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Original article

Background: epidemiologic studies find that long- and short-term 
exposure to fine particles (PM2.5) is associated with adverse cardiovas-
cular outcomes, including ischemic and hemorrhagic strokes. However, 
few systematic reviews or meta-analyses have synthesized these results.
Methods: We reviewed epidemiologic studies that estimated the 
risks of nonfatal strokes attributable to ambient PM2.5. to pool risks 
among studies we used a random-effects model and 2 Bayesian 
approaches. the first Bayesian approach assumes a normal prior that 
allows risks to be zero, positive or negative. the second assumes a 
gamma prior, where risks can only be positive. this second approach 
is proposed when the number of studies pooled is small, and there is 
toxicological or clinical literature to support a causal relation.
Results: We identified 20 studies suitable for quantitative meta-
analysis. evidence for publication bias is limited. the frequentist 
meta-analysis produced pooled risk ratios of 1.06 (95% confidence 
interval = 1.00–1.13) and 1.007 (1.003–1.010) for long- and short-
term effects, respectively. the Bayesian meta-analysis found a poste-
rior mean risk ratio of 1.08 (95% posterior interval = 0.96–1.26) and 
1.008 (1.003–1.013) from a normal prior, and of 1.05 (1.02–1.10) 
and 1.008 (1.004–1.013) from a gamma prior, for long- and short-
term effects, respectively, per 10 μg/m3 PM2.5.
Conclusions: Sufficient evidence exists to develop a concentration-
response relation for short- and long-term exposures to PM2.5 and stroke 
incidence. long-term exposures to PM2.5 result in a higher risk ratio 
than short-term exposures, regardless of the pooling method. the evi-
dence for short-term PM2.5-related ischemic stroke is especially strong.

(Epidemiology 2014;25: 835–842)

Health burden assessments of air pollution commonly 
consider the impact of poor air quality on the risk of 

premature death, and a subset of these analyses also estimate 
chronic and acute effects.1–4 the causal relation between 
short-term (a few days up to several weeks) exposure to fine 
particulate matter (PM2.5) and acute morbidity endpoints 
(including hospital and emergency room visits for respiratory 
and cardiovascular diseases) is well established.5 a smaller, 
but growing, literature also finds associations between both 
short- and longer-term (months to years) exposures to PM 
and the incidence of chronic cardiovascular diseases includ-
ing cerebrovascular disease outcomes (such as stroke).6–8 
the sequelae to stroke may greatly influence the number of 
years a patient lives with a disability and contribute greatly 
to lost productivity1,9,10.

the most recent integrated Science assessment for Par-
ticulate Matter from the US environmental Protection agency 
(ePa)5 and a recent american Heart association literature 
review11 conclude that short- and long-term exposure to PM2.5 
are causally related to cardiovascular disease (cVD), includ-
ing strokes.12–19 the literature yields few systematic reviews 
and meta-analyses of PM2.5-related strokes in particular. this 
study is distinct from recently published meta-analyses in 2 
ways: first, it uses a novel statistical approach and second, it 
is designed to directly inform air pollution risk assessments.18

the goals of this article are 2-fold. First, we evaluated 
the current evidence regarding both short-term and long-term 
exposure to fine particulate air pollution and the incidence of 
ischemic stroke (icD-9 433–444), hemorrhagic stroke (icD-9 
430–432), and cerebrovascular disease (icD-9 430–438). We 
assessed the degree to which the literature supports an asso-
ciation between PM2.5 exposure and stroke.

Second, we drew upon the epidemiologic evidence 
to derive quantitative estimates of the risks for each type of 
stroke that may be included in air pollution risk assessments. 
We performed a quantitative meta-analysis that proceeds in 2 
stages. in the first stage, we evaluate the strength of the epide-
miologic evidence supporting the relation between PM2.5 and 
cerebrovascular disease by performing a random-effects meta-
analysis to estimate pooled concentration-response relations.20 
in the second, we reflect scientifically based conclusions of 
causality on the epidemiologic evidence by asserting a non-
negative prior. We followed this 2-stage approach because (1) 
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it accounts for our belief, supported by the overall evidentiary 
base, that PM2.5 is unlikely to decrease the risk of stroke, and 
(2) not imposing this assumption may yield pooled estimates 
that include a negative lower confidence interval. in this lat-
ter case, health impact assessments applying these results will 
generally also report negative lower confidence intervals—an 
implausible result that is not consistent with the overall litera-
ture and is challenging to characterize.21

