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An accurate aging clock developed from large-scale
gut microbiome and human gene expression data

Vishakh Gopu,1 Francine R. Camacho,1 Ryan Toma,1 Pedro J. Torres,1 Ying Cai,1 Subha Krishnan,1

Sathyapriya Rajagopal,1 Hal Tily,1 Momchilo Vuyisich,1 and Guruduth Banavar1,2,*
SUMMARY

Accurate measurement of the biological markers of the aging process could provide an ‘‘aging clock’’
measuring predicted longevity and enable the quantification of the effects of specific lifestyle choices
on healthy aging. Using machine learning techniques, we demonstrate that chronological age can be pre-
dicted accurately from (1) the expression level of human genes in capillary blood and (2) the expression
level of microbial genes in stool samples. The latter uses a very large metatranscriptomic dataset, stool
samples from 90,303 individuals, which arguably results in a higher quality microbiome-aging model
than prior work. Our analysis suggests associations between biological age and lifestyle/health factors,
e.g., people on a paleo diet or with IBS tend to have higher model-predicted ages and people on a vege-
tarian diet tend to have lowermodel-predicted ages.We delineate the key pathways of systems-level bio-
logical decline based on the age-specific features of our model.

INTRODUCTION

Biological age refers to biological markers of the aging process, and may be accelerated or slowed in some individuals relative to their chro-

nological age. Recent research has proposed computational aging clocks based on various biomarkers including metabolites, blood cell

count and other routine lab tests,1,2 DNA methylation,3–6 gene expression in tissue7 or blood,8,9 taxonomic composition of the gut micro-

biome,10,11 and others. Aging clocks propose to use a signal derived from these biomarkers as a health-related metric for aging. In this paper

we present two biological age metrics, one derived from the metatranscriptome of the gut microbiome, and one from the transcriptome of

capillary blood. These two metrics together arguably capture a very comprehensive view of human biology.10,12–16

Molecular markers from bothmicrobial and human cells have been used to develop aging clocks. The composition and function of the gut

microbiome changes with age, and may modulate healthy aging through multiple mechanisms. The increased dysbiosis associated with age

can lead to innate proinflammatory immune responses, and the small molecules secreted by the gut microbiome affect host metabolism and

signaling pathways that vary with age (see review in Kim & Jazwinski, 2018, i.a.).17 There is evidence that thesemicrobiome changes over time

are directly implicated in human healthspan. Maffei et al. (2017)18 show that certain properties of the gut microbiome, notably taxonomic di-

versity, are more predictive of a frailty index measuring mortality risk than chronological age. Similarly, on the human side, several molecular

markers may modulate healthy aging. Perhaps the strongest aging clocks proposed so far have relied on biomarkers related to the epige-

nome such as DNA methylation. While these can act as an estimator of biological age, they are not comprehensive and they have limited

ability to pinpoint the regulators of the biological clock. Both the gut microbiome and the humanmolecular mechanisms are known to partic-

ipate in widespread epigenetic interactions (see survey in Watson & Søreide, 2017),19 so a biological clock based on both of these functions

can potentially inform specific therapeutic avenues to slow down aging. These may include personalized diets, supplements (vitamins, min-

erals, prebiotics, probiotics, food extracts, etc.), pharmaceuticals, phages, immunotherapies (vaccines, antibodies), etc.

Here we briefly review related work usingmicrobiome data to explore aging. (Lan et al. 2013)20 usedmetagenomic data from 5 studies but

focused on one for their classification results. They repeatedly sample 110 samples and perform abinary classification using SVMs after feature

selection using tf-idf and mRMR. The binary labels are created by separating the population in two groups based on an age threshold which

they vary. Across all thresholds they report amean AUCof 0.65. In (Odamaki et al. 2016),21 the authors analyze the 16smicrobiome data of 367

healthy Japanese subjects to uncover age related changes to the microbiome. They do not perform any prediction of age based on the gut

microbiome. In (Huang et al. 2020)11 the authors look at three sources of data, the oral microbiome, skin microbiome, and gut microbiome.

They predict age from 1,975 skinmicrobiome samples with anMAE of 3.8 +- 0.45.With 2,550 saliva samples they report anMAE of 4.5 +- 0.14.

With 4434 fecal samples, they achieve an MAE of 11.5 +- 0.12.

The work with the most similar objective to ours is that fromGalkin et al. 2020. Galkin et al. report the results from applying a Deep Neural

Network (DNN)model trained on�4000 aggregatedmetagenomic profiles frompeople from 18 to 90 years old. As ourmodels are trained on
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Table 1. Model performance by cohort

Stool microbiome

Human blood

transcriptome

Microbiome discovery

cohort (cross-validated)

Microbiome Validation

cohort (prospective)

Galkin et al. CV

Host matched

cohort

Galkin et al.

