
Inevitable Evolutionary Temporal Elements in Neural
Processing: A Study Based on Evolutionary Simulations
Uri Yerushalmi*, Mina Teicher

The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel

Abstract

Recent studies have suggested that some neural computational mechanisms are based on the fine temporal structure of
spiking activity. However, less effort has been devoted to investigating the evolutionary aspects of such mechanisms. In this
paper we explore the issue of temporal neural computation from an evolutionary point of view, using a genetic simulation
of the evolutionary development of neural systems. We evolve neural systems in an environment with selective pressure
based on mate finding, and examine the temporal aspects of the evolved systems. In repeating evolutionary sessions, there
was a significant increase during evolution in the mutual information between the evolved agent’s temporal neural
representation and the external environment. In ten different simulated evolutionary sessions, there was an increased effect
of time -related neural ablations on the agents’ fitness. These results suggest that in some fitness landscapes the emergence
of temporal elements in neural computation is almost inevitable. Future research using similar evolutionary simulations may
shed new light on various biological mechanisms.
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Introduction

Many current Neural Network models assume that all semantic

information is contained in the spike rates of the neurons [1]. But

there is also evidence that the fine temporal structure of the spiking

activity may play a role [2].

Most recent research on time - dependent neural computation has

focused on examining the computing power of temporal neural

computation models [3] or on uncovering biological evidence that

supports the claim of precise neural activity timing [4,5]. However,

from an evolutionary point of view, little is known about the

circumstances that may have prompted the evolution of temporally

based neural computing systems. One such circumstance could have

been the need for a binding mechanism, as presented in [6], which

posits a compositionality model where synfire chain waves [7]

represent semantic atoms and synchronization of activity in different

chains serves as a binding mechanism. Recently, it has been shown

[8] through simulations that such a model is actually possible and is

able to solve simple binding problems. Additional factors that might

have led to a preference for temporal spiking elements over the

course of evolution are related to network construction mechanisms.

In [9] it was shown that in a fully connected cell assembly, where

synaptic plasticity is time-dependent, a small number of neural

clusters are formed, thus splitting the cell assembly into chained

pools, and producing a distributed and synchronized firing pattern.

This finding and others [10] show that a minimal temporal structure-

based spiking activity can be learned in a self – organizing process.

In this study we examine whether temporal computing elements

can emerge in small networks during evolution. It is based on

evolutionary simulations of neurocontrolled virtual organisms that

evolve in an environment with selective pressure for successful

mate-finding. The virtual organism’s reproduction model is based

biological, genetic and neural development principles. The

evolutionary simulations are based on a chromosome pattern that

translates to a gene-protein network of a cellular organism

controlled by a neural system. The chromosome model permits

reproduction of an offspring by combining two chromosomes.

During each evolutionary session selective pressure based on mate

finding is placed on a population of neurocontrolled organisms.

The results are based on the analysis of temporal neural coding in

the evolved organisms.

Typically, in evolutionary simulation experiments a population

of virtual organisms is evolved using a genetic algorithm [11] over

many generations to best survive in a given environment. (See [12]

for a full introduction), while there is full control of the

environment and conditions, complete knowledge of the organ-

isms’ behavior, the network architecture, and dynamics. The

present study is based on a complex, biologically plausible

evolutionary model we presented elsewhere [13] that has been

shown to evolve other unrelated biological phenomena such as

gene order functionality [14]. Because of the important role mate

finding and selection play in biological evolution [15], the data are

taken from experiments in which the evolutionary pressure was

based on mate finding and reproductive behavior.

Evolutionary models in neuroscience studies have been applied

in a variety of ways: evolving a NN model of touch sensitivity

behavior in C.Elegans [16]; studying the evolution and develop-

ment of central pattern generators [17–19]; simulating the

emergence of command neurons [20]; and in evolving ‘‘Mexican

hat’’ patterns of activity [21].

Information theory was applied to find cases of evolutionary

sessions in which there was a significant emergence of temporal
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neural coding in the evolved organisms. Our results suggest that

such an emergence is repetitive and almost inevitable in some

simulated environments.