METHODS

Identifying Cerebrovascular Outcomes
evidence from clinical and toxicological studies sup-

ports a causal relation between exposure to PM2.5 and isch-
emic stroke, hemorrhagic stroke, and cerebrovascular disease.5 
ischemic stroke (icD-9 433–444) characterized by a blood 
vessel blockage, accounts for about 80% of all cases; hemor-
rhagic strokes (icD-9 430–432), characterized by bursting of 
blood vessels, account for the remaining 20% of cases.22 cere-
brovascular events (icD-9 430–438) encompass these stroke 
outcomes and other transient events, as well as sequelae to 
stroke, including effects on speech and use of limbs.

the evidence for these latter effects is not as strong 
or consistent as that for cardiovascular disease, especially 
regarding long-term exposure to PM2.5. the reasons for this 
disparity are not well understood, but some evidence sug-
gests that responses to PM2.5 may be modified by differences 
in exposures, exposure measurement errors, composition of 
PM2.5, and underlying population susceptibility, including use 
of statin drugs which can offset inflammatory responses.12 

indeed, many epidemiologic studies are prone to mischarac-
terize time of stroke onset and hence misclassify exposure 
and report a null result.11 to the extent that there is a rela-
tion between exposure to fine particles and cerebrovascular 
outcomes, these studies are likely to underestimate the health 
risks attributable to air pollution.

Pulmonary oxidative stress and systemic inflamma-
tion offer a plausible biological pathway describing the rela-
tion between long- and short-term PM exposure and stroke 
(Figure 1).12,13 PM2.5 may initiate a systemic inflammatory 
response even in the case of mild pulmonary inflammation.5 
the recent integrated Science assessment by the US ePa 
finds that a number of other biological responses can medi-
ate the pathway from systemic inflammation to the onset of 
stroke, including atherosclerosis, plaque rupture, pro-coagu-
lation effects, and thrombosis.5 Determining whether PM and 
stroke are causally related should account for clinical and tox-
icological evidence, but developing quantitative risk functions 
requires epidemiologic literature. the effects of short- and 
long-term exposures to PM2.5 may be complementary, with 
longer-term exposures exacerbating susceptibility to shorter 
term PM2.5 elevations.23

Search Procedure
We conducted searches of epidemiologic studies in the 

medical literature in Medline and PubMed, using the terms 
“particulate matter” or “air pollution” and “cerebrovascular” 
or “stroke,” and also reviewed lists of studies included in the 
US ePa integrated Science assessment for Particulate Mat-
ter.5 this initial search yielded 1801 studies (Figure 2). We 

FIGURE 1. Plausible mode of action for PM2.5-related cardiovascular effects (adapted from US EPA).5
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did not identify any additional studies from alternate sources. 
From this set of 1801 studies, 1,574 remained after exclud-
ing duplicates and those published before 1990. We excluded 
1443 studies that that did not include fine particulate matter 
(but rather PM10, total suspended particulate, or black smoke), 
focused only on second-hand smoke exposures, did not eval-
uate air pollution, or were not epidemiologic studies. We 
focused our review on the fine particle fraction because the 
epidemiologic, clinical and toxicological evidence finds the 
strongest relation between exposure to this size fraction and 
adverse health outcomes.5 in addition, the current standards 
for particulate matter in the U.S. and many other countries are 
based on PM2.5 concentrations.

Of the 131 remaining studies, we excluded 111 that 
lacked quantitative effect estimates (eg, risk ratios, beta coef-
ficients) or that assessed fatal (rather than incident) stroke, 
leaving 20 studies that were the subject of the quantitative 
meta-analysis. (See etable 1 for a list and description of these 
studies.) these 20 remaining studies reported at least the 
minimum level of detail regarding the study population, risk 
estimates, unit change in PM2.5, and type of stroke that would 
enable a quantitative meta-analysis; 1 cross-sectional study 
reported these minimum data, but upon further investigation 
the risk ratios proved not to be valid due to insufficient varia-
tion in PM2.5 across the study area. certain attributes—includ-
ing temperature, monitoring data used to quantify population 
exposure, and the measures the authors used to validate the 
stroke diagnosis—were reported inconsistently across stud-
ies. Other literature has underscored the importance of report-
ing such data to support quantitative meta-analyses and risk 
assessments.24