Independent

HC matched cohort

Blood transcriptome

discovery cohort

(cross-validated)

Cohort size 78,637 11,666 1164 252 1494

Sex (% female) 64.10 65.37 64.95 48.41 61.29

Age (y) meanG s.d. 46.79 G 15.9 43.22 G 15.75 49.00 G 15.35 48.06 G 11.36 47.24 G 14.22

Baseline MAE 12.98 12.90 13.03 9.36 11.75

Prediction R2 0.42 G 0.00 0.46 0.46 0.31 0.53 G 0.02

Prediction MAE 9.49 G 0.02 9.21 9.14 7.64 7.63 G 0.25
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metatranscriptomic data, a direct comparison of model performance to Galkin et al.’s DNN model is unfortunately not possible. Instead we

evaluated our model performance by matching the age distribution of the cohort used in the DNNmodel reported by Galkin et al. This may

give some indication of the utility of our approach and data on populations of similar age composition. More information about the compar-

ison is provided in the STAR Methods section below.

While there aremany ways to define biological age and operationalize the development of an aging clock,22 a common approach is to fit a

machine-learnedmodel to predict the chronological age of the human subject from the biomarker. This model’s predictions will deviate from

chronological age to some extent: for example, if the subject’s biomarker profile is more similar to biomarker profiles of older people than to

their peers, themodel will overpredict age. Themodel’s predictions can be interpreted as a biological age in the sense that they approximate

the age of a typical subject with the given biomarker profile. In this paper we show that the gut microbiome metatranscriptome as well as the

blood transcriptome display strong associations with age to allow the creation of an aging clock.

RESULTS

Table 1 gives an overview of the stoolmicrobiome andblood transcriptome cohorts (All participants consented to participation, and the study

protocol and informed consent forms were approved by the Viome IRB (VIRB), an IRB federally accredited in the USA by the Department of

Health andHuman Services. All data was de-identified for the purpose of the analyses reported here) used in this study. The stoolmicrobiome

cohorts consist of samples obtained from unique customers of Viome’s Gut Intelligence product. These samples were divided into a micro-

biome discovery cohort of 78,637 samples, and a microbiome validation cohort of 11,666 samples. The Galkin et al. matched microbiome

cohorts are intended to allow comparison of this model to the one presented in that work, and were constructed by randomly choosing

one Viome customer from our validation set with the same age as each person in the Galkin et al. datasets. The Galkin et al. CV (Cross Vali-

dation) Host matched cohort is equivalent to Galkin et al.’s training set for which they report cross-validation performance; and the Galkin

et al. Independent HC (Healthy Cohort) matched cohort is equivalent to their independent healthy cohort. One person in the matched CV

cohort could not be paired with a unique sample in our data, so our cohort has 1164 samples rather than Galkin et al.’s 1165. For the Inde-

pendent HC cohort, we additionally matched on sex, which was impossible in the larger CV cohort. The human blood transcriptome cohort

consists of samples obtained from 1494 unique customers of Viome’s Health intelligence product and associated research studies.

Figure 1 presents descriptive statistics of the discovery cohort of Table 1. Ages of sample donors range from<1 year to 104 years, with 2686

donors below 18 years of age (included with parental consent). Study participants come from over 60 countries (86% US, 8% Canada, 3%

Australia, 1.5% EU, 1% UK, rest from other countries). We do not observe any differences in taxonomic richness by age (Figures 1B and

1C); nor do we find differences in taxonomic diversity or active function richness. Neither richness nor diversity of functions or of taxa were

found to increase predictive accuracy when included in our models. Figures 1D and 1E shows the taxa at the species level and KOs that

vary the most with age. To identify these, we calculated the mean CLR for each feature in each decade of age in 70% of the discovery cohort,

and chose those with the highest variance across ages. Then we plotted the trend in mean CLR by decade in the remaining 30% of the data,

grouped by Viome Functional Category (VFC, see below). Notably, all of the KOs with the highest positive association with age are part of

Methanogenesis Pathways resulting in production of methane gas.

Our biological age model’s performance is also presented in Table 1. For the independent validation cohort, the model predicts chrono-

logical age above the baselineMAEof the datasets, and accounts for around 46%of the variance in age by R2, the standardmetric of quality of

fit in regression tasks. Table 1 presents the performance of the model under 5-fold cross validation. The model accounts for around 53% of

variance in ages in the dataset.

