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c Network topology is a key to predicting disease progression from initial growth.
c Network topology has a larger impact on disease spread than the vaccination strategy.
c Effects of delay on vaccination start time vary tremendously with network topology.
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a b s t r a c t

The effects of a number of vaccination strategies on the spread of an SIR type disease are numerically

investigated for several common network topologies including random, scale-free, small world, and

meta-random networks. These strategies, namely, prioritized, random, follow links and contact tracing,

are compared across networks using extensive simulations with disease parameters relevant for viruses

such as pandemic influenza H1N1/09. Two scenarios for a network SIR model are considered. First, a

model with a given transmission rate is studied. Second, a model with a given initial growth rate is

considered, because the initial growth rate is commonly used to impute the transmission rate from

incidence curves and to predict the course of an epidemic. Since a vaccine may not be readily available

for a new virus, the case of a delay in the start of vaccination is also considered in addition to the case of

no delay. It is found that network topology can have a larger impact on the spread of the disease than

the choice of vaccination strategy. Simulations also show that the network structure has a large effect

on both the course of an epidemic and the determination of the transmission rate from the initial

growth rate. The effect of delay in the vaccination start time varies tremendously with network

topology. Results show that, without the knowledge of network topology, predictions on the peak and

the final size of an epidemic cannot be made solely based on the initial exponential growth rate or

transmission rate. This demonstrates the importance of understanding the topology of realistic contact

networks when evaluating vaccination strategies.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

For many viral diseases, vaccination forms the cornerstone
in managing their spread and the question naturally arises as to
which vaccination strategy is, given practical constraints, the
most effective in stopping the disease spread. For evaluating the
effectiveness of a vaccination strategy, it is necessary to have as
precise a model as possible for the disease dynamics.

The widely studied key reference models for infectious disease
epidemics are the homogeneous mixing models where any
ll rights reserved.
member of the population can infect or be infected by any other
member of the population; see, for example, Anderson and
May (1991) and Brauer (2008). The advantage of a homogeneous
mixing model is that it lends itself relatively well to analysis and
therefore is a good starting point. Due to the homogeneity
assumption, these models predict that the fraction of the popula-
tion that needs to be vaccinated to curtail an epidemic is equal to
1�1=R0, where R0 is the basic reproduction number (the average
number of secondary infections caused by a typical infectious
individual in a fully susceptible population). However, the homo-
geneous mixing assumption poorly reflects the actual interactions
within a population, since, for example, school children and office
co-workers spend significant amounts of time in close proximity
and therefore are much more likely to infect each other than an
elderly person who mostly stays at home. Consequently, efforts
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have been made to incorporate the network structure into
models, where individuals are represented by nodes and contacts
are presented by edges. In the context of the severe acute respi-
ratory syndrome (SARS), it was shown by Meyers et al. (2005)
that the incorporation of contact networks may yield different
epidemic outcomes even for the same basic reproduction number
R0. For pandemic influenza H1N1/09, Pourbohloul et al. (2009)
and Davoudi et al. (2012) used network theory to obtain a real
time estimate for R0. Numerical simulations have shown that
different networks can yield distinct disease spread patterns; see,
for example, Bansal et al. (2007), Miller et al. (2012), and Section
7.6 in Keeling and Rohani (2008). To illustrate this difference
for the networks and parameters we use, the effect of different
networks on disease dynamics is shown in Fig. 1. Descriptions of
these networks are given in Section 2 and Appendix B.

At the current stage, most theoretical network infectious
disease models incorporate, from a real world perspective, idea-
lized random network structures such as regular (all nodes have
the same degree), Erd +os–Rényi or scale-free random networks
where clustering and spatial structures are absent. For example,
Volz (2008) used a generating function formalism (an alternate
derivation with a simpler system of equations was recently found
by Miller, 2011), while we used the degree distribution in the
effective degree model presented in Lindquist et al. (2011). In
these models, the degree distribution is the key network char-
acteristic for disease dynamics. From recent efforts (Ma et al.,
2013; Volz et al., 2011; Moreno et al., 2003; Salathé and Jones,
2010) on incorporating degree correlation and clustering (such as
households and offices) into epidemic models, it has been found
that these may significantly affect the disease dynamics for
networks with identical degree distributions. Fig. 2 shows disease
dynamics on networks with identical degree distribution and
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Fig. 1. Daily incidences (new infections) for the network topologies (see Section

2). On all networks, the average degree is 5, the population size is 200,000, the

transmission rate is 0.06, the recovery rate is 0.2, and the initial number of

infectious individuals is set to 100. Both graphs represent the same data but the

left graph has a semi-log scale (highlighting the growth phase) while the right

graph has a linear scale (highlighting the peak).
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Fig. 2. Comparison of the incidence curves (as shown in (b)) on networks with

identical disease parameters and degree distribution (as shown in (a)). The

network topologies are the random, meta-random, and near neighbor networks.

