that all the samples in dataset D have been

divided into k clusters fC1,C2, � � � ,Ckg using the expression values

of all the probes in an MIS representative probeset. Each cluster

Ci,i[f1,2, � � � ,kg contains Pi positive samples and Ni negative

samples. We normalize the number of positive and negative

samples in each cluster by dividing it by the total number of

positive and negative samples in the dataset, respectively. The

normalized number of positive samples is P̂Pi~
PiPk

j~1 Pj

and the

normalized number of negative samples is N̂Ni~
NiPk

j~1 Nj

. The

entropy of cluster Ci is then defined as

entropy(Ci)~{pi log2 pi{(1{pi) log2 (1{pi),

where pi~
P̂Pi

P̂PizN̂Ni

ð1Þ

The entropy of the MIS is then defined as

entropy(MIS)~

Pk
i~1

(P̂PizN̂Ni )entropy(Ci )Pk
j~1

(P̂PjzN̂Nj )
ð2Þ

The range of each cluster’s entropy is ½0,1�. Consequently, the

entropy of an MIS is always within ½0,1�. If all the samples in every

cluster are of one kind (same class), then the entropy becomes zero.

In contrast, it becomes one if every cluster contains an equal

proportion of positive and negative samples. MISs are sorted by

their entropies in an increasing order, i.e., the MISs with the

lowest and highest entropies are at the top and bottom of the

ranking, respectively.

Algorithm 1 Generate MIS from network

Input: graph, a molecular interaction network
Output: List of MISs generated from graph

1: for all Connected component cc in graph do
2: if size(cc)§minRange then
3: Generate MISs from cc using Algorithm 2 and save them.
4: eles
5: Generate an MIS taking all the molecules in cc and

save it
6: end if
7: end for
8: return all saved MISs

Algorithm 2 Generate MIS from connected network

Input: Input: connectedGraph, a connected network with at least minRange nodes.
Output: MISs generated from connectedGraph.

1: dendrogram/ Build a community dendrogram as described by [18].
2: approCommunities/ appropriate communities generated from dendrogram using Algorithm 3.
3: communities/ communities after merging the discarded nodes in step 2 with the closest appropriate communities using

Algorithm 4.
4: for all community community in communities do.
5: if size(community)ƒmaxRangeor jcommunitiesj~1 then.
6: Create and save an MIS taking all the molecules in community.
7: else.
8: subgraph / a subgraph of connectedGraph containing all the leaf nodes of community and all the edges among them

in connectedGraph.
9: Recursively generate and save MISs from subgraph.

10: end if.
11: end for.
12: return all saved MISs.

Context-Specific Subnetwork Discovery
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Context Prediction
The context (or class) of a new sample xnew is predicted from the

weighted voting by the top T MISs fMIS1,MIS2, � � � ,MISTg.
MISi votes for the positive and negative class with the weight of

Wi(positive) and Wi(negative), respectively (Eqs. 3 and 4).

Wi(positive)~
P̂Pc

P̂PczN̂Nc

ð3Þ

Wi(negative)~
N̂Nc

P̂PczN̂Nc

ð4Þ

where Cc is the closest cluster to xnew among the clusters produced

by MISi, and P̂Pc and N̂Nc are the normalized numbers of the

positive and negative samples, respectively, in Cc. The sums of the

voting weights by the top T MISs for the positive class and the

negative class are W (positive) and W (negative), respectively (Eqs.

5 and 6).

W (positive)~
XT

i~1

Wi(positive) ð5Þ

W (negative)~
XT

i~1

Wi(negative) ð6Þ

The class, with a voting weight that is higher than the other, is

predicted to be the class of the new sample, xnew. However, if both

weights, W (positive) and W (negative), become equal, the class is

predicted from binary voting: a class gets the full weight (i.e., one) if

Algorithm 3 Extract appropriate communities from dendrogram

Input: dendrogram, the community dendrogram.
Output: Appropriate communities extracted from dendrogram.

1: size / No. of leaf nodes in dendrogram.
2: if minRangeƒsizeƒmaxRange then.
3: Create a community of all the leaf nodes in dendrogram and save it.
4: even if sizewmaxRange then.
5: Divide dendrogram into 2 parts from the top - leftdendrogram and rightdendrogram.
6: Recursively extract and save appropriate communities from leftdendrogram and rightdendrogram.
7: eles.
8: Discard the dendrogram.
9: end if.