Figure 2 shows our biological age model’s predictions and most important predictors, for the model using the microbiome discovery

cohort of Table 1. Figure 2B shows the features with highest absolute coefficients (above 0.3 for taxa and 0.15 for KOs) out of 2,507 non-

zero features selected by the model. Those features are grouped by Viome Functional Categories (VFCs) and further grouped into themes,

to facilitate interpretation and visual presentation of the models’ features. We introduce ‘Viome Functional Categories (VFC)’ as a novel
2 iScience 27, 108538, January 19, 2024



Figure 1. Descriptive statistics for the microbiome discovery cohort

(A) age distribution (B) richness and Pielou’s evenness index of active microbial richness by decade (C) richness and Pielou’s evenness index for active functions

(D and E) mean CLR transformed expression levels of species/KOs by age for most variable species/KOs grouped by genus or Viome Functional Categories (see

main text). In the boxplots shown in Figures 1B and 1C, the box denotes the quartiles and the whiskers extend 1.5 IQRs (Inter Quartile Range) above and below.

See Table 1 for details regarding the discovery cohort.
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annotation system that integrates both species level taxonomic activity and the functional expression profiles from KOs into higher order bio-

logical themes. VFCs are expert-curated themes that account for pathway directionality of feature association (activation/suppression, pro-

duction/degradation, protective/harmful). Microbial taxonomic features are grouped into 11 biological themes covering 32 VFCs. Human

gene expression features are grouped into 26 themes covering 65 VFCs. For example, the theme ‘‘ProInflammatory Activities in Aging’’ con-

sists of 8 different VFCs.Within this theme, the ‘‘Ammonia Production Pathways’’ VFC contains 3 KOs, all with a positive association with aging

in themodel. On the other hand, the ‘‘Vaginal CommensalMicroorganisms’’ VFC contains three known vaginalmicroorganisms that are nega-

tively associated with aging. More details are provided in the Table S3.

Figure 3 presents the predictions of our agingmodel based on humanblood transcriptome cohort of Table 1. Figure 3B shows the features

with highest absolute coefficients out of 2293 features selected by the model on average, grouped by VFC.

Cohort comparisons

As an additional exploration of our stool microbiomemodel, we compare the biological age predicted for a number of specific subsets of the

full microbiome dataset (discovery plus validation) corresponding to populations of interest. In each case we select all available samples from

the population of interest (e.g., vegetarians), and create an appropriate control cohort (e.g., omnivores) where each member of the control

cohort is matched on age to one member of the reference cohort. For each member in the population of interest, one control is randomly

sampled from the pool of users with the same age in the control population. All diet information was self-reported and collected through a

questionnaire (we interpret an organic diet as favoring organically grown produce, although no definition is given beyond this label). We

performWilcoxon signed-rank tests to determine whether there is a significant difference in biological age between the cohorts. The cohorts

consist of: people reporting the special diets vegan, vegetarian, organic, paleo, ketogenic (contrasted with people following no special diet);

people with self-reported IBS and Diabetes (contrasted with people reporting no health issues); and heavy drinkers (contrasted with non-

drinkers), where heavy drinkers were defined following Mayo Clinic guidelines as consuming 15 or more drinks per week for males and 8

or more for females.

To explore the biological age of specific populations of interest, we present summaries of Wilcoxon signed-rank tests in Figure 4A, which

depicts the difference in mean biological ages for specific cohort comparisons of interest, together with p values from corresponding tests.

Figure 4B shows the difference in chronological age for these same populations within the discovery cohort. We note that the model picks up
iScience 27, 108538, January 19, 2024 3



Figure 2. Biological aging model using the microbiome discovery cohort

(A) Predicted vs. actual age in held-out validation data (for clarity, only a random subset of points is shown), with the line of best fit superimposed (error bands

represent a 95% confidence interval calculated through bootstrapping).

(B) Coefficients for the microbial taxonomic features (circles) and KO features (triangles) grouped into curated Viome Functional Categories (VFCs).
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several interesting differences between these populations and their age-matched controls. Vegetarians and vegans both tend to have a lower

biological age than omnivores, while those following the ketogenic or paleo diets are biologically older than omnivores. Heavy drinkers are

biologically older than non-drinkers. People with diabetes or IBS appear older than healthy controls. Some of these results may reflect chance

patterns in the training data, as discussed below.

DISCUSSION

Model performance

Themodels presented here are capable of predicting chronological age above the baselineMAEof the datasets, and account for around 46%

(stool) and 53% (blood) of the variance in age by R2. We note that some discrepancy between predicted and actual age is expected in a useful

biological age candidate. If age was perfectly predicted, it would indicate either that the aspects of health captured by the biomarker decline

in lockstep with chronological age, or that the biomarker is statistically associated with properties that vary systematically with age but are

irrelevant to health.

