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The first 1000 days of life, including the intrauterine period, are regarded as a fundamental
stepping stone for the development of a human. Unequivocally, nutrition during this period
plays a key role on the proper development of a child, both directly through the intake of
essential nutrients and indirectly by affecting the composition of the gut microbiota. The
gut microbiota, including bacteria, viruses, fungi, protists and other microorganisms, is a
highly modifiable and adaptive system that is influenced by diet, lifestyle, medicinal
products and the environment. Reversely, it affects the immune system in multiple
complex ways. Many noncommunicable diseases (NCDs) associated with dysbiosis are
“programmed” during childhood. Nutrition is a potent determinant of the children’s
microbiota composition and maturation and, therefore, a strong determinant of the
NCDs’ programming. In this review we explore the interplay between nutrition during
the first 1000 days of life, the gut microbiota, virome and mycobiome composition and the
development of NCDs.

Keywords: microbiome, microbiota, virome, mycobiome, nutrit ion, chi ldren, immune system,
noncommunicable diseases
INTRODUCTION

Nutrition early in life, including the intrauterine stage when the fetus is exposed to nutrients
through maternal diet, plays a pivotal role not only on the growth of children but also on mental
development and the initiation of numerous noncommunicable diseases (NCDs), like
cardiovascular diseases, cancers, respiratory diseases, diabetes, atopy and allergies
(Supplementary Table 1), that are possibly programmed during this period (1, 2). Childhood
nutritional programming of adult diseases, the so called “fetal and infant origin of disease”
hypothesis, underlines the interrelation between malnutrition during early life and the
susceptibility to the development of various diseases during adulthood (3, 4). Therefore,
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nutrition acts as an important environmental factor that
accelerates or ameliorates the genetically programmed
predisposition into several NCDs (5).

Even though the importance of nutrition during the pre- and
postnatal period of life on the ontogenesis of healthy children
and, consequently, of healthy adults, has been well understood,
the pathogenetic mechanisms beyond this phenomenon are far
more complex than just the consumption of essential nutrients
for cell and tissue growth. An increasing body of data supports
that early-life nutrition is a potent determinant of the children
gut microbiome assembly and maturation (6, 7). The gut
microbiota, including bacteria, viruses, fungi, protists and other
microorganisms (Supplementary Table 1), is a highly
modifiable and adaptive system (7, 8). Its formation starts early
in life, during the intrauterine development (9). The gut
microbiota can be influenced by multiple factors such as the
type of delivery (8, 10), maternal diet and body mass index, as
well as the maternal health status prior to conception, while
other parameters like the geographical region, domestic
environment and feeding modes are also significant
contributors (2, 7, 11, 12). The interplay between postnatal
nutrition, gut microbiota composition and abundance as well as
their effects on children’s immune system and the development
of NCDs is still poorly understood.

In this review we aim to present the effects of nutrition during
the first 1000 days of life, including the stages of pregnancy,
infancy and toddlerhood, on the children’s gut bacterial
microbiota, virome and mycobiome, and the impact of these
effects on the immune system and on the development of NCDs.
Frontiers in Immunology | www.frontiersin.org 2
EFFECTS OF MATERNAL NUTRITION
DURING PREGNANCY ON THE INFANT’S
BACTERIAL MICROBIOTA
The impact of a “balanced” healthy maternal nutrition during
pregnancy on fueling an efficient fetal development and
organogenesis has long been recognized. However, the exact
effects of maternal nutrition on the formation of fetal microbiota
during intrauterine life are still being investigated (13). Although
evidence is still limited, increasing data by studies exploring the
interplay between fetal exposure to an array of different nutrients
though mother’s dietary habits, and the offspring’s bacterial
microbiota composition, support that a correlation actually
exists (Table 1) (11, 14). Indeed, a study examining both
human subjects and non-human primates in mother –
offspring dyads, found that meconium microbiota composition
altered according to maternal diet; in particular, a high-fat, rich
in refined carbohydrates (like sugar and processed grains) and
animal products and low in greens and vegetables diet, was
associated with remarkable alterations in the offspring’s
intestinal bacterial community a notable relative depletion
of Bacteroides in the meconium exposed to a high-fat diet
during gestation (14). These changes were evident for up to 6
weeks after birth in neonates born by mothers who followed a
high-fat type of diet (14). A study aiming to delineate the effects
of maternal artificially sweetened beverages (ASB) consumption
during pregnancy on the infants’ body mass index (BMI) and on
their gut microbiome, showed that ASB-exposed infants had a
divergent microbiome maturation trajectory, with community-
TABLE 1 | Factors of maternal nutrition during pregnancy and associated modifications on the offspring’s microbiome.