10: return saved appropriate communities.

Algorithm 4 Merge discarded nodes with given communities

Input: discardedNodes, nodes not taken in any community; communities, given communities.
Output: Communities with discardedNodes merged.

1: repeat.
2: neighbors/ The subset of discardedNodes directly connected (1-hop distance) to some node in communities from the

original network.
3: for all node n in neighbors do.
4: d/1.
5: candidates/communities.
6: loop.
7: counts/ Count no. of d-hop distant nodes (from n) in each community in candidates. closestCommunities/

communities having max(counts) d-hop distant nodes from n.
9: if jclosestCommunitiesj = 0 then.

10: Mark n’s membership to one community in closestCommunities randomly.
11: break loop.
12: else if jclosestCommunitiesj = 1 then.
13: Mark n’s membership to the only community in closestCommunities.
14: break loop.
15: else.
16: candidates/closestCommunities.
17: d/dz1.
18: end if.
19: end loop.
20: end for.
21: communities/ communities after merging every node in neighbors according to its membership.
22: discardedNodes/discardedNodes{neighbors.
23: until discardedNodes~w.
24: return communities.

Context-Specific Subnetwork Discovery
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its number of samples surpasses that of the other class in a nearby

cluster; otherwise it gets zero (Section S2 in Supporting Document

S1). Binary voting would take place infrequently as we use only the

top ranked MISs. In fact, it did not occur in any of our

experiments. The binary voting system guarantees the winner

when T is odd. The classification rule is finally expressed as below

(Eq. 7).

class(xnew)~

positive if W(positive) w W(negative)

negative if W(positive) v W(negative)

binaryvote otherwise

8><
>: ð7Þ

Datasets, Implementation and Evaluation Method

Microarray Datasets
We tested COSSY on seven publicly available cancer datasets,

as shown in Table 1. In this paper, we refer to the datasets by the

names mentioned in the first column of Table 1. The purpose of

the Leukemia microarray dataset is to identify genes that

distinguish Acute Myeloid Leukemia (AML), a deathly disease,

from Acute Lymphoblastic Leukemia (ALL) [20]. It contains

expression levels of 7129 probes from 72 samples (ALL:47,

AML:25). We used dataset B from [21], which contains 25 classic

and 9 demoplastic medulloblastoma samples, as the CNS dataset.

The samples of the DLBCL dataset are divided into 2 categories:

Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular

Lymphoma (FL) [22]. The Prostate1 dataset, distinguishing

between prostate tumors and non-tumor prostates (normal), used

102 high-quality expression profiles from [23]. The Prostate3

dataset includes 24 prostate tumor and 9 normal samples from

[24]. The goal of the Lung dataset is to differentiate between

Malignant Pleural Mesothelioma (MPM) and Adenocarcinoma

(ADCA) of the lung [25]. Finally, the GCM_total dataset from [26],

which contains 90 normal and 190 tumor samples of several types

of cancer, constitutes the GCM dataset. The sources of these

datasets have been listed in Table S1 in Supporting Document S1.

Implementation of COSSY
COSSY is implemented as an R package. It requires R

(w~2.15.3) along with utils, stats, limma, and igraph (w~0.6.5)

packages. COSSY has been tested on Windows, Linux, and Mac

operating systems. The package and data used in this study are

available for download on our website: http://infos.korea.ac.kr/

cossy/.

Experimental Settings
We first performed the quantile normalization over the training

dataset and then standardized the probe data using z-score,

z(eij)~
eij{�eei

si

, where eij is the expression value of the i-th probe

in the j-th sample; �eei and si are the mean and standard deviation

of the expression values, respectively, of the i-th probe. Ward’s

minimum variance agglomerative hierarchical clustering [27] was

used with euclidean distance. The dendrogram produced by

Ward’s method was cut into k groups to form k clusters. The

number of clusters, k, was chosen from the rule of thumb, k&

ffiffiffiffiffiffi
M

2

r
,

where M is the number of samples [28]. To avoid the effect of

Table 1. Microarray Datasets.