See Appendix B for details of the constructions of these networks.
disease parameters, but with different network topologies.
Clearly, reliable predictions of the epidemic process that only
use the degree distribution are not possible without knowledge of
the network topology. Such predictions need to be checked by
considering other topological properties of the network.

Network models allow more precise modeling of control
measures that depend on the contact structure of the population,
such as priority based vaccination and contact tracing. For
example, Shaban et al. (2008) consider a random graph with a
pre-specified degree distribution to investigate vaccination mod-
els using contact tracing. Kiss et al. (2006) compared the efficacy
of contact tracing on random and scale-free networks and found
that for transmission rates greater than a certain threshold, the
final epidemic size is smaller on a scale-free network than on a
corresponding random network, while they considered the effects
of degree correlations in Kiss et al. (2008). Cohen et al. (2003)
(see also Madar et al., 2004) considered different vaccination
strategies on scale-free networks and found that acquaintance
immunization is remarkably effective. Miller and Hyman (2007)
considered several vaccination strategies on a simulation of the
population of Portland Oregon, USA, and found it to be most
effective to vaccinate nodes with the most unvaccinated suscep-
tible contacts, although they found that this strategy may
not be practical because it requires considerable computational
resources and information about the network. Bansal et al. (2006)
took a contact network using data from Vancouver, BC, Canada,
considered two vaccination strategies, namely mortality- and
morbidity-based, and investigated the detrimental effect of vac-
cination delays. Salathé and Jones (2010) and Salathé et al. (2010)
found that, on realistic contact networks, vaccination strategies
based on detailed network topology information generally out-
perform random vaccination.

However, in most cases, contact network topologies are not
readily available. Thus, how different network topologies affect
various vaccination strategies remains of considerable interest.
To address this question, we explore two scenarios to compare
percentage reduction by vaccination on the final size of epidemics
across various network topologies. First, various network topol-
ogies are considered with the disease parameters constant,
assuming that these have been independently estimated. Second,
different network topologies are used to fit to the observed inci-
dence curve (number of new infections in each day), so that their
disease parameters are different yet they all line up to the same
initial exponential growth phase of the epidemic.

Vaccines are likely lacking at the outbreak of an emerging
infectious disease (as seen in the 2009 H1N1 pandemic, Conway
et al., 2011), and thus can only be given after the disease is
already widespread. We investigate numerically whether net-
work topologies affect the effectiveness of vaccination strategies
started with a delay after the disease is widespread; for example,
a 40 day delay as in the second wave of the 2009 influenza
pandemic in British Columbia, Canada (Office of the Provincial
Health Officer, 2010). Details of our numerical simulations are
given in Appendix A.

This paper is structured as follows. In Section 2, a brief
overview of the networks and vaccination strategies (more details
are provided in Appendices B and C) is given. In Section 3, we
investigate the scenario where the transmission rate is fixed,
while in Section 4 we investigate the scenario where the growth
rate of the incidence curve is fixed. To this end, we compute the
incidence curves and reductions in final sizes (total number of
infections during the course of the epidemic) due to vaccination.
For the homogeneous mixing model, these scenarios are identical
(Ma and Earn, 2006), but as will be shown, when taking topology
into account, they are completely different. We end with conclu-
sions in Section 5.
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2. Networks, vaccination trategies, and parameters

2.1. Contact networks

Detailed network topologies for human populations are far
from known. However, this detailed knowledge may not be
required when the main objective is to assert the impact that
topology has on the spread of a disease and on the effects of
vaccination. It may be sufficient to consider a number of repre-
sentative network topologies that, at least to some extent, can
be found in the actual population. Here, we consider the four
topologies listed in Table 1, which we now briefly describe.

In the random network, nodes are connected with equal
probability yielding a Poisson degree distribution. In a scale-free

network, small number of nodes have a very large number of links
and large number of nodes have a small number of links such that
the degree distribution follows a power law. Small world (SW)
networks are constructed by adding links between randomly
chosen nodes on networks in which nodes are connected to the
nearest neighbors. The last network considered is what we term a
meta-random network where random networks of various sizes
are connected with a small number of interlinks. All networks are
undirected with no self loops or multiple links. The histograms
of the networks are shown in Table 2, and the details of their
construction are given in Appendix B.
2.2. Vaccination strategies

The vaccination strategies considered are summarized in
Table 3. In the random strategy, an eligible node is randomly
chosen and vaccinated. In the prioritized strategy, nodes with the
highest degrees are vaccinated first, while in the follow links

strategy, inspired by notions from social networks, a randomly
chosen susceptible node is vaccinated and then all its neighbors
and then its neighbor’s neighbors and so on. Finally, in contact

tracing, the neighbors of infectious nodes are vaccinated.
For all the strategies, vaccination is voluntary and quantity

limited. That is, only susceptibles who do not refuse vaccination
are vaccinated and each day only a certain number of doses is
available. In the case of (relatively) new viral diseases, the supply
of vaccines will almost certainly be constrained, as was the case
for the pandemic influenza H1N1/09 virus. Also in the case of
Table 1
Illustration of the different types of networks used in this paper.