Results

In the next sections we first present our evolutionary simulation

model that expands our previous constructs [13,14] to include

neural mechanisms. The first section describes our chromosome

model that is based on DNA and protein-like sequences. Two such

chromosomes can reproduce an offspring chromosome, as detailed

in the second section. The translation model of chromosomes to

gene-protein networks and the gene-network dynamic system

model is detailed later, preceding sections describing the way the

cellular dynamics is translated to organism and cellular function-

ality, differentiation and neural activity. After describing the

model, we present evolutionary sessions where the virtual

organism evolved in an environment with mate-finding selective

pressure, and present various experiments and analyses examining

the emergence of temporal neural coding in the evolved

organisms.

Chromosome
Each organism in the model expresses a phenotype derived

from a chromosome structured according to biological founda-

tions. Each chromosome includes a sequence of genes, where each

gene starts with a promoter sequence followed by a messenger

RNA sequence.

Each promoter sequence includes 1–3 cis-regulatory elements,

and an element that includes the gene parameters. The parameter

block of a gene/protein represents the properties derived

specifically from its spatial structure. The use of gene and protein

parameters in building the network is detailed later. A list of all

such parameters is presented in Table 1. Each mRNA sequence

starts with a cis-regulatory element, followed by a parameter

sequence1, which in turn is followed by a trans-acting element; all

represent the translated protein. All cis-regulatory elements, trans-

acting elements and parameter sequences are represented as

sequences of real numbers, with the chromosome composed of a

long sequence of real numbers r1…rn. The chromosome is

translated into a gene-protein network as detailed in the following

sections.

Reproduction
A reproduction of a child chromosome from its parent

chromosomes is based on a self adaptive method [22], avoiding

linkage of the experimental results to specific crossover and

mutation values. Each real value ri of the chromosome is

surrounded by several other values: a crossover probability value

ci, and two mutability values sr
i , sc

i that control the extent to which

parameters ri and ci respectively are likely to change (for more

information see [22]). The values of ri, ci, sr
i , sc

i are mutated self-

adaptively:

~sx
i ~sx

i exp t0N 0, 1ð ÞztNi 0, 1ð Þð Þ
~xi~xizessx

i Ni 0, 1ð Þ

t~

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
n
pq� �{1

, t0~
ffiffiffiffiffi
2n
p� �{1

Where n is the number of genes, x M{r,c},i M{1..n}, N(0,1) is a

standard normal random number, Ni(0,1) represents a new

random number generated for each component, and ~sx
i , ~xi are

the new values for sx
i , xi.

Before mutation takes place, the parent chromosomes are

aligned using a dynamic programming algorithm [23] and

recombined where the probability for a crossover point to occur

on the aligned chromosomes at location i & j of the parents is

Pij = ci+cj.

Gene-Protein network
The chromosome presented above is translated into a gene-

protein network. The network connection strengths wij are

assigned according to the hamming distance dij between cis-

regulatory elements and trans-acting elements. Each gene and

each protein transcripted has several parameters that are read

from the chromosome and control its dynamics as detailed in

Table 1.

The gene-protein network controls three dynamic values for

each protein i: vcin
i - The protein concentration inside the cell. vout

i

- The protein concentration outside the cell, and vact
i - the activity

level of the protein in the cell. This value represents the extent to

which the current spatial structure of the protein enables it to act

on other genes and proteins.

Table 1. Gene/Protein parameters derived directly from the genome.

h
a Threshold value for gene/protein activation

hp Threshold value for protein production

ba Slope value for gene/protein activation

bp Slope value for protein production

a Gene/Protein static activity factor

k Protein diffusion factor

ta Gene/Protein activation time constant

tp Protein production time constant

B A vector of two Boolean parameters that govern the translated protein’s anchoring type on the membrane: i.e. whether the protein is anchored to the
internal or external side of the membrane, or acts as a receptor that delivers information into or out of the cell.

ktype A vector of Boolean parameters that governs the translated protein’s ability to diffuse between soma-axon, soma-dendrite, synapsed dendrite-axon.