Statistical Pooling
We used 2 statistical pooling approaches to reflect the 

2 goals of this analysis. in the first procedure, we performed 
a traditional random-effects meta-analysis (ie, the frequentist 
approach), using the risk estimates reported in each study to 
characterize the overall strength of the evidence regarding the 
risk of PM2.5-related stroke.25 the random-effects meta-analy-
sis also allowed us to evaluate between-study variation in the 
association between PM2.5 exposure and various cerebrovascu-
lar outcomes. However, when the number of study estimates 
pooled is small, this procedure too often fails to reject the null 
hypothesis of no heterogeneity—thus yielding an unrealistic 
characterization of uncertainty attributed completely to sam-
pling error.26

to address this limitation, we introduce a Bayesian 
random-effects meta-analysis with 2 models. the first Bayes-
ian approach treats the unknown overall risk and heterogene-
ity both as random variables; this is a typical model with a 
normal prior for the overall risk and an inverse-gamma prior 
for the heterogeneity. We favor this approach mainly due to 
its computational ease. However, the dispersion of the uncer-
tainty distribution could become unrealistically large when 
only a small number of studies are available for analysis 
and can include negative values, implying a probability that 
increases in PM2.5 may decrease incidence of stroke. risk 
analyses generally develop quantitative risk functions that 
permit both negative and positive risk estimates, regardless of 
the biological plausibility for such an outcome; the result can 
be health impact estimates whose quantitative bounds include 
substantial negative tails, implying that decreases in air pollu-
tion result in increases in strokes. to the extent that this is not 
biologically plausible, this would be a misleading result and 
not useful in informing policy decisions.

For these reasons, we propose the second model, which is 
a new meta-analytic method that combines features of both the 
frequentist and Bayesian approaches by adding our prior belief 
to the data.27 Specifically, we believe that the overall evidence 
supports a positive uncertainty risk distribution, reflecting the 
biological implausibility of stroke incidence decreasing as 
PM2.5 exposures increase. thus, we assume a gamma prior with 
positive support to characterize the uncertainty distribution. in 
addition, the estimate of the heterogeneity from a noninforma-
tive prior is too imprecise to support pooling risk estimates; 
to overcome this, we use an empirical prior. the dispersion of 
the estimated uncertainty distribution is bounded above by the 
observed variation in study-specific risk estimates, a property of 
the frequentist approach. in this respect, the model blends clas-
sical and Bayesian approaches. For both pooling approaches, 
we drew from the literature review described above.

in our primary analysis, we preferentially selected 
risk estimates associated with distributed or cumulative lags 
in days of ambient PM2.5 exposure. Where this lag structure 
was unavailable and the author reported risk estimates associ-
ated with 2 or more lag periods, we selected the largest risk 

FIGURE 2. Preferred Reporting System for Systematic Reviews 
and Meta-Analyses  (PRISMA) diagram of  selection of  studies 
for inclusion.
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estimate available; we took this approach under the premise 
that the lag associated with the greatest effect estimate was 
capturing the critical window of exposure.28 Put differently, 
the unknown true lag structure between exposures to onset of 
strokes may not be in days but in hours.11 For example, if the 
true lag were 18 hours (ie, 0.75 day), the highest risk estimate 
would be observed for PM2.5 with 1 day lag. the question of 
lag structure is not relevant to long-term studies, which gener-
ally detect differences in risk between locations rather than 
over time. to the extent that a study reported risk estimates 
stratified by copollutant, we selected risk estimates associ-
ated with single-pollutant models, as the studies specified this 
model most frequently; by doing so we maximized the num-
ber of study-specific estimates available for pooling. after this 
approach to selecting risk estimates yielded 4 risk ratios from 
long-term studies and 221 risk ratios from short-term studies.