Random Scale-free

Table 2
Degree histograms of the networks in Table 1 with 200,000 nodes.

Random Scale-free
mass vaccinations, there will be resource limitations with regard
to how many doses can be administered per day.

The report (Office of the Provincial Health Officer, 2010) states
that the vaccination program was prioritized and it took 3 weeks
before the general population had access to vaccination. Thus we
assume that a vaccination program can be completed in 4–6 weeks
or about 40 days, this means that for a population of 200,000, a
maximum of 5000 doses a day can be used. For each strategy for
each time unit, first a group of eligible nodes is identified and then
up to the maximum number of doses is dispensed among the
eligible nodes according to the strategy chosen. More details of the
vaccination strategies and their motivations are given in Appendix C.

To study the effect of delayed availability of vaccines during an
emerging infectious disease, we compare the effect of vaccination
programs starting on the first day of the epidemic with those
vaccination programs starting on different days. These range from
5 to 150 days after the start of the epidemic, with an emphasis on
a 40 day delay that occurred in British Columbia, Canada, during
the influenza H1N1/2009 pandemic.

When a node is vaccinated, the vaccination is considered to be
ineffective in 30% of the cases (Bansal et al., 2006). In such cases,
the vaccine provides no immunity at all. For the 70% of the nodes
for which the vaccine will be effective, a two week span to reach
full immunity is assumed (Clark et al., 2009). During the two
weeks, we assume that the immunity increases linearly starting
with 0 at the time of vaccination reaching 100% after 14 days.
2.3. Parameters

The effect of vaccination strategies has been studied (see, for
example, Conway et al., 2011) using disease parameter values
estimated in the literature. However, network topologies were
not the focus of these studies. In Section 3, the effect of vaccina-
tion strategies on various network topologies is compared with a
fixed per link transmission rate. The per link transmission rate b is
difficult to obtain directly and is usually derived as a secondary
quantity. To determine b, we pick the basic reproduction number
R0 ¼ 1:5 and the recovery rate g¼ 0:2, which are close to that of
the influenza A H1N1/09 virus; see, for example, Pourbohloul
et al. (2009), Tuite et al. (2010). In the case of the homogeneous
mixing SIR model, the basic reproduction number is given by
R0 ¼ t=g, where t is the per-node transmission rate. Our
Small world Meta-random

Small world Meta-random



Table 3
Illustration of vaccination strategies. Susceptible nodes are depicted by triangles, infectious nodes by squares, and the vaccinated nodes by circles. The average degree in

these illustrations has been reduced to aid clarity. The starting point for contact tracing is labeled as A while the starting point for the follow links strategy is labeled as B.

The number of doses dispensed in this illustration is 3.

Prioritized Random Follow links Contact tracing

Table 4
Values of the key parameters and settings.

Parameter Value(s) Used in

Population size N 200,000 All

Maximum degree M 100 All

Average degree /kS 5 All

Recovery rate g 0.2/day All

Vaccination refusal 50% All

Vaccine effectiveness 70% All

Doses per day 5000 All

Time to immunity 14 days All

Shortcut ratio 0.05 Small world

External link probability 0.01 Meta-random
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Fig. 3. The effects of the vaccination strategies summarized in Table 3 for the

network topologies in Table 1 given a fixed transmission rate b. There is no delay

in the vaccination and parameters are equal to those used in Fig. 1.

Table 5

Reduction in the final sizes for given b¼ 0:06 without delay. This table is based on

the same data as in Fig. 3.

Network strategy Random Scale-free Meta-random

None 38,602 (0%) 73,794 (0%) 10,488 (0%)

Prioritized 941 (98%) 16,743 (77%) 909 (91%)

Random 1115 (97%) 23,129 (69%) 1078 (90%)

Follow links 1106 (97%) 22,561 (69%) 1077 (90%)

Contact tracing 1058 (97%) 21,704 (71%) 993 (91%)

J. Ma et al. / Journal of Theoretical Biology 325 (2013) 12–21 15
parameter values yield t¼ 0:3. For networks, t¼ b/kS. With the
assumption that the average degree /kS¼ 5, the above gives
the per-link transmission rate b¼ 0:06. The key parameters are
summarized in Table 4. In Section 3, we use this transmission rate
to compare the incidence curves for the networks in Table 1 with
the vaccination strategies in Table 3.