The parameters above are encoded for each gene/protein in the chromosome as a ‘‘parameter block’’ and govern the gene and its derived protein dynamics in the
gene-protein network. The model separates the activation dynamics, controlling the ability of the gene-protein to affect other genes-proteins, and the production
dynamics that controls the protein’s concentration, by having different slopes bN, thresholds hN, and time constants tN: ba, ha, ta for each gene/protein to control the
dynamics of the activation and hp, bp, tp to control the dynamics of the protein production.
doi:10.1371/journal.pone.0001863.t001

Neural Temporal Elements
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The dynamics of the system is as follows:

ta
i

Lvact
i

Lt
~fha

i , ba
i

X
j

ajwijv
g act, bið Þ
j vact

j

 !
{vact

i

tp
i

Lvcin
i

Lt
~fh

p

i
, b
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i

X
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ajwijv
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j vact

j

 !
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i
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i

X
j

ajwijv
g cout, bið Þ
j vact

j

 !
zki+2vcout

i {vcout
i

where fh, b hð Þ~ 1
2

1ztanh b h{hð Þð Þð Þ, The equations above are

based on a threshold logic paradigm commonly used in

simulations of genetic regulatory circuits [24,25], and neural

networks [26,27], where the basic differential equation is of the

form:

t
dxi

dt
~f

X
wijxj

� �
{xi

In such an equation the dynamics of a node value x are

controlled with a time constant t, and an activation function f that

processes the cumulative field induced by the other nodes.

In the model, the field induced by a node j on node i is the

product its dynamic activity level vact
j , its concentration v

g x, bð Þ
j , its

concentration v
g x, bð Þ
j , its static activity factor aj, and the

connection between the nodes wij.

To enable the model to separate the activation dynamics and

the production dynamics, for example to affect a protein’s

concentration without affecting its spatial structure and vice versa,

each gene/protein possesses different slopes bN, thresholds hN, and

time constants tN: ba, ha, ta to control the dynamics of the

activation and hp, bp, tp to control the dynamics of the protein

production.

The model enables the external concentration vcount
j of each

protein to play a role in the network dynamics by incorporating

the expression v
g x, bð Þ
j in the equations above. v

g x, bð Þ
j is either the

internal vcin
j or external concentration vcount

j , according to the

values of x and b, which makes the model capable of evolving

receptor-ligand relationships, based on the Boolean parameter b.

In order to permit tissue related dynamics, the external

concentration equation contains a diffusion expression. ki is the

diffusion coefficient of i, and +2~
P

u[ x,yf g

L2

Lu2, so that the expression

ki+2vx
i represents the contribution of diffusion to the change in

external concentration, according to the diffusion equation
Lu
Lt

~k+2u.

The genetic aspects of the organism model are described more

fully in [13,14,28].

Cell functionality
In order to enable the gene-protein network presented above to

model processes at the tissue level, we added output nodes to the

gene-protein network. A similar component was introduced in

[25] as a grammar of rules which describe inter- cell interactions

and changes in number, type and state of cells. In our model, there

is an output node m representing each cellular- related event that

can be triggered by the network (apoptosis, mitosis, cellular

migration, and differentiation, neurite sprouting, synaptic target

selection), values that need to be derived from the network (like Na

conductivity, synaptic weight regulation), or from the genome

(such as translocation probability), including modeling directional

receptors for axon guidance.

Each such output node m is represented by a random-generated

bit string sm. The protein nodes j in the gene-protein network that

are close enough to string sm djsm
ƒ0:25

� �
are connected to output

node m. According to the threshold logic paradigm mentioned

earlier, an internal value um is calculated for each output node:

um~fhm , bm

X
j

ajwijv
cin
j vact

j

 !
hm~0:5, bm~1ð Þ

For nodes that trigger an event (e.g., occurrence of mitosis, cell

death, migration, differentiation event), the event is triggered when

the value um passes a predefined threshold (0.5). When managing

scalar values such as a translocation probability, the internal value

um may be multiplied by another pre-defined factor to obtain the

actual scalar value as detailed in Table 2.

In cases a receptor-ligand relationship was needed to obtain

directional quantification, a two dimensional version of the above

value was used, where the effect of internal factors was replaced by

the effect of external gradient factors:

ud
m~fhm , bm

X
j

ajwij

Lvcout
j

Ld
vact

j

 !
hm~0:5, b~1, d [ x, yf gð Þ

A list of all functions is detailed in Table 2.

In this paper the term ‘organism’ refers to the group of all cells

that are repeated- mitosis results of the same zygote cell. Since

during the mitosis the gene-protein network is copied from the

parent cell, all organism cells are controlled by the same network

structure, but since each cell is situated in a different location, it

may possess different internal and external protein concentrations.