Factors of nutrition during pregnancy Effects on offspring’s microbiota

Nutrition, vitamins and micronutrients supplementation during pregnancy
Maternal high fat diet (fat concentration >43.1%) in humans (14) Maternal high fat diet associated with decreased numbers of Bacteroidetes colonies in neonates for

up to 6 weeks postnatally
Maternal high fat diet in human and animal models (15) Diminish of Lactobacillus reuteri in bacterial colonization of neonatal gut
Prenatal and postnatal maternal supplementation with iron and
folic acid and multiple micronutrients (16)

No statistical significant alteration in a and b* diversity of gut microbiome

Maternal consumption of lipid based nutrient supplements
(prenatally and postnatally) (16)

Increased infant gut microbiota diversity at 18 months postpartum. No difference was noted
regarding b diversity.

Prenatal maternal vitamin D supplementation (17) No association with infant Clostridium difficile colonization in crude or adjusted models
Prenatal maternal milk consumption (>3 cups per day compared
to less or 1 cup per day) (17)

Statistical significant lower odds of Clostridium difficile colonization in exclusively breastfed infants

Maternal vitamin D supplementation (18) Infant’s gut microbiota is altered according to the dose of vitamin D supplementation during
pregnancy

Maternal consumption of vitamin D fortified milk (17) Reduced chances of Clostridium difficile colonization in infants
Maternal high fruit consumption among vaginally born infants (6) Increased odds for high Streptococcus/Clostridium gut colonization
Maternal diet rich in red processed meat among babies delivered
by caesarian section (6)

Increased numbers of Bifidobacterium in offspring.

Prenatal maternal consumption of non-nutrient sweeteners (19) May alter maternal microbiome and therefore microbiome transmitted to offspring after birth.
Association with obesogenic effects on offspring is possible.

Prenatal maternal consumption of artificially sweetened
beverages (20)

Divergent microbiome maturation trajectory, with community-level shifts in the bacterial taxa and
depletion of several Bacteroides spp. Association with obesogenic effects on offspring.

Prebiotics and probiotics consumption during pregnancy
Supplementation with indigestible oligosaccharide prebiotics
(fructo-oligosaccharides and galactooligosaccharides) (21)

Significant increase of the number of maternal fecal Bifidobacterium spp. especially Bifidobacterium
longum. Bifidogenic effect not proved in neonates.

Probiotics consumption (22) Alterations in vaginal microbiota and therefore the formation of neonatal gut microbiota might
be influenced
*a diversity, Variation of microbes in a single sample; b diversity, Variation of microbial communities between samples.
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level shifts in the bacterial taxa and depletion of several
Bacteroides spp (20). Additionally, ASB-exposed infants had
higher BMI at the age of one-year-old, than their non-exposed
peers (20). Another study attempted to evaluate the influence of
prenatal maternal diet on infants’ microbiota by dividing the
cases according to mode of delivery. Results showed three main
microbial clusters: Bifidobacterium, Streptococcus and
Clostridium, Bacteroides and Enterobacteriaceae in infants born
vaginally. Intriguingly, high fruit consumption by mothers
during pregnancy was associated with a higher presence of
Clostridiaceae and a lower presence of Bifidobacterium in
vaginally born children (6). On the other hand, a greater
concentration of the Bifidobacterium spp. was detected in
babies delivered with cesarean section by mothers who
followed a diet rich in red processed meat (6). Additionally, in
the cesarean section subgroup, increased dairy intake favored the
colonies of Clostridium, while seafood and fish ingestion enabled
the colonization of the gut with group B Streptococcus in both
vaginally and non-vaginally delivered neonates (6). The KOALA
Birth Cohort study, investigated the association between vitamin
D exposure during intrauterine life and the prevalence or
abundance of specific bacterial taxa in the infants’ gut
microbiota; the researchers found a significant negative linear
trend between the dose of maternal vitamin D supplementation
and the counts of Bifidobacterium spp. and Clostridium difficile,
underlining that the levels of vitamin D during pregnancy affect
the offspring’s gut microbiota composition (18). In a subset of
1,157 mother-infant pairs of the CHILD Cohort study, maternal
consumption of vitamin-D fortified milk was associated with
reduced the likelihood of C. difficile colonization in infants (17).
EFFECTS OF BREASTFEEDING ON
NEONATES’ BACTERIAL MICROBIOTA