Some of the most readily available data in an epidemic are the
number of reported new cases per day. These cases generally display
exponential growth in the initial phase of an epidemic and a suitable
model therefore needs to match this initial growth pattern. The
exponential growth rates are commonly used to estimate disease
parameters (Chowell et al., 2007; Lipsitch et al., 2003). In Section 4,
we consider the effects of various network topologies on the effec-
tiveness of vaccination strategies for epidemics with a fixed expo-
nential growth rate. The basic reproduction numberR0 ¼ 1:5 and the
recovery rate g¼ 0:2 yield an exponential growth rate l¼ t�g¼ 0:1
for the homogeneous mixing SIR model. We tune the transmission
rate for each network topology to give this initial growth rate.
3. Results for a given transmission rate

In this section, the effectiveness of vaccination strategies on
various network topologies is investigated for a given set of
parameters, which are identical for all the simulations. The values
of the disease parameters are chosen based on what is known
from influenza H1N1/09. Qualitatively, these chosen parameters
should provide substantial insight into the effects topology has on
the spread of a disease. Unless indicated otherwise the parameter
values listed in Table 4 are used.

The effects of the vaccination strategies summarized in Table 3
when applied without delay are shown in Fig. 3. For reference,
Fig. 1 shows the incidence curves with no vaccination. Since the
disease dies out in the small world network (see Fig. 1), vaccina-
tion is not needed in this network for the parameter values taken.
Especially in the cases of the random and meta-random networks,
the effects of vaccination are drastic while for the scale-free
network they are still considerable. What is particularly notable
is that when comparing the various outcomes, topology has as
great if not a greater impact on the epidemic than the vaccination
strategy.

Besides the incidence curves, the final sizes of epidemics and
the effect vaccination has on these are also of great importance.
Table 5 shows the final sizes and the reductions in the final sizes
for the various networks on which the disease can survive (for
the chosen parameter values) with vaccination strategies for the
cases where there is no delay in the vaccination. Fig. 4 and Table 6
show the incidence curves and the reductions in final sizes for the
same parameters as used in Fig. 3 and Table 5 but with a delay of
40 days in the vaccination.

As can be expected for the given parameters, a delay has
the biggest effect for the scale-free network. In that case, the
epidemic is already past its peak and vaccinations only have a
minor effect. For the random and meta-random networks, the
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Fig. 4. The results for Fig. 3 if the vaccination start is delayed by 40 days.

Table 6

Reduction in the final sizes for given b¼ 0:06 with a delay of 40 days. This table is

based on the same data as in Fig. 4.

Network strategy Random Scale-free Meta-random

None 38,602 (0%) 73,794 (0%) 10,488 (0%)

Prioritized 4534 (88%) 69,990 (5%) 3567 (66%)

Random 5106 (87%) 70,956 (4%) 3854 (63%)

Follow links 4695 (88%) 71,641 (3%) 3829 (63%)

Contact tracing 4426 (89%) 70,381 (5%) 3774 (64%)

0 50 10
0

15
0

Time (days)

1

10

100

1000

3000

In
ci

de
nc

e

0 50 100 150
Delay time (days)

0

20

40

60

80

100

R
ed

uc
tio

n 
(%

)

Random

Scale-free

Meta-random

Random
Meta-randomScale-free

Fig. 5. Upper: the incidence curves with no vaccination on various networks,

showing the epidemic peak time for comparison with the delay time. Lower: the

final size reduction as a function of delay in random vaccination on various

networks.

Table 7
Transmission rates and initial number of infections for the studied network

topologies necessary to match the given exponential growth curve for tr25

days. The homogeneous network gives the exponential reference growth.

Network b Initial infections Incidences on day 1

Homogeneous 0.06 40 44

Random 0.0808 100 43

Scale-free 0.0457 160 40

Small world 0.35 18 41

Meta-random 0.082 100 43
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effects of the delay are significant, increasing the final size by a
factor of about 4. Nevertheless, the various vaccination strategies
have sufficient time to curtail the spread of the disease.

To further investigate the effects of delay in the case of random
vaccination, we compute reductions in final sizes for delays of
5, 10, 15,y,150 days, in random, scale-free, and meta-random
networks. Fig. 5 shows that, not surprisingly, these reductions
diminish with longer delays. However, the reductions are strongly
network dependent. On a scale-free network, the reduction
becomes negligible as the delay approaches the epidemic peak
time, while on random and meta-random networks, the reduction
is about 40% with the delay at the epidemic peak time.