Each organism is allocated a period of time in which it must

stop mitosis; only then will the organism be considered an adult

that may reproduce. However, if the organism does not stop

mitosis during the predefined period it is promptly removed from

the environment without reproduction. This constraint is based on

the assumption that an organism’s ability to regulate its own

growth and mitosis is a significant component of its fitness. We

assume here that organisms that develop by infinite mitosis events

are cancerous organisms that will suffer from low fitness values and

therefore will not be able to reproduce [29].

Cell Differentiation
When a cell differentiation messenger is triggered, the cell

differentiates into one of three cell types according to its

differentiation marker with the highest level (as detailed in

Table 2):

N A motor cell – that upon firing will cause the agent to move in

lm-lc direction, where lm is the motor cell location, and lc is the

agent’s centroid.

N A sensor cell – that will be either sensitive to an odorant (A or

B), or act as a photoreceptor. Odor A is emitted into the

environment by potential mate agents, odor B is emitted by

non mate agents; the secreted current I from an odor sensitive

cell is proportional to the distance from the odorant origin and

the cell. Photoreceptor cells secrete constant current if any

agent is placed in a pie region apr radians wide.

Neural Temporal Elements
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A hidden cell – that will embed a neural model as detailed in the

next section.

An example of the development of a 4- cell organism is

illustrated in Figure 1.

Neural activity
All hidden cells were embedded with an Integrate and Fire [30]

neural model, where the membrane potential of the cell body

behaved according to:

C
dv

dt
~gk v{Vkð ÞzgNa v{VNað ÞzI

where C is the membrane capacitance, I is the total current

injected into the cell, and g and V values are ion channel

conductivity and reversal potential.

When the membrane potential reached the threshold h, and the

cell was not refractory, it fired an action potential, gNa was then

raised for 1 system epoch, and immediately switched to a

refractory state for tref seconds, where it could not fire and gk

was raised and later decayed back with a tk
ref time constant.

The current I injected into the cell consisted of a noise current

Inoise, and incoming synapse current Iexc, where Inoise is a Gaussian

noise causing a cell without external input to fire randomly. The

noise of the various cells was uncorrelated.

I~Inoisez
X

Iexc

Table 2. List of all functions used in the experiments.

Description Symbol
Output
Type

Predefined
Range

Cell differentiation messenger B {T,F}

Sensory neuron marker A (0,1)

Motor neuron marker A (0,1)

Hidden neuron marker A (0,1)

Mitosis messenger B {T,F}

Apoptosis messenger B {T,F}

Migration speed soma A (0,0.1)

Migration speed neurite A (0,0.1)

Sprout neurite messenger B {T,F}

Turn to adult messenger B {T,F}

Translocation Probability A (0,1)

Soma Migration Directional Marker C (0,2p)

Axon Migration Directional Marker C (0,2p)

Dendrite Migration Directional
Marker

C (0,2p)

Crossover Probability A (0,1)

Axon Target Select Marker B {T,F}

Synapse Weight Axon A (0,1)

Synapse Weight Dendrite A (0,1)

Inhibitory Neuron Marker A (0,1)

Odor A Sensor Marker A (0,1)

Odor B Sensor Marker A (0,1)

Sight Sensor Marker A (0,1)

Threshold potential h0 A (260E-3,
270E-3)

Threshold adaptivity factor a A (0.005, 0.05)

Threshold time constant th A (15E-3,50E-3)

gNa in open channel state A (4.0,4.4)

gNa in closed channel state A (20E-3,50E-3)

Action Potential Refractory Time tref A (2E-3,5E-3)

k Refractory Time tk
ref

A (4E-3,6E-3)

gk in open channel state A (200E-3,
500E-3)

gk in closed channel state A (2.3,2.6)

Synaptic current rise time ts1 A (0.5E-3,2E-3)

Synaptic current decay time ts2 A (3E-3,7E-3)

Membrane time constant at rest: C/Sg A (0.005, 0.02)

Photoreceptors sight angle apr A (0, p/2)

Neural noise time constant A (0, 1E-2)

The function values were limited to be in the ranges above. Type ‘A’ functions
transform um linearly to be in a predefined (min,max) range. Type ‘B’ functions
are Boolean functions based on a um.0 test. Output Type ‘C’ functions are
directional functions and are based on umx & umy detailed earlier and produce
an angle. All predefined ranges were chosen to cover reasonable biological
values. Migration speed values are given in cell diameters per epoch. Neural
electric properties are given in OASM like units, in the simulations each epoch
represented half a millisecond. Only symbols of values that are referred to by
symbol in the text are presented.
doi:10.1371/journal.pone.0001863.t002