We evaluated the sensitivity of the results to several 
study attributes. We first characterized the sensitivity of the 
pooled risk estimate to the selection of risk estimates from 
single-pollutant models by performing a mixed-effects analy-
sis in which we pooled risk estimates within each copollutant. 
We also applied a mixed-effects model to pool effect estimates 
by geographic area and age. Finally, using the random-effects 
meta-regression models, we attempted to predict risk levels 
based on study attributes, including the years in which the 
study was performed, as well as PM2.5 and temperature levels. 
Due to the limited number of studies with sufficient informa-
tion on covariates, the meta-regression models were not suf-
ficiently powered to detect whether any variables modified the 
PM2.5-stroke relation (results not shown).

as briefly discussed above, in the second pooling 
approach, we specified that the true uncertainty distribution of 
risk follows a gamma distribution, implying that risk must be 
positive. this model specification reflects our understanding, 
which is based on the overall PM2.5 health-effects literature, 
that exposure to PM2.5 cannot be protective and that negative 
estimates are biologically implausible. the observed study-
specific logarithm of the risk estimate is assumed to be nor-
mally distributed with a gamma-distributed mean. the focus 
of the Bayesian meta-analysis is to estimate the mean and vari-
ance of the gamma distribution given the observed risks and 
underlying assumptions on the distributions of the unknown 
parameters. as part of the Bayesian approach, prior distribu-
tions of the mean and variance of the gamma distribution need 
to be specified, and a numerical value of the mean and variance 
of these prior distributions also needs to be provided. typically 
we have no direct information on the value of these quantities; 
we thus supply a large (noninformative) value. However, when 
the number of studies examined is small, noninformative val-
ues yield very large, and often unreasonable, estimates of the 
gamma distribution variance. to bound this variance, we select 
the variance of the prior variance distribution to be no larger 
than the observed variation in the study-specific risk estimates, 
a property of the frequentist approach (S.H.H., unpublished 

data, 2013). in this manner, we are combining features of both 
the Bayesian and frequentist approaches to meta-analysis. 
Details of the pooling methodology are provided in the eap-
pendix (http://links.lww.com/eDe/a823).

RESULTS
after removing articles focused on second-hand smoke, 

mortality, and other measures of PM, we identified 20 studies 
investigating a relation between ambient PM2.5 and nonfatal 
stroke or cerebrovascular disease.6,29–45 Of these 20 cerebro-
vascular disease or stroke studies, 4 investigated the effects of 
long-term PM2.5 exposures,6,36,37,44 whereas the remaining 16 
investigated short-term exposures. Some studies estimated the 
risks for strokes and total cerebrovascular disease separately; in 
others, only a combined cerebrovascular disease risk estimate 
was provided. in instances where both are available, we focus on 
the ischemic or hemorrhagic stroke risk estimates (and not cere-
brovascular) because they are more clearly defined health out-
comes and because they exclude transient and reversible effects. 
the risk estimates for each of the 20 studies are provided in 
Figure 3 and basic study attributes as shown in etable 1 (http://
links.lww.com/eDe/a823). Because of important differences 
between the long- and short-term studies of population exposure 
in the distributions, we pool these 2 sets of studies separately.

Long-term Studies
Four cohort studies characterized the relation between 

long-term PM2.5 exposures and cerebrovascular disease. the 
first is the Women’s Health initiative (WHi) study, which esti-
mated the effect of PM2.5 on both stroke and total cerebrovas-
cular disease among postmenopausal women and examined 
time to onset of stroke as the outcome measure.6 the WHi 
study found a strong significant association between long-
term PM2.5 exposures and first onset of stroke. the second is 
an analysis of the california teacher’s cohort comprising cur-
rent and former female public school teachers; it assessed the 
risk of cerebrovascular disease due to PM2.5 exposure.44 this 
study found particularly strong risks among postmenopausal 
women. the third study followed a cohort of patients receiv-
ing treatment from general practices in england, using mod-
eled air quality data to predict population exposure.45 this 
study found weak relations between long-term PM2.5 expo-
sure and the risk of cerebrovascular disease. Finally, Kloog 
and coauthors36 used a land-use regression model in concert 
with remote sensing techniques to estimate exposure among 
a cohort of Medicare recipients, finding an increased risk of 
stroke from short- and long-term exposures.