Breastfeeding is widely accepted as the nutritional gold standard
for infants. The protective role of breastmilk against numerous
diseases such as diabetes and obesity as well as its benefits on the
intellectual development of the children has been well established
(23, 24) . Breastmi lk is r ich not only in prote ins
(immunoglobulins, cytokines etc.), lipids (free fatty acids,
phospholipids etc.) and the human milk oligosaccharides
(HMOs) but also in bacteria, viruses and fungi (9, 25–29).

The breastmilk’s endogenous content in bacterial species
functions as the foundation for the formation of a rich gut
microbiota, providing essential nutrients for its growth and
expansion (9, 30, 31). Interestingly, certain bacterial strains
(including Streptococcus spp. and Veillonella dispar) co-occur
both in mothers’ milk and in their offspring’ stool, a
phenomenon that is diminished in infants fed with pumped
breastmilk (32). Undoubtedly, the infant’s gut microbiota is
significantly influenced by the “breastfeeding exclusivity and
duration” (32). Moreover, feeding of infants with pumped
breastmilk has been associated with enrichment of the
breastmilk microbiota with potential pathogens as well as
depletion of bifidobacteria, a phenomenon that highlights the
Frontiers in Immunology | www.frontiersin.org 3
hypothesis of retrograde microbial inoculation of the milk by the
infants’ oral cavity (30). Conversely, studies have shown evidence
of a feedback relation between the maternal skin and milk on one
side and the baby’s’ saliva on the other. This feedback loop
manifests itself as an exchange of microbiota and pathogens
from mother to offspring and vice versa. It is believed that
this mechanism structures a biochemical pathway that assists
innate immunity in the neonatal period (Figure 1). Hence,
the composition of the breastmilk is adjusted to the needs of the
newborn by changing over time in order to modulate the
formation of the gut microbiota. For instance, colostrum has
high concentrations of HMOs, while mature milk contains
greater amounts of protein. HMOs are not only the main
nutrient for the saccharolytic gut microbiota species, but are also
crucial for the development of the Bifidocterium spp. colonies that
dominate the gut of healthy breastfed infants (8, 9, 31). On the
contrary, formula-fed infants show a greater alpha-diversity in
gastrointestinal bacterial colonies and decreased numbers of
Bifidobacterium spp. and higher numbers of Veillonella and
Clostridioides (26, 31, 33, 34). A recent prospective observational
study in preterm infants in a neonatal Intensive Care Unit, which
attempted to reveal the effects of breastmilk in the gut microbiota,
showed that preterm babies fed either with their mother’s own
milk (MOM) or with pasteurized donor’s human milk (DHM)
had closer microbiota profiles compared to the group of
formula fed infants. On the other hand, MOM-fed neonates
had a significantly greater presence of Bifidobacteriaceae and
lower presence of Staphylococcaceae, Clostridiaceae, and
Pasteurellaceae compared to preterm DHM-fed infants (35). A
small cohort with 10 formula-fed and 10 MOM-fed preterm
infants, found a similar alpha-diversity but a significantly
different beta-diversity of the gut microbiota between the two
groups; additionally, the Propionibacterium, Streptococcus, and
Finegoldia genera and bacteria of the Clostridiales order had
significantly higher relative abundance in the MOM group,
while bacteria of the Enterobacteriaceae family, the Enterococcus
andVeillonella genera, and Bacilli class were more abundant in the
formula group (36).
EFFECTS OF INTRODUCTION OF INFANT
FORMULAS AND SOLID FOOD ON
CHILDREN’S BACTERIAL MICROBIOTA

Although many studies have explored the short and long-term
influence of the mode of birth and the type of milk (breastmilk
versus formula) on the infants’ flora composition (33, 37–40),
fewer studies have addressed the second phase of nutrition,
which could be defined as the time after the introduction of
solid food and prior to weaning, and the third phase of nutrition
that begins with weaning.