Dataset Name #Probes Positive Class (#samples) Negative Class (#samples) Reference

Leukemia 7129 AML (25) ALL (47) [20]

CNS 7129 Demoplastic (9) Classic (25) [21]

DLBCL 7129 DLBCL (58) FL (19) [22]

Prostate1 12600 Tumor (52) Normal (50) [23]

Prostate3 12626 Tumor (24) Normal (9) [24]

Lung 12533 MPM (31) ADCA (150) [25]

GCM 16063 Tumor (190) Normal (90) [26]

The first column, ‘Dataset Name’, indicates the name of the microarray dataset used in the manuscript. ‘#Probes’ shows the number of probes present in the dataset.
The third and fourth columns contain the name of the positive and negative class, respectively, followed by the number of samples of that class. The last column shows
the reference the dataset was collected from.
doi:10.1371/journal.pone.0084227.t001

Figure 3. Ranking of MIS. Let three probes (i, j, and k) constitute the
representative probeset of an MIS. We plot all the samples with the
expression values of these probes in separate dimensions, and then we
cluster the samples. If the samples in a cluster are mostly of one kind
(such as C1 or C3), we can say that the cluster’s expression pattern
represents the corresponding class (positive or negative). The ranking
of an MIS producing such clusters should be high.
doi:10.1371/journal.pone.0084227.g003

Context-Specific Subnetwork Discovery
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noisy data, the median of the data points in each cluster was taken

as its centroid. A new data point would fall in the cluster whose

centroid is the closest to the new point. Finally, T , the number of

the top MISs to vote, was selected experimentally. We exper-

imented with T~1,3,5, � � � ,31 and used the minimum T that

produced the highest accuracy.

Cross Validation
We validate the classification of COSSY by standard Leave-One-

Out Cross-Validation (LOOCV). For each sample xj in D, we train the

classifier using the remaining (M{1) samples and then the

classifier predicts the class of xj . The LOOCV accuracy is the

fraction of all the samples that are correctly classified.

Results

Networks Generated from KEGG and STRING
We applied COSSY on two well-known molecular interaction

networks: KEGG and STRING. We chose KEGG and STRING,

as they are both very different in nature. KEGG is composed of a

number of disjoint pathways where the same molecule can be

present in multiple pathways. In contrast, a molecule in STRING

can have only one node. The nodes in KEGG may represent

different types of objects (gene, gene product, chemical compound,

etc.) while the nodes in STRING represent proteins. A KEGG

node may have multiple molecules, while a STRING node always

represents only one protein. The topologies of these two networks

are also significantly different. STRING shows a much higher

clustering tendency than KEGG. In this study, we used the

unweighted and undirected graph of the protein networks – the

network of the genes and their interactions – from the human

signaling pathways in KEGG (release 62.0), and the human

protein-protein interactions – both experimental and predicted

with high confidence (score.0.7) – in STRING (release 9.05). A

few properties of the networks are shown in Table 2.

As described before, we try to keep the size of the MISs within

the appropriate range. We experimented with different ranges (Table

S2 and S3 in Supporting Document S1) and chose the range with

the highest accuracy: 5–15 for KEGG and 5–25 for STRING.

Here we should mention that the sizes of some MISs may be below

or above the range (Table 3). We did not discard the smaller MISs

in the MIS generation step, as their number of probes may be

sufficient. Also, the bigger MISs could not be further divided

because of their special topologies, e.g., a star network or a highly

dense network (Figure S2 in Supporting Document S1). We used

bioDBnet [29] to map the genes or proteins to the microarray

probes.

Features Selected from Each Dataset
The representative probesets selected from each dataset using

KEGG and STRING are shown in Table S4 and S5 in

Supporting Document S1, respectively. Figure 4 demonstrates

the top ranked KEGG MIS in the Leukemia dataset containing

two types of samples: Acute Myeloid Leukemia (AML), and Acute

Lymphoblastic Leukemia (ALL). The MIS was taken from three

overlapped subnetworks from three different pathways: 1) Focal

Adhesion Pathway (id: hsa04510), 2) Adherens Junction Pathway

(id: hsa04520), and 3) Bacterial Invasion of Epithelial Cells

Pathway (id: hsa05100). One probe (affymetrix id: X95735_at,

gene symbol: ZYX) in its representative probeset is over-expressed

in AML, while the others are under-expressed.