This section clearly shows that given a certain transmission
rate b, the effectiveness of a vaccination strategy is impossible to
predict without having reliable data on the network topology of
the population. Next, we consider the case where instead of the
transmission rate, the initial growth rate is given.
4. Results for a given exponential growth rate

We line up incidence curves on various network topologies to
a growth rate l predicted by a homogeneous mixing SIR model
with the basic reproduction number R0 ¼ 1:5 and recovery rate
g¼ 0:2 (in this case with exponential, l¼ ðR0�1Þg¼ 0:1). Table 7
summarizes the transmission rates that yield this exponential
growth rate on the corresponding network topologies. The initial
number of infectious individuals for models on each network
topology needs to be adjusted as well so that the curves line up
along the homogeneous mixing SIR incidence curve for 25 days.
As can be seen from the table, the variations in the parameters are
indeed very large, with the transmission rate for the small world
network being nearly 8 times the value of the transmission rate
for the scale-free network.

4.1. Disease epidemics with no vaccination

The incidence curves corresponding to the parameters in Table 7
are shown in Fig. 6. As can clearly be seen, for these parameters, the
curves overlap very well for the first 25 days, thus showing indeed
the desired identical initial growth rates. However, it is also clear
that the curves diverge strongly later on, with the epidemic on the
small world network being the most severe. These results show that
the spread of an epidemic cannot be predicted on the basis of having
a good estimate of the growth rate alone. In addition, comparing
Figs. 1 and 6, a higher transmission rate yields a much larger final
size and a longer epidemic on the meta-random network.

4.2. The effectiveness of vaccination strategies

The effects of the various vaccination strategies for the case
of a given growth rate are shown in Fig. 7. Given the large
differences in the transmission rates, it may be expected that the
final sizes show significant differences as well. This is indeed the
case as can be seen in Table 8, which shows the percentage
reduction in final sizes for the various vaccination strategies. With
no vaccination, the final size of the small world network is more
than 3 times that of the scale-free network, but for all except the
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follow links vaccination strategy the percentage reduction on the
small world network is greater.

The effects of a 40-day delay in the start of the vaccination are
shown in Fig. 8 and Table 9. Besides the delay, all the parameters
are identical to those in Fig. 7 and Table 8. The delay has the
largest effect on the final sizes of the small world network,
increasing it by a factor of 20–30 except in the follow links case.
On a scale-free network, the delay renders all vaccination strate-
gies nearly ineffective.
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remaining parameters are identical to those in Fig. 6.
These results also confirm the importance of network topology
in disease spread even when the incidence curves have identical
initial growth. The initial stages of an epidemic are insufficient to
estimate the effectiveness of a vaccination strategy on reducing
the peak or final size of an epidemic.
5. Conclusions

The relative importance of network topology on the predict-
ability of incidence curves was investigated. This was done
by considering whether the effectiveness of several vaccination
strategies is impacted by topology, and whether the growth in the
daily incidences has a network topology independent relation
with the disease transmission rate. It was found that without a
fairly detailed knowledge of the network topology, initial data
cannot predict epidemic progression. This is so for both a given
transmission rate b and a given growth rate l.

For a fixed transmission rate and thus a fixed per link
transmission probability, given that a disease spreads on a net-
work with a fixed average degree, the disease spreads fastest on
scale-free networks because high degree nodes have a very high
probability to be infected as soon as the epidemic progresses. In
turn, once a high degree node is infected, on average it passes on
the infection to a large number of neighbors. The random and
meta-random networks show identical initial growth rates
because they have the same local network topology. On different
 vaccination
ioritized vaccination
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growth rate is given. The transmission rates b are as indicated in Table 7, while the

Table 8
Reduction in the final sizes due to vaccination for the case where the growth rate

is given. This table is based on the same data as in Fig. 7.

Network

strategy

Random Scale-free Small world Meta-random

None 105,386 (0%) 46,655 (0%) 150,535 (0%) 98,608 (0%)

Prioritized 4224 (96%) 4597 (90%) 2229 (98%) 4141 (95%)

Random 7530 (93%) 6640 (86%) 3054 (98%) 5769 (94%)

Follow links 5921 (94%) 6679 (86%) 28,315 (81%) 5787 (94%)

Contact

tracing

5929 (94%) 6500 (86%) 2710 (98%) 4770 (95%)
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Fig. 8. As for Fig. 7 if the vaccination start is delayed by 40 days.

Table 9
Reduction in the final sizes when there is a delay of 40 days in the start of the

vaccination program. This table is based on the same data as in Fig. 8.