The introduction of solid food leads to a significant
diversification of nutrients from the relative homogeneous
components of the breast or bovine milk towards plant and
meat-derived meals, including the microbial content of these
foods. Moreover, it coincides with the “oral stage” of
March 2021 | Volume 12 | Article 644269
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development, which is associated with the uptake of a great
variety of microbes through insertion of environmental objects
into the mouth. Thus, the maturation of the “enterotypes”
reflects a mixture of influences by food and multiple
environmental exposures (41). Interestingly, this diversification
of microbial exposure is associated with an inter-individual
convergence of the microbiota, thus neonatal microbiota differ
more from each other than the more mature microbiota of
infants and children (42, 43). The introduction of solid foods
is associated with a decrease in Bifodobacterium and an increase
in Firmicutes phylum (42, 44). The introduction of soy formula
milk was associated with an increase in Lachnospiraceae. This
results in the enhancement of metabolic pathways suggesting a
Frontiers in Immunology | www.frontiersin.org 4
short-chain fatty acid (SCFA)-rich environment, including
glycerol to 1-butanol fermentation which has been associated
with dysbiosis (43). Intriguingly, Bifidobacteriaceae were reduced
in infants prior to the introduction of soy formula. The
introduction of soy formula could potentially reflect a reaction
to gastrointestinal symptoms that can be interpreted as an
intolerance to milk-based nutrition (43). This might be an
early example for a microbiome-driven modification of
nutritional habits which also may play a great role during later
life. Moreover, the composition of the infant’s microbiome
correlates with the domestic water source (tap water versus
boiled/distilled water), probably due to differing microbial or
chemical components (43).
FIGURE 1 | Nutritional parameters affecting positively or negatively the development of the immune system and the risk of noncommunicable diseases during the
first 1000 days of life.
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EFFECTS OF NUTRITION ON CHILDREN
VIROME AND MYCOBIOME

The virome of the human gastrointestinal tract consists mainly of
eukaryotic viruses and bacteriophages (45). Bacteriophages
are believed to play a fundamental role in enhancing the balance
of microbiota and are probably responsible for the microbiome –
virome interaction (46). The colonization of children’s intestine
with viral species as well as its association with maternal diet has not
been thoroughly studied so far and, therefore, a correlation between
maternal nutritional profile and virome formation in neonates is yet
to be established. A detailed analysis of fecal DNA virome from
Malawian twins along with maternal stool samples suggested that
age is the most determining factor that defines the composition of
the gut virome (46). The same result was confirmed in a meta-
analysis of individuals of Western background, whereby intestinal
virome was found to be mainly dependent on age, even in members
of the same family who shared the same external environment (47).
The greatest viral diversity has been noticed in infants aged 0-3 years
and in adults aged 18-65 years (48).

The postnatal diversification of the eucaryotic virome appears to
be triggered by environmental exposure, in particular by the exposure
to breastmilk or formula milk (47, 49). Recent studies have attempted
to investigate the interrelation between breastfeeding and gut virome
composition in neonates (29, 47, 49). In general, the virome and
especially the presence of bacteriophages, is crucial for a balanced
intestinal microenvironment (50). Intriguingly, the bacteriophage
virome appears to be guided by the initial bacterial pioneer strains
after birth. Moreover, an interesting study indicated that
bacteriophages from milk are transferred to the neonate’s gut
during breastfeeding (29). Additionally, the protective role of
breastmilk against multiple viruses is a common ground, as
supported by data showing an abundance of human viruses in fecal
samples from formula-fed neonates compared to a weaker viral gut
colonization in breastfed babies (49). The bacteriophage virome
contracts during the first 2 years of life due to an increasing
predominance of microviridae that reach 80% of the relative
abundance at 24 months of age (47).