Classification Accuracy
The LOOCV accuracies on the seven cancer datasets are

shown in Table 4. COSSY achieved LOOCV accuracies of 93.2%

and 92.7% using KEGG and STRING, respectively, which is

comparable to the state-of-the-art classifiers, k-TSP and SVM

(Support Vector Machine), and better than other classifiers

(DIRAC, TSP, Doublet, PAM, Decision Tree, Nearest Neighbor,

Nave Bayes) including a recent network-based approach, DIRAC

[7]. Figure 5 shows the classification accuracies of five classification

methods: COSSY using KEGG, COSSY using STRING, k-TSP,

SVM, and DIRAC. From this figure, it is evident that COSSY’s

performance on the five datasets (Leukemia, DLBCL, Prostate1,

Prostate3, and Lung) is almost equal to that of k-TSP and SVM; k-

TSP outperforms others using CNS, and SVM outperforms others

using GCM significantly. Notably, COSSY’s performance on six

datasets is significantly better than that of DIRAC; COSSY’s

performance on the remaining dataset (Prostate3) is equal to that

Table 2. Network Properties of KEGG and STRING.

Network
Total
Nodes

Gene (Protein)
Nodes Total Edges

Connected
Comp.

Avg. Node
Degree

Max Node
Degree

Clustering
Coefficient

KEGG 19568 10691 10728 4494 1.84 43 0.19

STRING 14250 14250 215800 182 30.30 1110 0.61

The ‘Total Nodes’ column contains the total number of nodes available in the network while the ‘Gene (Protein) Nodes’ column shows the number of nodes with at least
one gene in KEGG (or one protein in STIRING). The fourth and fifth columns contain the total number of edges, and the number of connected components having at
least one gene (or protein), respectively. ‘Avg. Node Degree’ represents the number of edges a node has on average. ‘Max Node Degree’ denotes the maximum number
of edges a node has in the network. ‘Clustering Coefficient’ is the ratio of the triangles to the connected triples in a graph.
doi:10.1371/journal.pone.0084227.t002

Table 3. Molecular Interaction Subnetwork Size.

Network Appropriate Range MIS below the range MIS within the range MIS above the range

KEGG 5–15 1925 629 9

STRING 5–25 170 847 23

The table shows the number of MISs with a total of nodes below, within, and above the appropriate range.
doi:10.1371/journal.pone.0084227.t003
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of DIRAC. On average, COSSY’s accuracy is more than 10%

higher than that of DIRAC (COSSY using KEGG - 93.2%,

COSSY using STRING - 92.7%, DIRAC - 82.5%). We also

report the Area Under Curve (AUC) values of Receiver Operating

Characteristic (ROC) curves achieved in the cross validation by

COSSY and DIRAC in Table 5. COSSY outperforms DIRAC in

terms of AUC (COSSY using KEGG - 0.948, COSSY using

STRING - 0.945, DIRAC - 0.813). Even though a random

classifier, which predicts the majority class, may have high

accuracies due to the imbalance in the number of positive and

negative samples in the datasets, the random classifier is unlikely to

achieve as high AUCs as COSSY achieved.

Interpretation of the COSSY Results on the Leukemia
Dataset

As we discussed in this paper, the advantage of COSSY is its

ability to automatically discover the important subnetworks to

differentiate between two phenotypes (context-specific). We used

the Leukemia dataset to illustrate this interpretation of the

subnetworks identified by COSSY. As demonstrated in the results

section, we selected the top five differentially expressed genes from

each subnetwork for classification. Not surprisingly, the top

subnetwork identified by COSSY contains ZYX (zyxin), which

has been previously identified as the top differentially expressed

gene to distinguish AML from ALL in this dataset [20]. Other

genes previously identified as gene signatures to distinguish AML

from ALL include CTSD, LYN, MYB [20].

Examining the over-expressed genes in AML across the top 15

subnetworks (Table S4 in Supporting Document S1), COSSY

identified LYN/PI3K/AKT signaling (LYN, PIK3R2, AKT1),

lysosome complex (LAMP2, CTSD, ATP6AP1), and integrin

signaling pathways (ITGAX, ITGB2, FCER1G) as key pathways

in driving this disease. By querying the core genes identified from

the top MISs to the KEGG pathways, we could ‘stitch’ these

subnetworks (MISs) together as illustrated in Figure 6. This

‘stitched’ network revealed three key pathways that have been

described to be deregulated in AML. In particular, LYN, an Src-

family kinase member, has been found to be over-expressed in

AML [20,30]. Previous studies described LYN to be linked to

mTOR [30]; we revealed this link between LYN and mTOR via

Figure 4. The top ranked KEGG MIS in the Leukemia dataset. A–C) Three overlapped subnetworks from three different pathways constitute
the MIS. D) The merged MIS is shown here. E) The expression heatmap of the representative probeset of the MIS is shown here.
doi:10.1371/journal.pone.0084227.g004
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PIK3R2 and AKT1 by stitching these subnetworks together in this

analysis.