Figure 1. An example of development of a 4 cell agent. A) The
development process begins with a chromosome. B) The chromosome
is translated into a gene-protein network expressed in a zygote. C) The
gene-protein network triggers mitosis events, producing 4 different
cells. The network is the same in all cells, but the concentrations are
different. D) The cells migrate and differentiate into a neuron, motor
cell, and two sensory cells. E) Neurite sprouting events occur. Some
proteins are marked by ktype as ones that cannot diffuse from neurite to
soma. Therefore, their instances are separated in the neurites, with the
same connectivity. F) After the axon is guided by external protein
concentrations, target selection events occur, causing the axons to
synapse. A synapse is formed, allowing proteins marked ktype as
synapse-diffusible to move from one cell to another.
doi:10.1371/journal.pone.0001863.g001

Neural Temporal Elements
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The excitatory Iexc current injected by a presynaptic cell i into a

postsynaptic cell j had a rise and decay time as follows:

Iexc tð Þ~
wji

e
ts1

te
{ t

ts1 tƒts1

wjie
{

t{ts1
ts2 ts1ƒt

8<:
Where t is the time elapsed from the last action potential in the

presynaptic cell, and t1 & t2 are the rise and decay time constants.

The threshold level had a dependence on the membrane

potential level, according to:

t0
dh

dt
~{ h{h0ð Þzav

The Evolutionary Session
The model presented above was used to simulate several

evolutionary sessions in order to examine the temporal aspects of

the evolved neural mechanisms. In order to make the evolved

neural mechanisms biologically relevant, an effort was made to

keep the model and the environmental definitions as unbiased and

biologically plausible as possible. Each evolutionary session was

initialized by placing a random population in an environment.

Each agent was randomly set to be either male or female, and

could move in the environment by using its sensor, motor and

hidden neurons. In order to encourage the agents to develop

neural networks, the agents were given a life span period

proportional to the different cellular types they developed: a

sensory neuron, a motor neuron, a hidden neuron, a dendrite, an

axon, a synapse. Hence, a maximal time span was given to every

agent that possessed a ‘‘basic’’ neural network, which was defined

as a neural network with at least one instance of each of the six

elements mentioned above. Since the system was defined as having

only dendrite-to-axon synapses, a ‘‘basic’’ network could also be

seen as a network that included at least a motor, a hidden and a

sensory neuron and one synapse. The agents were removed from

the environment after completing their life span period.

The population size was restricted to a predefined range by

removing the eldest agents from the environment when the

number of agents reached the upper bound (due to crowding), and

by producing new individuals in the environment when the

number of agents reached the lower bound.

In order to evolve neural based behavior, a ‘‘mating rule’’ was

introduced in the environment, where two agents that contacted

each other reproduced offspring according to the reproduction

equation presented earlier. Accordingly, we expected the agents to

develop neural mechanisms that would maximize their contacts

with agents of the opposite sex.

As a first step, we tested for changes in the agents’ behavior

along generations. As shown in Figure 2, the percentage of

reproduction resulting from agent contact rose over generations.

However, such a development could be a result of collective

competence unrelated to individual neural mechanisms. In order

to insure that this phenomenon was also based on individual

competence, we saved the chromosome data from 200 randomly

chosen agents during evolution, and tested each chromosome

phenotype in a different environment that had two kinds of static

objects: one with a ‘‘mate’’ odor, and the other with a ‘‘self’’ odor.

The findings show a significant improvement over evolution in the

average proportion of agent-mate contacts each 100 generations.

(P = 1.8061023, r = 0.58, Spearman’s Rank Correlation Test).

Thus, during the evolutionary session there was some improve-

ment in individual fitness.

Static Mutual information
After demonstrating behavioral development in the evolution-

ary sessions, we tested for development in the neural representa-

tion.

Development in individual agents’ ability during evolution to

access the right objects implies that during evolution there may be

some development in the neural representation of the environment

that can be measured as an increase in the mutual information

between the neural state of the agents and their proximal

environment. An agent’s fitness development can also be related

to an increase in the agent’s ability to exploit representational

information for its activities.