Previously published attempts to predict age from the gutmicrobiome have used 16S (e.g., Huang et al., 2020, Odamaki et al., 2016)11,21 or

metagenomic data.20 We present a comparison of our model with the gut metagenomic aging clock of Galkin et al. (2020),10 which is to our

knowledge the most accurate microbiome-based clock published to date. Galkin et al. report MAE of 10.60 and R2 of 0.21 (vs. our 9.49 and

0.42) in a dataset (CVHost) with a baselineMAEof 13.03 (vs. our 12.98). In a secondary validation exercise, their model obtainsMAEof 6.81 and

R2 of 0.134 when applied to a separate dataset (Independent HC) with a lower baseline MAE of 9.27 (Galkin et al. also report MAE of 5.91 for

this dataset but note that the data contains multiple samples frommany of the subjects, and after merging duplicates into averaged samples,

performance falls to 6.85. As performance on averaged samples is not representative of performance on individual samples, we reportmetrics

for the Galkin et al. model after randomly excluding all but one sample from each donor. The metrics we report here are calculated from the

predictions for individual samples shared as part of that paper’s supplementary data). Since metatranscriptomic data are unavailable for that

cohort, we created an additional validation cohort with exactly the same age distribution shown in Table 1. In this cohort, our model attains

MAE of 7.64 (vs. their 6.81) and R2 of 0.31 (vs. their 0.13). R2 is the standardmetric used for quality of fit in a regression task, and these numbers

suggest that our metatranscriptomic model provides a better overall fit to this distribution of ages.

Interestingly, Galkin et al. report that an Elastic Net model was unable to extract significant signal from the data, and achieved their best

performance using a deep neural net (DNN). In contrast, we found similar performance across model types, including when using a neural

network architecture modeled after the one they report. Further details of these attempts are given in the supplemental information. Using

a linear model is advantageous in terms of interpretability and actionability: the influence of each biological feature on the model’s age pre-

diction is transparent, making it straightforward to determine a set of candidate targets to act on.

Although we report separate models for the microbiome and human gene cases, these models could be combined to give a single pre-

diction, which we have performed since the publication of this paper and will be publishing separately in the future.
4 iScience 27, 108538, January 19, 2024



Figure 3. Biological aging model using the human blood transcriptome discovery cohort

(A) Actual vs. predicted age, with the line of best fit superimposed (error bands represent a 95% confidence interval calculated through bootstrapping).

(B) Top coefficients grouped by Viome Functional Categories (VFCs).
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The resolutionof thedata suppliedbyour clinicalgradeand fully automated labanalysismethodallows identificationofmicroorganismsat the

strain level, although for this analysisweaggregatedata to the species level. This contrastswith16Sgenesequencing,whichdoesnotdiscriminate

between species withinmost genera. This additional resolution appears to be important to capture age-related variation. In several cases, some

species of a genus are associated with older age, and others associated with younger age (shown in Figure S1 of supplemental information).

Contrary to much published literature23–27(cf. Bian et al., 2017),28 chronological age was not associated with significant changes in alpha

diversity (richness or evenness) of taxa or KOs across decades (Figures 1B and 1C) despite significant changes in individual taxa and KOs over

time (Figures 1D and 1E). This difference may be due to our RNA-based approach, whereas previous studies have used DNA-based ap-

proaches (amplicon or metagenomics). It is intriguing that the richness of active gene expression captured in this RNA-based data remains

steady throughout life. Focusing on functional activity (RNA) and not potential (DNA) suggest that the number of actual genes active doesn’t

change much throughout life.

Interestingly, age related discriminatory taxon previously identified using DNA based approaches are similar to the ones we found to be

correlated with age. Species belonging to the Ruminococcaceae, Bifidobacteriaceae, Lachnospiraceae, andClostridiaceae families have pre-

viously been shown to be important at predicting age from the gut microbial composition29 were also important predictors in our model.

Similar to Hopkins et al.23 we also found a Bifidobacterium to be negatively correlated with age, while a Bacteroides was positively associated

with age (in our case we identified a specific species). In addition, Yatsuneko et al. also showed that methanogenesis related genes are higher

in adult microbiomes compared to children.26

Cohort comparisons

Figure 4A shows that populations following certain lifestyle choices or suffering from specific conditions are systematically assigned a different

biological age from their age-matched controls. For instance, those on plant-based diets have lower model-predicted ages (see review in

Medawar et al., 2019). On the other hand, heavy alcohol drinkers and IBS and diabetes sufferers have higher model-predicted ages. Those

on a ketogenic or paleo diet tend to have a highermodel-predicted age than controls. For some of these cohorts (e.g., drinking, diabetes) the

age difference in the training data has the same sign as the predicted age (Figure 4B). In these cases, it is possible that age-based trends in

the training data may have influenced themodel’s estimation of the aging signal. However, for other cohorts (i.e., vegetarians, paleo, IBS) the

opposite pattern is seen, which shows that themicrobiome features associated with these populations include features associated with aging

in the general population.Overall, these results are consistent with an interpretation of our biological agemetric as reflecting an accumulation

of lifestyle choices and disease status that contribute to healthy aging.