PI3K/AKT signaling has been implicated as playing a critical

role in AML [30–32]; also, inhibiting multiple components of this

pathway might provide the therapeutic interventions to this lethal

disease. From the stitched network, we identified ITGAX and

ITGB2 as over-expressed in AML; these two integrin receptors

interact with each other as well as with FCER1G. Recently, it has

been found that the interactions of ITGAX/ITGB2 and FCER1G

could signal SYK-dependent activation of the JAK/STAT

pathway in AML, and this signaling axis might serve as a novel

therapeutic target for AML [33].

Finally, we observed that the multiple components of the

lysosome (CTSD, LAMP2, and ATP6AP1) were over-expressed in

AML. This is an interesting finding as a recent paper demon-

strated that using mefloquine, an anti-malaria drug, could disrupt

Figure 5. LOOCV accuracy of five notable classifiers. COSSY [KEGG] and COSSY [STRING] stand for COSSY using KEGG and STRING, respectively.
k-TSP and DIRAC are the classification algorithms described in [5] and [17], respectively. SVM stands for the Support Vector Machine algorithm.
doi:10.1371/journal.pone.0084227.g005

Table 4. LOOCV accuracy (%) of classifiers.

Method Leukemia CNS DLBCL Prostate1 Prostate3 Lung GCM Average

COSSY [KEGG] 98.6 85.3 93.5 90.2 100.0 99.5 85.0 93.2

COSSY [STRING] 95.8 88.2 94.8 90.2 97.0 98.3 84.6 92.7

DIRAC 94.8 72.3 73.4 62.9 100.0 98.8 75.2 82.5

k-TSP* 95.8 97.1 97.4 91.2 97.0 98.9 85.4 94.7

TSP* 93.8 77.9 98.1 95.1 97.0 98.3 75.4 90.8

SVM* 98.6 82.4 97.4 91.2 100.0 99.5 93.2 94.6

Doublet [Sign-DT]+ 93.1 82.4 97.4 86.3 97.0 98.3 85.0 91.3

Doublet [Sumdiff-DT]+ 91.7 70.6 97.4 82.4 87.9 95.0 81.4 86.6

Doublet [Mul-DT]+ 84.7 55.9 97.4 86.3 90.9 92.3 83.2 84.4

Decision Tree (DT)* 73.6 67.7 80.5 87.3 84.9 96.1 77.9 81.1

Nave Bayes* 100.0 82.4 80.5 62.8 90.9 97.8 84.3 85.5

k Nearest Neighbor* 84.7 76.5 84.4 76.5 87.9 98.3 82.9 84.5

PAM* 97.2 82.4 85.7 91.2 100.0 99.5 79.3 90.7

The leftmost column contains the names of the methods; the rightmost column shows the average accuracy of each method for seven datasets, and other columns
show the accuracy (%) for individual datasets. ‘COSSY [KEGG]’ and ‘COSSY [STRING]’ represent COSSY using KEGG and STRING, respectively. ‘DIRAC’ is the algorithm
proposed in [17] whose LOOCV accuracies have been calculated using the matlab code published with the paper. k-TSP and TSP denote the classification algorithms
described in [5] and [4], respectively. SVM stands for Support Vector Machine. ‘Doublet [Sign-DT]’, ‘Doublet [Sumdiff-DT]’, and ‘Doublet [Mul-DT]’ denote the
classification methods using Sign-Doublet, Sumdiff-Doublet, and Mul-Doublet, respectively, with decision trees as described in [6]. The last three rows contain the loocv
accuracies using Nave Bayes, k Nearest Neighbor, and PAM classifier, respectively.
*Results obtained from [5].
+Results obtained from [6].
doi:10.1371/journal.pone.0084227.t004
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lysosome in AML and increase cancer cell killing effects [34].

Furthermore, AML cells were less viable due to gene knock-down

on LAMP2. This demonstrates that lysosome could be a new

therapeutic target in AML [34]. From this example, we highlight

that COSSY can identify interesting and context-specific subnet-

works from microarray gene expression datasets. By stitching the

Table 5. Area Under Curve (AUC) values of COSSY and DIRAC for different datasets.