Network

strategy

Random Scale-free Small world Meta-random

None 105,074 (0%) 46,056 (0%) 152,536 (0%) 99,950 (0%)

Prioritized 64,937 (38%) 33,660 (27%) 68,319 (55%) 37,494 (62%)

Random 69,552 (34%) 36,105 (22%) 71,947 (53%) 39,692 (60%)

Follow links 68,874 (34%) 36,219 (21%) 98,370 (36%) 39,877 (60%)

Contact tracing 69,936 (33%) 34,488 (25%) 73,780 (52%) 39,523 (60%)
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network topologies, diseases respond differently to parameter
changes. For example, on the random network, a higher transmis-
sion rate yields a much shorter epidemic, whereas on the meta-
random network, it yields a longer one with a more drastic
increase in final size. These differences are caused by the spatial
structures in the meta-random network. Considering that a meta-
random network is a random network of random networks, it is
likely that the meta-random network represents a general popu-
lation better than a random network.

For a fixed exponential growth rate, the transmission rate
needed on the scale-free network to yield the given initial growth
rate is the smallest, being about half that of the random and the
meta-random networks. Hence, the per-link transmission prob-
ability is the lowest on the scale-free network, which in turn
yields a small epidemic final size.

For different network topologies, we quantified the effect of
delay in the start of vaccination. We found that the effectiveness
of vaccination strategies decreases with delay with a rate strongly
dependent on network topology. This emphasizes the importance
of the knowledge of the topology, in order to formulate a practical
vaccination schedule.

With respect to policy, the results presented seem to warrant
a significant effort to obtain a better understanding of how the
members of a population are actually linked together in a social
network. Consequently, policy advice based on the rough esti-
mates of the network structure should be viewed with caution.
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Appendix A. Stochastic epidemic models

The nodes in the network are labeled by their infectious status,
i.e. susceptible, infectious, vaccinated, immune, refusing vaccina-
tion (but susceptible), and vaccinated but susceptible (the vaccine
is not working), respectively.

The stochastic simulation is initialized by first labeling all the
nodes as susceptible and then randomly labeling I0 nodes as
infectious. Then, before the simulation starts, 50% of susceptible
nodes are labeled as refusing vaccination but susceptible. During
the simulation, when a node is vaccinated, the vaccine has a
probability of 30% to be ineffective. If it is not effective, the node
remains fully susceptible, but will not be vaccinated again. If it is
effective, then the immunity is built up linearly over a certain
period of time, taken as 2 weeks.

We assume that infected persons generally recover in about
5 days, giving a recovery rate g¼ 0:2. The initial number of
infectious individuals I0 is set to 100 unless otherwise stated, to
reduce the number of runs where the disease dies out due to
statistical fluctuations.

All simulation results presented in Sections 4 and 5 are averages of
100 runs, each with a new randomly generated network of the
chosen topology. The parameters in the simulations are shown in
Table 4.

The population size N was chosen to be sufficiently large to be
representative of a medium size town and set to N¼ 200,000,
while the degree average is taken as /kS¼ 5 with a maximum
degree M¼100 (having a maximum degree only affects the scale-
free network since the probability of a node having degree M is
practically zero for the other network types).
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Appendix B. Contact network construction

B.1. Random

When considering a large group of people, a good first approx-
imation is that the links between these people are random. Although
it is clear that this cannot accurately represent the population since
it lacks, for example, clustering and spatial aggregation (found in
such common contexts as schools and work places), it may be
possible that if the population is big enough, most if not all non-
random effects average out. Furthermore, random networks lend
themselves relatively well to analysis so that a number of interesting
(and testable) properties can be derived. As is usually the case, the
random network employed here originates from the concepts first
presented rigorously by Erd+os and Rényi (1959).

Our random networks are generated as follows:
(1)
 We begin by creating N unlinked nodes.

(2)
 In order to avoid orphaned nodes, without loss of generality,

first every node is linked to another uniformly randomly
chosen node that is not a neighbor.
(3)
 Two nodes that are not neighbors and not already linked are
uniformly randomly selected. If the degree d of both the nodes
is less than the maximum degree M, a link is established. If
one of the nodes has maximum degree M, a new pair of nodes
is uniformly randomly selected.
(4)
 Step 3 is repeated N �/kS�N times.
B.2. Scale-free

When considering certain activities in a population, such as
the publishing of scientific work or sexual contact, it has been
found that the links are often well described by a scale-free
network structure where the relationship between the degree and
the number of nodes that have this degree follows a negative
power law; see, for example, the review paper by Albert and
Barabási (2002). Scale-free networks can easily be constructed
with the help of a preferential attachment. That is to say, the
network is built up step by step and new nodes attach to existing
nodes with a probability that is proportional to the degree of the
existing nodes. Our network is constructed with the help of
preferential attachment, but two modifications are made in order
to render the scale-free network more comparable with the other
networks investigated here. First, the maximum degree is limited
to M not by restricting the degree from the outset but by first
creating a scale-free network and then pruning all the nodes with
a degree larger than M. Second, the number of links attached to
each new node is either two or three dependent on a certain
probability that is set such that after pruning the average degree
is very close to that of the random network (i.e. /kS¼ 5).