The humanmycobiome consists of fewer strains than the bacterial
microbiome (51). Preterm birth is associated with a predominance of
saccharomyces, specificallyCandida, in themeconium (52). Thus, the
mycobiome may diversify during ontogeny paralleling the bacterial
microbiome. However later in life, the human mycobiome is
characterized by a relatively stable core mycobiome which is
dominated by yeasts. A prospective study examining the mycobiota
in mother-offspring dyads detected fungal colonies in the gut of
newborns around the age of 2 weeks (53). The same study
demonstrated traces of fungal DNA in the majority of both
members of the same dyad, while maternal consumption of
probiotics during pregnancy was associated with an increased
concentration of maternal mycobiota (53). Another study reported
that pre-, pro- and antibiotics dietary consumption have an effect on
mycobiome formation in the infant’s oral cavity and gastrointestinal
tract (54). Breastmilk is believed to be a transmitter of fungi, as studies
have revealed the presence of Malassezia, Candida and
Saccharomyces species in milk samples. A study examining the
Frontiers in Immunology | www.frontiersin.org 5
milk mycobiota from 271 mothers from the CHILD birth cohort,
revealed that fungi were isolated in 21.4% of the mothers; the most
dominant species were Candida, Alternaria, and Rhodotorula (25).
Interestingly, the milk samples where fungi were isolated from, had
lower concentrations of two HMOs (25). Data on the possible
translocations of fungal species during breastfeeding between
maternal skin and the infant’s oral cavity are scarce (55, 56). The
transfer of fungal species frommother to infant and its significance to
their health is increasingly being examined, although-unlike adult gut
mycobiota data-the evidence is still limited. However, in a
longitudinal study, the interindividual variations were as
pronounced as the intraindividual variations over time (51). This
may indicate that the mycobiome depends on environmental factors
that are yet to be determined.
EARLY LIFE MICROBIOTA EFFECTS ON
IMMUNITY AND THE DEVELOPMENT
OF NCDS

The interaction between early life microbiota and the development
of the immune system is quite complex. The exposure to
microorganisms (either pathogenic or innocent bystanders, like
normal flora) serves as an “immune-educator” that sets the
foundations for sustainable immune responses which distinguish
between self, non-self and pathogenic antigens (57). Nonpathogenic
microbes evoke an immunosuppressive effect on intestinal epithelial
cells by inhibiting the transcription factor nuclear factor (NF)-kB
pathway, thus demonstrating a direct anti-inflammatory effect (58,
59). The key-role of “immune-education” is supported by data
showing that probiotic bacteria may be protective against atopic
disease by blunting a T helper (Th)2-skewed immune response (57).
Moreover, the institution of antigen-tolerance bath in gut and
systematically, can also be dependent on suppressive cytokines,
such as IL-10 and transforming growth factor (TGF)-b produced by
regulatory T cells, that control the activity of other cells like the Th1
and Th2 (58). The effect of gut microbial colonization on the
development of the immune system, and its potential impact on
programming of NCDs (such as atopy), was also supported by a
study in newborns depicting that putative CD4+CD25+ regulatory
T cells were expanded in infants colonized by toxin-producing
Staphylococcus aureus early in life, compared to non-colonized
infants or those who had a later colonization; children who
developed allergy within the next 18 months, were significantly
less often colonized by toxin-producing S. aureus during the first
days after birth (57).

The link between the influences of inflammatory and metabolic
pathways induced by different nutritionally-driven microbiome
profiles and the determination of NCDs development has not
been concretely established yet. NCDs are unequivocally
multifactorial, and microbiome effects during childhood on their
development later in life are only one piece of the puzzle, among
others like genetic predisposition, environmental factors and
lifestyle habits. The complexity of this puzzle is immense since it
involves the interactions between the bacterial microbiome, virome,
March 2021 | Volume 12 | Article 644269
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and mycobiome on one side, and virtually all organ systems of the
host on the other (40). Notwithstanding, the advent of
transcriptomics, microbial genomics and metabolomics has
substantially contributed in deciphering the role of microbiome in
modulating the immune system towards or away from the
development of NCDs (60). For instance, animal studies have
shown that gut microbiota of high fiber fed animals produce
metabolites (short chain fatty acids, SCFAs) that induce T-
regulatory lymphocyte populations and modulate bone marrow-
derived antigen-presenting cell precursors, and these in turn,
reduce dendritic cell proliferation and Th2 reactivation in the
lungs, thus providing a possible protective mechanism against
asthma development (60).