Dataset Name AUC of COSSY using KEGG AUC of COSSY using STRING AUC of DIRAC

Leukemia 0.986 0.985 0.948

CNS 0.862 0.876 0.726

DLBCL 0.985 0.976 0.636

Prostate1 0.909 0.918 0.635

Prostate3 1.000 0.972 1.000

Lung 0.999 0.999 0.990

GCM 0.896 0.889 0.757

Average 0.948 0.945 0.813

AUC has been calculated using the ROCR package in R [35]. The best AUC for each dataset is highlighted in bold face.
doi:10.1371/journal.pone.0084227.t005

Figure 6. Stitching of the MISs found from the Leukemia dataset. The number at the end of the name of an MIS indicates its rank.
doi:10.1371/journal.pone.0084227.g006
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core genes together from these subnetworks, novel biology could

be discovered. This represents an added value to COSSY as

compared to static pathway-based analyses such as Gene Set

Enrichment Analysis.

Discussion

Gene Interaction
Conventional differential expression analyses focus on single

gene markers. Even the gene pairs identified by k-TSP or doublets

do not necessarily imply a biochemical interaction between the

genes. COSSY, in contrast, takes biological interactions under

consideration ensuring a differential expression pattern of the

representative probeset instead of a differential expression of a

single gene. Consequently, it provides an opportunity to discover

the development process of a phenotype.

Network Partition
Unlike GSEA and DIRAC, COSSY does not require any pre-

partitioned subnetworks and is not limited by the quality of the

predefined gene sets. COSSY can automatically generate the

subnetworks. Importantly, these subnetworks may also be used

with other types of analyses requiring pre-partitioned subnetworks,

which is not yet possible from any of the existing subnetwork

discovery methods.

Non-greedy Approach
The existing subnetwork discovery methods [13–16] usually

build subnetworks using a greedy approach that starts with a small

network (typically a single node) and then adds more nodes

greedily until the addition improves the quality. However, it may

have local-optima problems. On the other hand, as our method

follows the non-greedy approach – divides the network first and

then calculates its effectiveness – local-optima problems are

unlikely to occur. Moreover, the applicability of the previous

greedy methods often depends on the network topology, which is

explained in the following section.

COSSY is Independent of Network Topology
Current subnetwork discovery methods are highly dependent

on the network topology. The method by Chuang et al. (2007)

[13] is likely to stop at a locally optimum node frequently where

strict linear paths dominate in a network such as KEGG.

Chowdhury et al. (2010) [14] use the set-cover-based algorithm

where either all the positive or negative samples have to be

covered. If the network contains small components, then it might

not be able to cover the positive or negative samples completely.

Dao et al. (2010) [15] utilize density-constrained clustering which

would not work well on sparse networks such as KEGG. Su et al.

(2010) [16] look for the discriminative linear paths and then

combine them to build the subnetwork. In a sparse network, the

linear paths may not intersect each other. In contrast, we showed

that COSSY works well on networks with highly different

topologies such as KEGG and STRING. The average LOOCV

accuracies of COSSY are 93.2% and 92.7% when used with

KEGG and STRING, respectively, and are high and close to each

other.

Subnetworks with Heterogeneous Characteristics
Chuang et al. (2007) [13] take the sum of the expressions of all

the nodes in a subnetwork to aggregate its expressions, and thus

the process favors the subnetworks with homogeneous character-

istics where all the nodes are either positively or negatively

expressed. The NetCover algorithm [14] also aggregates the

expressions in the same way and suffers from the same problem.

Instead of aggregating the expressions, COSSY uses clustering and

thus it is capable of utilizing the heterogeneous nature to find the

subnetworks that have both positively and negatively expressed

nodes. For example, the representative probeset of the Leukemia

MIS in Figure 4 contains one positively and four negatively

expressed probes.

Conclusion

In this paper, we have introduced a non-greedy algorithm,

COSSY, to partition a molecular interaction network and find the

important subnetworks discriminating between two phenotypes.

COSSY can find subnetworks with heterogeneous characteristics

in any network irrespective of the topology. Its accuracy is

comparable to the state-of-the-art classifiers. We also illustrated an

interpretation of the results to discover the development process of

a disease.
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