Our scale-free network is generated as follows:
(1)
 Start with three fully connected nodes and set the total
number of links L¼3.
(2)
 Create a new node. With a probability of 0.3, add 2 links.
Otherwise add 3 links. For each of these additional links to be
added find a node to link to as outlined in step 3.
(3)
 Loop through the list of nodes and create a link with prob-
ability d=ð2LÞ, where d is the degree of the currently consid-
ered target node.
(4)
 Increase L by 2 or 3 depending on the choice in step 2.

(5)
 Repeat N�3 times steps 2 and 3.

(6)
 Prune nodes with a degree 4M.
B.3. Small world

Small world networks are characterized by the combination of
a relatively large number of local links with a small number of
non-local links. Consequently, there is in principle a very large
number of possible small world networks. One of the simplest
ways to create a small world network is to first place nodes
sequentially on a circle and couple them to their neighbors,
similar to the way many coupled map lattices are constructed
(Willeboordse, 2006), and to then create some random short cuts.
This is basically also the way the small world network used here
is generated. The only modification is that the coupling range (i.e.
the number of neighbors linked to) is randomly varied between
2 and 3 in order to obtain an average degree equal to that of the
random network (i.e. /kS¼ 5). We also use periodic boundary
conditions, which as such is not necessary for a small world
network but is commonly done.

The motivation for studying small world networks is that small
groups of people in a population are often (almost) fully linked
(such as family members or co-workers) with some connections to
other groups of people.

Our small world network is generated as follows:
(1)
 Create N new unlinked nodes with index i¼ 1 . . .N.

(2)
 With a probability of 0.55, link to neighboring and second

neighboring nodes (i.e. create links i2i�1, i2iþ1, i2i�2,
i2iþ2). Otherwise, also link up to the third neighboring
nodes (i.e. create links i2i�1, i2iþ1, i2i�2, i2iþ2,
i2i�3, i2iþ3). Periodic boundary conditions are used (i.e.
the left nearest neighbor of node 1 is node N while the right
nearest neighbor of node N is node 1).
(3)
 Create the ‘large world’ network by repeating step 2 for
each node.
(4)
 With a probability of 0.05 add a link to a uniformly randomly
chosen node excluding self and nodes already linked to.
(5)
 Create the small world network by carrying out step 4 for
each node.
B.4. Meta-random

In the random network, the probability for an arbitrary node to
be linked to any other arbitrary node is constant and there is no
clear notion of locality. In the small world network on the other
hand, tightly integrated local connections are supplemented
by links to other parts of the network. To model a situation in
between where randomly linked local populations (such as the
populations of villages in a region) are randomly linked to each
other (for example, some members of the population of one
village are linked to some members of some other villages), we
consider a meta-random network. When increasing the number
of shortcuts, a meta-random network transitions to a random
network. It can be argued that among the networks investigated
here, a meta-random network is the most representative of the
population in a state, province or country.

Our meta-random network is generated as follows:
(1)
 Create N new unlinked nodes with index i¼ 1 . . .N.

(2)
 Group the nodes into 100 randomly sized clusters with a

minimum size of 20 nodes (the minimum size was chosen
such that it is larger than /kS, which equals five throughout,
to exclude fully linked graphs). This is done by randomly
choosing 99 values in the range from 1 to N to serve as cluster
boundaries with the restriction that a cluster cannot be
smaller than the minimum size.
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(3)
 For each cluster, create an Erd +os–Rényi type random network.

(4)
 For each node, with a probability 0.01, create a link to a

uniformly randomly chosen node of a uniformly randomly
chosen cluster excluding its own cluster.
B.5. Near neighbor network with a random network degree

distribution

The network described in this subsection is a near neighbor
network and therefore mostly local. Nevertheless, there are some
shortcuts but shortcuts to very distant parts of the network are
not very likely. It could therefore be called a medium world
network (situated between small and large world networks). The
key feature of this network is that despite being mostly local its
degree distribution is identical to that of the random network.

Our near neighbor network is generated as follows:
(1)
 Create N new unlinked nodes with index i¼ 1 . . .N.