Molecular feature interpretation

The primary goal of this paper is to show that it is possible to estimate age with high accuracy frommicrobiome and human gene expression

data. However, in this section we offer some possible interpretation of the features selected by the models. This is intended to highlight par-

allels to previous literature and potential avenues for future investigation.
iScience 27, 108538, January 19, 2024 5



Figure 4. Cohort comparisons

(A) Mean and standard error of biological age differences between cohorts and age-matched controls where p values <0.01 from Wilcoxon signed-rank tests.

(B) Mean and standard error of chronological age differences between cohorts and controls in the discovery cohort. Standard errors are small enough to appear

as zero width bars.
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The VFC are expert curated functional themes that provide mechanistic insights into the aging process from the features predictive of the

biological age model. For instance, the Pro-Inflammatory Activities in Aging theme captures several VFCs like Oral Pathobionts, Ammonia

Production Pathways andMethanogenesis Pathways that could lead to increased systemic inflammation and aging. The presence and activity

of oral taxa in the gut is an established marker of hypochlorhydria (low stomach acid), which is known to develop with age as stomach acid

levels and digestive efficiency progressively decline.30–32 It is worthy to highlight that both KO and Taxa features of our model collectively

contribute to microbial Proinflammatory Activities in Aging. On the other hand, Cell Protective Activities in Aging theme captures Anti-

Inflammatory and Antioxidant Production Pathways, such as Glutathione Production Pathways, which are known to be diminished with ag-

ing.33 Other than microbial Proinflammatory Activities, the model also predicts an association of Human Inflammatory Pathways with aging.

Our model predicts increased demands on activity of pathways involved in B-cell differentiation, T cell proliferation, T cell differentiation,

Eosinophil Migration, Cytokine Secretion, which can be viewed as the human response to activation of TLR4 and other signaling pathways

with aging from microbial or environmental origins. While some of the proinflammatory activities increase with age, however, many of the

crucial T cell response elements actually decrease in expression, which can result in insufficient ability of the immune system to respond

to the sources of inflammation with age.

The role of the gut microbiome in neuro-generative processes is increasingly evident, and the perturbation of the microbiome and mi-

crobial products has been demonstrated to affect behavior34 through the well-known gut-brain axis.35 In the Neuronal Activities in Aging

theme, the VFCs Glutamate and Gamma Amino Butyric Acid (GABA) Pathways, Serotonin Metabolism Pathways and Pro-apoptotic Path-

ways in neuronal cells show association with aging from the model, in line with current knowledge of Neuroinflammation and cognitive

aging.

Some prior work has attempted to validate the relevance of biological age metrics to health by relating them to measures of health or

mortality,1,36 and we are investigating a similar approach in ongoing work. We note that biological age may in general serve as a proxy

for longevity or healthspan. Additionally, our results uncover novel machine-learned associations between age and specific metatranscrip-

tomic features that could guide the design of nutritional interventions to reduce biological age and increase the human healthspan.37,38

We will continue to evaluate and improve the models as we obtain more data.

Conclusions

A major contribution of this paper is the development and validation of two models for biological age. Our stool metatranscriptome model

uses what is to date the largest published cohort of stool microbiome samples, 90,303 in total. Although our human transcriptome model is

based on a smaller dataset, it performs very well. Both models are capable of predicting chronological age well beyond the baseline MAE of

the datasets, and account for 46% and 53% of the variance in age by R2 respectively.

Another contribution of this paper is the biological age characterization of populations following specific dietary and lifestyle choices.

While not all of these initial results are readily interpretable, the trends in some populations indicate a relationship between health and bio-

logical age - for example, those on a vegetarian diet have lower model-predicted ages, while those on a paleo diet or suffering from IBS have

higher model-predicted ages. These results are consistent with an interpretation of our biological agemetric as reflecting an accumulation of

lifestyle choices and disease status, and suggest that the microbiome features associated with these populations include features associated

with aging in the general population.

Moreover, pathway analysis of the features and interpretation of functional themes suggests mechanistic insights predictive of aging, and

further connects age-related microbial activities with human cellular expression patterns on a molecular level. This predictive signature not

only offers additional clues to the role of immune function in progressive systems-level decline, but also provides possibilities for future nutri-

tional or pharmacological anti-aging interventions.
6 iScience 27, 108538, January 19, 2024
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This is the first report of using functional (i.e., gene expression) microbiome features and human gene expression data to build accurate

agingmodels.We have incorporated thesemodels into a health application showing a variety of insights into the biology of individuals. Inves-

tigating the causal relationship between these microbial and human gene expression features with age could potentially lead to fruitful in-

terventions into human aging. These include therapeuticmodalities such as diet, supplements, and lifestyle as well as pharmaceuticals such as

small molecules, phages, engineered probiotics and immunotherapy.
Limitations of the study

We report results from models trained separately on stool microbiome and blood transcriptome data. Using both types of data together

might better model the interactions between the host and gut microbiome, this is an area that we have actively worked on since the comple-

tion of this manuscript.