Understanding the link between early antigen exposures and
programming of NCDs is a prerequisite for new therapeutic
strategies. Specific diet recommendations might contribute in
reducing the chances to develop specific types of NCDs. As
shown in Figure 1, multiple nutritional factors can either
promote or ameliorate the risk of NCDs through their effects on
immune system development during pregnancy, early and late
infancy period. For example, the maternal consumption of
omega-3 fatty acid supplements during pregnancy has been
associated with decreased risk of food allergies and other IgE
mediated conditions during the first 12 months of life (Figure 1)
(61). Genetic and epigenetic predispositions lead to a myriad of
individual fates, indicating that there cannot be a “one size fits all”
optimal microbiome, virome and mycobiome to prevent NCDs.
However, large scale “omics” research has revealed distinct
colonization patterns with prognostic relevance (40, 47, 62, 63). In
general, it appears that shifts within the colonization often affect the
risk of various NCDs in the same direction. Thus, it does not seem
as if the implementation of preventive interventions against the
development of one group of NCDs (such as allergies) would lead to
an increased risk for another group of NCDs (such as obesity).

The central hypothesis may be that vaginal delivery, (long term)
breastfeeding, early exposure to a wide variety of foods including
potential allergens and a farm environment, as well as the avoidance
of antibiotics and tobacco smoke are associated with “eubiosis” i.e.
“a balanced host-microbe interaction (‘healthy’ microbiome)”
(Supplementary Table 1) and a reduced risk of NCDs (9, 40, 64).
Regarding the microbiome, “eubiosis” is characterized by a
predominance of Bifidobacterium, Lactobacillus and Veillonella
species during the time of exclusive breast feeding, whereas
Bacteroides and Clostridiales dominate after the introduction of
solid foods (40, 44). The gut microbiome of children born by
caesarean section who are more prone to develop allergies later in
life, is dominated by Enterobacteriaceae (38). The neonatal
microbiome of infants that are born by caesarean section can be
modified to resemble the microbiome after vaginal birth by
postnatal inoculation with vaginal swabs from the mother (10).
Although the long term effects are still under investigation, this
study is regarded as a proof of principle that the neonatal
microbiome can be modified successfully.

Little is known about the influence of the neonatal virome on the
risk of NCDs. The virome may play multiple roles by either
colonizing or infecting the host or by modifying the microbiome in
Frontiers in Immunology | www.frontiersin.org 6
the form of bacteriophages. The gut mycobiome regulates the host
immunity and affects the course of chronic inflammatory diseases
(65). However, it is still unclear whether the mycobiome has direct or
indirect influences on the infant’s risk of developing NCDs.
RESEARCH GAPS AND FUTURE
RESEARCH NEEDS

Although increasing evidence supports the association between pre-
and postnatal nutrition of children and modifications of their gut
microbial community, the interplay between nutrition and
microbiome composition in other body sites remains obscure.
Moreover, data regarding the effects of certain types of diet (like
the vegetarian, the vegan, the ketogenic etc.) on the gut microbiome
during gestation, during the phase of solid food introduction, as well
as later in childhood are limited. Also, little is still known about the
complex interactions between the specific modifications of
microbiome during this period of life and its impact on
immunobiological mechanisms that are associated with the
development of NCDs later in life. Intriguingly, based on recent
evidence that bacterial strains, once acquired, can be retained in gut
microenvironment for a long time (66), research efforts should be
made on exploring the reversibility of the microbiome-induced
immune effects over time in children with nutritionally-induced
dysbiosis. Finally, more data are needed regarding the nutritionally-
driven alterations of virome and mycobiome during early life and
how these are associated with morbidity phenotypes later in life.
CONCLUSIONS

Nutrition during the first 1000 days of life is unequivocally
important for a prosperous developmental trajectory of children
and for a healthier “programming” of adult life. Nutrition has a
multidimensional impact on ontogenesis, including the
modification of our microbiome, which in turn interacts with the
immune system and promotes or halts numerous NCDs. The
knowledge gained thus far, from adult and, to a lesser extent,
from pediatric studies should guide further research and catalyze an
attitude towards healthier and more balanced nutritional
approaches, especially during the first years of life.
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