(2)
 For each node, set a target degree by randomly choosing a

degree with a probability equal to that for the degree
distribution of the random network.
(3)
 If the node has reached its target degree, continue with the
next node. If not continue with step 4.
(4)
 With a probability of 0.5, create a link to a node with a smaller
index, otherwise create a link to a node with a larger index
(using periodic boundary conditions).
(5)
 Starting at the nearest neighbor by index and continuing by
decreasing (smaller indices) or increasing (larger indices) the
index one by one while skipping nodes already linked to,
search for the nearest node that has not reached its target
degree yet and create a link with this node.
(6)
 Create the network by repeating steps 3–5 for each node.
Appendix C. Details of the vaccination strategies

For all the strategies, vaccination is voluntary and quantity
limited. That is to say only susceptibles who do not refuse
vaccination are vaccinated and each day only a certain number
of doses is available. For each strategy for each time unit, first a
group of eligible nodes is identified and then up to the maximum
number of doses is dispensed among the eligible nodes according
to the strategy chosen.

C.1. Prioritized

In this strategy, nodes with the highest degrees are vaccinated
first. The motivation for this strategy is that high degree nodes on
average can be assumed to transmit a disease more often than
low degree nodes.

Numerically, the prioritized vaccination strategy is implemen-
ted as follows:
(1)
 For each time unit, start at the highest degree (i.e. consider
nodes with degree d¼M) and repeat the steps below until
either the number of doses per time step or the total number
of available doses is reached.
(2)
 Count the number of susceptible nodes for degree d.

(3)
 If the number of susceptible nodes with degree d is zero, set

d¼ d�1 and return to step 2.

(4)
 If the number of susceptible nodes with degree d is smaller

than or equal to the number of available doses, vaccinate
all the nodes, then set d¼ d�1 and continue with step 2.
Otherwise continue with step 5.
(5)
 If the number of susceptible nodes with degree d is greater
than the number of currently available doses, randomly
choose nodes with degree d to vaccinate until the available
number of doses is used up.
(6)
 When all the doses are used up, end the vaccination for the
current time unit and continue when the next time unit
arrives.
C.2. Random

In practice prioritizing on the basis of certain target groups
such as health care workers or people at high risk of complica-
tions can be difficult. Prioritizing on the basis of the number
of links is even more difficult. How would such individuals be
identified? One of the easiest vaccination strategies to implement
is random vaccination.

Numerically, the random vaccination strategy is implemented
as follows:
(1)
 For each time unit, count the total number of susceptible
nodes.
(2)
 If the total number of susceptible nodes is smaller than or
equal to the number of doses per unit time, vaccinate all the
susceptible nodes. Otherwise do step 3.
(3)
 If the total number of susceptible nodes is larger than the
number of doses per unit time, randomly vaccinate suscep-
tible nodes until all the available doses are used up.
C.3. Follow links

One way to reduce the spread of a disease is by splitting the
population into many isolated groups. This could be done by
vaccinating nodes with links to different groups. However given
the network types studied here, breaking links between groups is
not really feasible since besides the random cluster network,
there is no clear group structure in the other networks. Another
approach is the follow links strategy, inspired by notions from
social networks, where an attempt is made to split the population
by vaccinating the neighbors and the neighbor’s neighbors and so
on of a randomly chosen susceptible node.

Numerically, the follow links strategy is implemented as
follows:
(1)
 Count the total number of susceptible nodes.

(2)
 If the total number of susceptible nodes is smaller than or

equal to the number of doses per unit time, vaccinate all the
susceptible nodes.
(3)
 If the total number of susceptible nodes is greater than the
number of available doses per unit time, first randomly choose a
susceptible node, label it as the current node, and vaccinate it.
(4)
 Vaccinate all the susceptible neighbors of the current node.

(5)
 Randomly choose one of the neighbors of the current node.

(6)
 Set the current node to the node chosen in step 5.

(7)
 Continue with steps 4–6 until all the doses are used up or no

available susceptible neighbor can be found.

(8)
 If no available susceptible neighbor can be found in step 7,

randomly choose a susceptible node from the population and
continue with step 4.
C.4. Contact tracing

Contact tracing was successfully used in combating the SARS
virus. In that case, everyone who had been in contact with an
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infectious individual was isolated to prevent a further spread of
the disease. De facto, this kind of isolation boils down to removing
links rendering the infectious node degree 0, a scenario not
considered here. Here contact tracing tries to isolate an infectious
node by vaccinating all its susceptible neighbors.

Numerically, the contact tracing strategy is implemented as
follows:
(1)
 Count the total number of susceptible nodes.

(2)
 If the total number of susceptible nodes is smaller than or

equal to the number of doses per unit time, vaccinate all the
susceptible nodes.
(3)
 Count only those susceptible nodes that have an infectious
neighbor.
(4)
 If the number of susceptible nodes neighboring an infectious
node is smaller than or equal to the number of doses per unit
time, vaccinate all these nodes.
(5)
 If the number of susceptible nodes neighboring an infectious
node is greater than the number of available doses repeat
step 6 until all the doses are used up.
(6)
 Randomly choose an infectious node that has susceptible
neighbors and vaccinate its neighbors until all the doses are
used up.
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