Though we get the best performance from linear models, non-linear models would be expected to more accurately model the complex

relationships between the features (microbial and host). The lack of success of non-linear models might be due to the amount of data used,

the diversity of available data, or the need for better modeling assumptions.

When developing the cohorts used to train the models reported in this study, we do not take into account information like health

status, demographics, medication use or other relevant metadata. There are many ways to use this metadata to inform modeling, down-

stream task development, evaluation, and biological/clinical interpretation. These would all be fruitful areas for improvement and

future work.

Our cohort comparisons show interesting differences between the predicted ages of different groups of interest but could be

improved to better interrogate the nature of the difference. Though we report differences in predicted age, where there are none

in actual age, the explanation for why those differences exist is unexplored, both from a statistical and clinical perspective. More sys-

tematic, and clinically informed, probing of this question is necessary to determine the degree to which the reported associations are

clinically relevant.

Comparisons with prior work is important to contextualize results, but due to the lack of proliferation of metatranscriptomic microbiome

data, we found this difficult to do.We try to compare our results with the results reported byGalkin 202010 but are limited in our ability to do so

because of the differences between the types of data used in both studies. It would be fruitful to better connect the results we report in this

study using metatranscriptomics data to the existing literature.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Quant-iT RiboGreen RNA Kit ThermoFisher R11490

Quant-iT PicoGreen dsDNA Assay Kit ThermoFisher P7589

HS NGS Fragment Kit (1-6000bp) Agilent DNF-474-0500

NextSeq 500 High Output kit, 300 cycles Illumina FC-404-1004

NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) Illumina 20028312

Deposited data

Summary data from the figures and additional summary

statistics for the features relevant to the discussion.

This paper. Figshare: https://doi.org/10.6084/m9.figshare.22635025.v2

Software and algorithms

The code used for the model used in the paper This paper. Figshare: https://doi.org/10.6084/m9.figshare.22266436.v1
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Guruduth Banavar (guru@

viome.com).

Materials availability

This study did not generate new unique reagents (over and above prior published studies).

Data and code availability

� A summary dataset containing data from the figures and additional summary statistics for the features relevant to the discussion is avail-

able at the DOI: Figshare: https://doi.org/10.6084/m9.figshare.22635025.v2. The raw data used in this study cannot be shared publicly

due to privacy and legal reasons. However, if data is specifically requested, we may be able to share a summary and/or portions of the

data. Researchers requiringmore data for non-commercial purposes can request via: https://www.viomelifesciences.com/data-access.

Viome provides access to full summary statistics through a Data Transfer Agreement that protects the privacy of participants’ data.
� The code used for the model used in the paper is at Figshare: https://doi.org/10.6084/m9.figshare.22266436.v1.

METHOD DETAILS

Sample processing and bioinformatics

Stool samples were collected, preserved and processed using themetatranscriptomicmethod described in (Hatch 2019).39 See that article for

data supporting the validity and reliability of our methods. Paired-end reads weremapped to genomes40 and to a catalog of microbial genes

with KEGG ortholog (KO) annotations,41 and quantified using the expectation maximization algorithm.42 This yields two views of the relative

activity of each gut microbiome sample, one taxonomic and one functional. The taxonomic view aggregates reads to the species level, while

the functional view aggregates the same reads to KOs. A total of 5,010 taxa and 6,576 KO features are detected in the data for model devel-

opment. On average, a taxa is detected in 5,202.64 of 78,637 samples (s.d. 1,4829.80, s.e. 209.52); a KO is detected in 20,723.21 of the samples

(s.d. 28395.90, s.e. 350.17).

Blood samples were collected, preserved and processed using the whole blood transcriptomic method described in Toma et al.43 This

method is selective for polyadenylated RNA. Paired-end reads were mapped to the human genome. Gene expression levels were computed

by aggregating transcripts per million estimates per gene using an approach based on Salmon version 1.1.0,44 as described in (Toma et al.).43

A total of 18,457 unique genes are detected in the data. On average, a gene is detected in 985.41 of the samples (s.d. 615.33, s.e. 4.53).