Using the frequentist approach, pooling the 4 risk esti-
mates from these 4 studies yields a pooled risk ratio estimate 
of 1.06 (95% confidence interval = 1.00–1.13) (Figure 4). a 
funnel plot analysis provides little evidence of asymmetry 
(Pegger = 0.25). the trim-and-fill method imputed 2 hypotheti-
cally missing studies, slightly attenuating the risk. However, 
because the overall number of long-term studies is small, the 

http://links.lww.com/EDE/A823
http://links.lww.com/EDE/A823
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funnel plot analysis is not highly informative and so we did 
not include a figure here.

in addition to the classical frequentist approach, we used 
a Bayesian approach to the meta-analysis to account for all 
potential uncertainty by exploring 2 prior assumptions, normal 
or gamma distribution, for the unknown true study-specific 
risk.20,46 For the 4 estimates, the gamma prior returns the pos-
terior mean of 1.05 (95% posterior interval [Pi] = 1.02–1.10), 
whereas the normal prior yields the posterior mean of 1.08 
(0.96–1.27). note that the normal prior used noninformative 
distributions for all parameters involved in the model, assum-
ing no previous knowledge on the study-specific risk and the 
mean risk. However, the gamma prior used a semi-informative 
distribution that required the risk to be positive. More details on 
statistical differences between normal and gamma priors can 
be found in the eappendix (http://links.lww.com/eDe/a823).

Short-term Studies
Of the 16 short-term studies, we selected 221 risk esti-

mates (202 of which were drawn from the Dominici et al32 
multi-city study) that met the inclusion criteria we noted above. 
Of these 221 risk estimates, 141 were positive; 12 estimates 
were negative and statistically significant, whereas 23 were 
positive and statistically significant. Of the 16 studies examin-
ing short-term exposures, 10 were conducted in north amer-
ica, 2 in asia, 2 in europe, and 1 in australia. although 14 

of the studies used time-series or case-cross over approaches, 
1 study followed a 2-stage modeling technique in which the 
authors first estimated city-specific risks and then pooled esti-
mates across cities.30 Single-city estimates were available in 
the report by Dominici and colleagues,32 and so we pooled the 
202 single-city estimates from this article with the single-city 
estimates from the remaining 15 studies. We discuss this pro-
cedure further below.

We first pooled the individual city time-series and case-
crossover study estimates across the stroke endpoints, gener-
ating a pooled estimate (risk ratio) of 1.007 (95% confidence 
interval = 1.003–1.01) (Figure 5a). in our mixed-effects 
model, where we pooled within each stroke outcome, we find 
that the pooled ischemic stroke risk ratio is 1.04 (1.01–1.07), 
the cerebrovascular estimate was 1.006 (1.002–1.01), and 
the hemorrhagic estimate was 1.012 (0.92–1.11). in another 
mixed-effects model, where we pooled studies according to 
the continent in which they were performed, we generate a 
positive and significant pooled estimate (risk ratio) of 1.008 
(1.004–1.013) for north america, a negative estimate for 
europe, and a negative estimate for asia (results not shown). 
the funnel plot analysis (Figure 5B) provides some evidence 
of asymmetry (Pegger = 0.0607).47 the trim-and-fill method 
imputed 18 hypothetically missing study estimates, slightly 
attenuating the risk estimate (results not shown).

Pooling the 221 estimates across all 3 health endpoints 
using the Bayesian approach, we obtained a posterior mean risk 
ratio of 1.008 (95% posterior interval = 1.004–1.013) from the 
gamma prior and 1.008 (1.003–1.013) from the normal prior 
(Figure 6). For all cerebrovascular disease combined (213 
estimates), the Bayesian approach again returned very simi-
lar results: the posterior mean of the risk ratio 1.007 (1.004–
1.012) from the gamma prior and 1.007 (1.002–1.012) from 
normal prior. cerebrovascular disease is the dominant cause 
of stroke and covers more than 95% of all estimates—and for 
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this reason, the results for total cerebrovascular disease (n = 
213) and all stroke types (n = 221) do not differ substantially 
(Figure 6).

However, for ischemic and hemorrhagic strokes, the risk 
ratio was much wider than for cerebrovascular disease. the 
posterior mean risk ratio of ischemic stroke was 1.05 (95% 
posterior interval = 1.01–1.09) from the gamma prior and 1.05 
(0.99–1.14) from the normal prior. the risk ratio of hemor-
rhagic stroke was a bit lower but with wider credible interval 
than ischemic stroke: the posterior mean of 1.02 (1.00–1.06) 
from the gamma prior and 1.01 (0.84–1.25) from the normal 
prior. Figure 7 displays the difference over cause (ischemic 
versus hemorrhagic strokes) and over prior distribution (nor-
mal versus gamma distributions).

to assess the influence of the 202 city risk ratios from 
the study by Dominici et al,32 we excluded these values and 
then pooled across the remaining study risk estimates (n = 19)  
and for the cerebrovascular endpoint alone (n = 11). the 
results are displayed in eFigure 1 (http://links.lww.com/eDe/
a823). Both prior distributions, normal and gamma, returned 
comparable posterior medians (represented by dots), but the 
normal prior returned much wider posterior intervals that 
cover unrealistic negative risk values.