To assess whether there was any development in the mutual

information between the agent’s environment and its neural

representation we ran another evolutionary session where we

saved chromosomes from randomly chosen agents during

evolution. After the evolutionary session, the chromosomes were

re-developed into agents, and a set S of two randomly generated

environments was defined S = {s1, s2}, each si having 4 static

agents, two of each sex located randomly, as shown in Figure 3.

The agents were pinned to the center of s1 and s2 repeatedly in a

random order and their neural activity was measured. We

calculated 4 mutual information measures for each agent using 4

different approaches:

N IS
ccor: The best estimated mutual information between the

environment S and the cross correlation value of two neurons

in the agent.

N IS
lag: The best estimated mutual information between the

environment S and a time-lag value of two neurons in the

agent.

Figure 2. Behavioral development during evolution. Red:
Proportion of reproduction triggered by agent contacts (as opposed
to reproductions initiated by the system when the number of agents
was too low). Black: Proportion of agents that developed a basic
network (as defined in the text). Blue: Proportion of agent death events
triggered by the system because of crowding (as opposed to deaths
due to completing the life span period). The values are average
proportions measured every 5 generations.
doi:10.1371/journal.pone.0001863.g002

Neural Temporal Elements

PLoS ONE | www.plosone.org 5 April 2008 | Volume 3 | Issue 4 | e1863



N IS
ccorlag: The best estimated mutual information between the

environment S and a combination of cross correlation and

time lag of two neurons in the agent.

N IS
r : The best estimated mutual information between the

environment S and rate measures of two neurons in the

agent.

IS
ccor~ max

i,j

bII ccor i,jð Þ; Sð Þ

IS
lag~ max

i,j

bII lag i,jð Þ; Sð Þ

IS
ccorlag~ max

i,j

bII ccor i,jð Þ,lag i,jð Þ; Sð Þ

IS
r ~ max

i,j

bII ri,rj ; S
� �

As shown in Figure 4, there was a significant correlation

between the current generation and each of the 3 time- dependent

measures: Is
ccor, IS

lag, IS
ccorlag.

However, such significance could not be found with the rate

based measure IS
r . This could be attributed to a tendency of the

evolutionary session to (i) ignore the rate based information. (ii)

evolve systems that utilize the rate information without improving

it. (iii) evolve systems that improve the rate based information

which cannot be measured in static environmental conditions as

presented earlier, but rely on a dynamic environment which is

more comparable to the conditions where the agent has evolved.

Accordingly, a dynamic experiment, which is described next, was

designed to test the latter explanation by examining the growth in

the mutual information between the neural representation and a

dynamic definition of the agent’s environment.

Dynamic Mutual information
In this experiment, after the evolutionary session, the chromo-

somes were re-developed into agents, and put one at a time in a

single environment similar to the one they evolved in, with two

types of objects: a ‘mate’- like and ‘non- mate’ like object. The

agents could move in the environment freely and their neural

activity was assessed. A a ‘‘preferred direction’’ value D = {dr, dl}

was continuously calculated for the agent, indicating whether there

were more mate-like objects to its right (r) or left (l) (see figure 5).

Four additional mutual information measures were obtained for

each agent:

N ID
ccor: The best estimated mutual information between the

preferred direction D and the cross correlation value of two

neurons in the agent.

N ID
lag: The best estimated mutual information between the

preferred direction D and a time-lag value of two neurons in

the agent.

N ID
ccorlag: The best estimated mutual information between the

preferred direction D and a combination of cross correlation

and time lag of two neurons in the agent.

N ID
r : The best estimated mutual information between the

preferred direction D and rate measures of two neurons in the

agent.

ID
ccor~ max

i,j

bII ccor i,jð Þ; Dð Þ

ID
lag~ max

i,j

bII lag i,jð Þ; Dð Þ

ID
ccorlag~ max

i,j

bII ccor i,jð Þ,lag i,jð Þ; Dð Þ

ID
r ~ max

i,j

bII ri,rj ; D
� �

As shown in Figure 6, there was a significant correlation

between the current generation and all the dynamic mutual

information measures:

Figure 3. Static estimation of the mutual information between the agent’s neural representation and the environment. The agent
(arrowed) is moved between the center of s1 and s2 in a random order while its neural activity is recorded. The agent is pinned to the center of s1 and
s2 and cannot move freely. s1 and s2 are two different environments containing agents of the same sex (grey) or opposite sex (white) at random
locations.
doi:10.1371/journal.pone.0001863.g003
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Utilizing the information
Although we showed there was significant growth of mutual

information in the experiments above, in the time dependent

cases, the absolute mutual information values were very small (as

seen in Figures 4 and 6), suggesting that there was no evolutionary

pressure to raise the mutual information values we have chosen to

examine, and implying that the shown growth is not due to

evolutionary dynamics of the model. Such a conclusion would also

derive that there is no effect of the mutual information measures

on the agents’ fitness. In the next experiment we tested whether in

these cases the information had any effect on the agents’

performance; namely, whether there was any correlation between

the mutual information in the previous analysis and actual

performance. Again, the chromosomes were re-developed into

agents, and placed one at a time in an environment similar to the

previous one. The agents could move in the environment freely as

their neural activity was measured. Additionally, in this test we

also calculated grade:i.e., the proportion of contacts each agent had

with a ‘mate’ object, divided by the ‘mate’ object frequency. We

calculated the Spearman rank correlations between the mutual

information measure and the grades of 1156 randomly selected

agents. A significant correlation was only found for

ID
ccorlag P~2:72|10{4, r~0:09

� �
and ID

ccor P~6:0|10{3, r~0:07
� �

.

In the other cases the results were not significant:

Figure 4. Best estimated mutual information with static environment values of randomly selected agents during evolution. A) The
rate based measure IS

r has higher values than the other measures, but no significant correlation was observed with generation (P = 0.7087, r =
261022). B) Measure based on cross correlation combined with lag IS

ccorlag P~8:7|10{5, r~0:21
� �

. C) Measure based on cross correlation alone
IS

ccor P~5:4|10{6, r~0:24
� �

. D) Measure based on lag alone IS
lag P~6:4|10{5, r~0:21
� �

. All values are based on Spearman’s Rank Correlation
Test made on 340 randomly chosen agents from the same evolutionary session. Please note the different axis in A.
doi:10.1371/journal.pone.0001863.g004

Figure 5. Dynamic estimation of the mutual information
between the agent’s neural representation and the environ-
ment. The agent (arrowed) moved in a single environment freely. The
external environment was defined as dl or dr when there were more
agents of the opposite sex on its left or right respectively.
doi:10.1371/journal.pone.0001863.g005
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ID
r P~0:04, r~0:05ð Þ ID

lag P~0:51, r~0:01ð Þ. One possible ex-

planation is that in this particular fitness landscape, the

development of these information systems was simply a side-

effect of the cross correlation in mutual information.

Neural ablation
This latter finding raised the possibility that the increase in the

major estimated mutual information measures such as

ID
ccor and IS

ccor was actually a side effect of some other mechanism

which was not directly related to precise firing time. By extension,

the effect of ablating precise time neurotransmission abilities

should have the same effect over evolution.

Therefore, to test the null hypothesis, we defined an ablated

setting where the excitatory current injected by a presynaptic cell i

into a postsynaptic cell j was changed to
~
Iexc instead of Iexc where:

~
Iexc tð Þ~Iexc tzkð Þ

k is a delay time randomly generated upon synapse creation:

k = U(0,1)*ts1 and U(0,1) is a uniformly distributed random

number between 0 and 1. Each agent was given two performance

grades based the proportion of contacts each had with a ‘mate’

object, divided by the ‘mate’ object frequency:

g: Grade in regular Iexc definitions.
~g: Grade in a test with ablated current injection times

based on
~
Iexc.

As shown in Figure 7, the ablation effect g{~gð Þ=g was indeed

correlated with evolution.

It could be argued that this finding was unique to a specific

evolutionary session. However after running 10 different evolution-

ary sessions with the model, in all evolutionary sessions a significant

correlation was found (Max P,0.05, Spearman’s Rank Correlation

Test) between the ablation effect g{~gð Þ=g and the generations.