Lab analysis of stool and blood samples was performed in a CLIA-licensed clinical laboratory. All samples were collected, preserved, and

analyzed as described in (Hatch et al., Toma et al.). Briefly, samples were collected at home and immediately preserved with the Viome pres-

ervation solution, then shipped to the laboratory. After highly efficient sample lysis and RNA extraction, total RNA was quantified with

RiboGreen (ThermoFisher). Messenger RNAs were either selected (in blood) or enriched (in stool) and converted to directional sequencing

libraries, which were quality controlled with PicoGreen (ThermoFisher) and Fragment Analyzer (Advanced Analytical) assays, to accurately
10 iScience 27, 108538, January 19, 2024
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measure the library concentration and average fragment size. After sequencing on Illumina NextSeq 500 or NovaSeq 6000, raw sequencing

reads were aligned to human transcriptome, microbial genomes (RefSeq), and/or microbial gene functions (Integrated Gene Catalog, IGC,

and Kyoto Encyclopedia of Genes andGenomes, KEGG) databases. On average, 8.5million paired-end sequencing readswere generated for

each stool sample, and 8 million paired-end reads were generated for blood samples. For stool samples, quality control passing criteria

included a minimum of 1 million reads and 50 strain-level taxa per sample. For blood samples, a minimum of 1 million paired-end reads

were required to align to the human transcriptome. The bioinformatic methods (described below), as well as the laboratory ones, have

been validated for accuracy, precision, sensitivity, specificity, and dynamic range, to ensure highly accurate data are generated for machine

learning.

Stool samples passed internal quality assurance if theymet all of the following criteria: a) sample sequencing depth greater than 5e3, b) the

number of detected speciesmust be greater than or equal to 50, c) the number of detected distinct KOsmust be greater than or equal to 200,

and d) the average paired read length must be greater than 90 bps. Furthermore, our quality control method involves internal controls to

quantify sample-to-sample cross-talk and background contamination by microbial taxa allowing us to re-run samples that do not meet

our stringent criteria.

Blood samples passed internal quality assurance if they met all of the following criteria: a) read depth of annotated protein-coding genes

and not genes considered to form an integral part of the hemoglobin complex (ENSG00000086506, ENSG00000130656, ENSG00000169877,

ENSG00000188536, ENSG00000196565, ENSG00000206172, ENSG00000206177, ENSG00000206178, ENSG00000213931, ENSG00000213934,

ENSG00000223609, ENSG00000229988, and ENSG00000244734) must be greater than or equal to 5e5 reads b) the number of detected genes

with at least one read mapped must have counts greater than or equal to 5e3.
QUANTIFICATION AND STATISTICAL ANALYSIS

Definitions for all statistical terms can be found in Methods S1.

We offer a detailed description of the ML approaches used in the paper below, full results can be found in Methods S1. Methods S1 also

contains the exact values of N (number of samples) for all the ML experiments.

A description of the ‘‘Cohort comparison’’ results can be found in the section ‘‘Cohort comparisons.’’ The size of N for each of the cohorts

can be found in Figures 4A and 4B.

For the ‘‘Cohort comparison’’ we used a non-parametric test (Wilcoxon signed-rank tests) because our test data did not meet the assump-

tions of normality required for a t-test.
Machine learning

The microbiome data was transformed using the centered log ratio transformation (CLR)45,46 after imputation of zero values using multipli-

cative replacement47 Both taxonomic and functional features were included in the model. The human gene expression data was transformed

using a Yeo-Johnson power transformation.

Machine-learnedmodels for both stoolmicrobiome and blood transcriptome are Elastic Nets (EN: linear regressionwith tunable L1 and L2

regularization). We also tried other approaches including deep neural networks (DNN), random forest and gradient boosting machines

(GBM). As results were similar across all approaches, we report the simplest and most interpretable model class, ElasticNet.

For the stool microbiome model, hyperparameter optimization was done using a 5-fold cross-validation on the discovery cohort. A final

model using the optimal hyperparameter setting was then trained on the full discovery cohort and applied to the validation cohort to test

generalization. Hyperparameter settings were scored using R2 and the selected model was evaluated using Mean Absolute Error (MAE)

and R2.

For the human blood transcriptome model, model evaluation was performed using a nested CV due to the smaller dataset size. An inner

3-fold CV was used for hyperparameter selection while an outer 5-fold CV was used for model evaluation. Hyperparameter settings in each

were scored using R2 and evaluated using MAE and R2.

Baseline MAE was computed as MAE from the median age of the cohort. The discovery cohort was used to tune model hyperparameters

using cross validation, then a final model was trained on the full discovery cohort. The final model was applied to the validation cohort (drawn

from the same population but not used in training), cohorts matched to two datasets of healthy individuals analyzed in Galkin et al. (2020),10

and additional cohorts described in Cohort Comparisons below.