DISCUSSION
after examining 3 types of stroke—cerebrovascular, 

ischemic, and hemorrhagic—we conclude that the evidence 
supports a causal relation between PM2.5 exposure and cerebro-
vascular disease (strokes), particularly ischemic strokes asso-
ciated with short-term exposure to PM2.5. Our conclusions are 
generally consistent with several other recent reviews.19 Both 
pooling approaches—frequentist and Bayesian—yield small, 
nonzero short- and long-term risk estimates. the results of 

the short-term risk were fairly consistent across the 2 pooling 
methods; with both the frequentist and Bayesian approaches, 
there are increases in excess risk ratio, but they are small. the 
frequentist and Bayesian techniques each report a small posi-
tive estimate for ischemic stroke. although the frequentist and 
Bayesian gamma models generate a small pooled estimate for 
ischemic stroke, the Bayesian normal prior does not. taken 
together, these results suggest a stronger relation between 
short-term PM2.5 exposure and ischemic stroke than the other 
2 strokes. Both the long- and short-term studies demonstrate 
a limited degree of funnel plot asymmetry, suggesting that 
these results are not greatly influenced by publication bias. 
the fact that about 90 percent of the short-term estimates 
came from a single study is a source of bias, as it reduces the 
level of between-study heterogeneity. However, the population 
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in that study of those estimates were distributed throughout 
the United States, were composed of multiple ethnic back-
grounds, and were exposed to a range of PM2.5 levels.

Differences in the pooled risk estimates for the short- and 
long-term studies may be attributed to the time periods caused 
by these studies. For example, the long-term studies integrated 
the effects of the most recent exposure (in hours or days), as well 
as chronic exposures to air pollution that affect the underlying 
cardiovascular pathologies, which in turn increase a person’s 
propensity to suffer a stroke; these studies will also account for 
stroke events triggered by other acute causes on days in which 
air quality is good. For these reasons, long-term studies tend 
to observe much larger effects if air pollution causes chronic 
cardiovascular pathologies, such as atherosclerosis. given that 
the long- and short-term studies are observing different effects, 
it would be inappropriate for risk assessors to use both pooled 
effect estimates in the same health impact analysis—doing so 
would likely incorrectly estimate effects.

this article demonstrates how the frequentist and 
Bayesian approaches may be applied in a complementary 
manner to produce pooled risk estimates that may inform air 
pollution risk assessments. in this analysis, we applied the fre-
quentist approach as a first step, probing the extent to which 
PM2.5 exposure was associated with various stroke outcomes; 
we found a positive relation between long- and short-term 
exposure and stroke. these findings—and the strong evi-
dence that exposure to PM2.5 could not be health-protective—
then informed our prior belief that the PM2.5-related risks of 
stroke may be positive, but not zero or negative, arguing for 
the use of the Bayesian model. Such an approach may prove 
useful in future air pollution meta-analyses—particularly 
those in which there are a small number of estimates or those 
for which the estimates are substantially skewed. However, 
given the somewhat inconsistent support for a positive, non-
zero effect, the use of the proposed Bayesian gamma model 
may place too much weight on strictly positive risk estimates, 
and thus future approaches should explore the feasibility of 
applying both zero and gamma prior models.

this Bayesian approach exhibits 2 key strengths that 
make it particularly well suited to generating risk distributions 
that inform air pollution health impact assessments. First, it 
offers an opportunity to inform the shape of the risk distri-
bution with prior knowledge about the biological plausibil-
ity of air pollution affecting health without distorting that 
distribution. conversely, alternative approaches to adjusting 
the uncertainty distribution—for example, ignoring negative 
values or centering the distribution on zero—distort the distri-
bution. Second, this approach ensures that if the evidence was 
not sufficient to support a strictly positive distribution, then 
the model would not converge.
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