Modeling details

The model class used for both the blood based and stool based data is Elastic net, which is linear regression trading off L1 and L2 regulariza-

tion. The hyperparameters for this model class are alpha, which controls the penalty strength, and l1_ratio which specifies the mixing param-

eter. An l1_ratio of 0 is equivalent to Ridge regression and an l1_ratio of 1 is equivalent to LASSO. The following hyperparameter space was

explored for both models: (1) 25 logarithmically spaced values between �3 and 3 for alpha (2) l1_ratios of: [0.25, 0.5, 0.75, 0.9, 0.95, 1].

For the stool based model, model selection is done using Cross validation on the discovery cohort (training set) where the optimal hyper-

parameter setting was alpha=0.1 and l1_ratio=0.5.

For the bloodbasedmodel, due to the smaller data set size, a nested cross validation is used to evaluatemodel performance. In each outer

fold, hyperparameter search occurs on the train data using an inner CV and the selected model is evaluated on the outer test set. In our case,
iScience 27, 108538, January 19, 2024 11



ll
OPEN ACCESS

iScience
Article
the same hyperparameters were optimal in every outer fold, which reassures us that model selection does not depend heavily on any partic-

ular choice of validation or train set. These values were: alpha = 0.25 and l1_ratio=0.56.

In terms of hardware and software, a variety of Amazon EC2 instances were used to train the models and for analysis. A representative

example: m5.16xlarge. The python programming language and ecosystem was used for analysis and experiments, specific packages are

given in Methods S2.

Methods for Alternate models

Our primary motivation is to gauge the strength and nature of the relationship between the gut microbiome, blood metatranscriptome and

chronological aging. From this vantage point, we are sensitive to trading off simplicity and interpretability for marginal gains in performance.

In Methods S3 we show alternative model classes that we experimented with for the task of age prediction. Listed are the model class, the

hyperparameter search space, and the method of model selection. Model selection is done with either random search or grid search, and

models are evaluated with either cross validation or a held out validation set (separate from test set). The selected models can be found

in Methods S4. These choices are made depending on the computational costs involved in training. Future directions in this area would

be to more rigorously attempt to improvemodel performance by expanding the relevant search spaces, tryingmany different model classes,

trying different architectures for the neural net model, and imparting domain knowledge through appropriate inductive biases. We would

also like to explore modeling approaches that can relate the predicted age to quantifiable metrics of wellness and health.

Model Performance Comparison to Galkin et al.

Galkin et al. reported a DNNmodel trained on�4000 aggregated metagenomic profiles from people from 18 to 90 years old. As our models

are trained on metatranscriptomic data, a direct comparison of model performance to Galkin’s DNNmodel is not possible.. Instead we eval-

uated our model performance by matching the age distribution of the cohort used in the DNN model reported by Galkin et al. We provide

below the detailed steps.

Comparing model performance on ‘‘CV Host’’ data set from Galkin et al.

� Galkin et al. reported cross-validation performance from their DNNmodel on a cohort containing 1,165 healthy individuals where sam-

ples from the same donor were collapsed into one average profile (denoted ‘‘CV Host’’ in Table 1 of Galkin et al. and ‘‘CV Host’’ in our

main text). The actual age and predicted age from their DNN model for this cohort is publicly available.
� For each donor in the Galkin’s ‘‘CV Host’’ cohort, we randomlymatched one samples from users with exactly the same age (rounded) in

our validation cohort. We were able to match 1,164 samples out of 1,165 samples with exactly the same age distribution. This matched

cohort is denoted as ‘‘Galkin et al. CV Host matched cohort ’’ in Table 1 or ‘‘matched CV cohort’’ in the main text. We were not able to

match one sample with age of 90. Dropping one sample barely changed the baselineMAE and the performance evaluation of the Gal-

kin’s model.

� Ages were predicted by our EN model. R2 and MAE of this matched cohort is reported under column ‘‘Galkin et al. CV Host matched

cohort’’ in Table 1 along with age, sex and baseline MAE.

Comparing model performance on Independent HC data set from Galkin et al.

� Galkin et al. reported DNN performance on an independent HC cohort containing 402 profiles from 252 healthy individuals. (denoted

‘‘Independent HC’’ in Table 1 of Galkin et al. and ‘‘HC cohort’’ in our main text). The actual age, sex and predicted age from the DNN

model for this cohort is publicly available. We dropped replicated samples from the same donor and reported the performance for

performance comparison.
� For each donor in Galkin’s ‘‘Independent HC’’, we randomly matched one sample from users with exactly the same age (rounded) and

sex in our validation cohort. This matched cohort is denoted as ‘‘Galkin et al. Independent HC matched cohort’’ in Table 1.

� Ages were predicted by our EN model. R2 and MAE of this matched cohort is reported under column ‘‘Galkin et al. Independent HC

matched cohort’’ in Table 1 along with age, sex and baseline MAE.
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