Discussion

It has been suggested that some biological structures may be

evolutionary inevitable in a given environment [31]. Numerous

Figure 6. Best estimated mutual information with dynamic environment values of randomly selected agents during evolution. A)
The rate based measure ID

r has higher values than the other measures, with a significant correlation P~1:0|10{3, r~0:09, n~1156
� �

. B) Measure
based on cross correlation combined with lag ID

ccorlag P~3:2|10{4, r~0:12, n~861
� �

. C) Measure based on cross correlation alone
ID

ccor P~2:7|10{5, r~0:14, n~861
� �

. D) Measure based on lag alone ID
lag P~9:1|10{4, r~0:09, n~1156
� �

. All values are based on Spearman’s
Rank Correlation Test made on randomly chosen agents from the same evolutionary session. Since the cross correlation based measures
ID

ccor and ID
ccorlag reached a plateau earlier than the others, their statistical tests were based on the first 2700 generations whereas the other tests were

based on the entire evolutionary session. Please note the different axis in A and B.
doi:10.1371/journal.pone.0001863.g006
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studies have also reported precise time relations among spikes [32–

35]. Our results combine these two findings and show that in some

evolutionary models, such as the one presented here, evolvement

of precise time relations among spikes is almost inevitable.

In our preliminary experiments our null hypothesis was that

different information measures based on precise time relations

among spikes would not increase during evolution. We were able

to show that this null hypotheses could be rejected both in static

and dynamic environments in the conditions defined by our

model. We also showed a connection between the cross correlation

based measure and the fitness of the agents, suggesting that the

increase shown previously was due to evolutionary forces.

Subsequently, we showed that ablation of precise time neuro-

transmission abilities has an increasing effect over evolution in

each independent evolutionary session of our model.

Although both dynamic and static experiments showed a

significant increase in the time dependent measures, the different

rate based measure results highlight the importance of environmen-

tal coding, (which in our case was dynamic {dl,dr} vs. static {s1,s2}),

and not only the importance of the neural coding, (which in our case

was ccor vs ccorlag vs lag vs r). We believe this feature has been unjustly

overlooked in electrophysiological studies examining the mutual

information between the external environment and neural code.

Even in the mutual information experiments presented here, we

believe much more significant results could be obtained after finding

an optimal environmental code instead of querying simply whether

there are more mates on the right or left side of the agent.

The results raise questions as to why the evolutionary sessions

appeared to prefer basing the agents’ dynamics on spike timing

and not only on rate components. This could be a result of the

dominance of a neural solution that is also based on spike timing

or a biological infrastructure that enables faster convergence to

such a solution. However, some trivial evolutionary mechanisms

or experimental artifacts could also generate such a development.

These include the following: (i) definition of the environment in

which the evolutionary session took place as one where small time

scale reactions are a significant component of the agent’s fitness. (ii)

mutual information growth that is a by- product of other processes

and does not contribute to individual fitness directly. (iii) a

coincidental evolutionary case that has no implications regarding

the general evolutionary landscape. By considering the tm value

presented in our experiments we avoid definitions that could lead to

the first case. Our latter experimental results disconfirm the second

case. The third case does not seem possible in the light of repeated

results in the experiments from different evolutionary sessions.

It should be noted that in this study the results are inferred from

the average population values or from values obtained from

randomly selected individuals. A more detailed investigation

should be based on larger samples of particular phylogenies,

especially to provide estimates of the population variance during

evolution. The results presented here do not address the question

of whether the population is homogeneous or whether there are

only a few very successful individuals in the population yielding a

greater fitness average.

Naturally, the relevance of the results in terms of biology is

based on the applicability of the model. Although the model used

is complex, we have tried to avoid pinning its parameters to

certain predefined values, and most of the model parameters are

self adaptive (see Table 2 & 3), making the conditions defined by

the model biologically plausible. It is also likely that other,

unrelated biological results found by a previous version of the

model [14] contribute to the model’s biological applicability.

However, further research should be conducted by simplifying the

model and deriving the essential model components that

contribute to the development of time dependent neural elements.

Figure 7. Ablation Effect correlated with generations. Each
sample is the average ablation effect measured for a population of 100
agents in 100 generation bins. In each generation one agent was
chosen randomly for this experiment. (P = 5.061023, r = 0.63, N = 20,
Spearman’s Rank Correlation Test).
doi:10.1371/journal.pone.0001863.g007

Table 3. Range limits of the different chromosome parameters in the experiments.

ha, hp Threshold values were limited to a range of (22n,+2n) where n is the number of genes in the chromosome. This is due to the possible range the field

value
P

j

ajwijv
g act,bið Þ
j vact

j can have.

ba, bp Slope values were limited to (0,10), assuming greater slopes to have same results as b = 10

a (21,1)

k Were limited to (0,1),

ta, tp The lower limit for all time constants was the time represented by a single epoch of the system; the upper limit was the maximal possible life period
assigned to an organism.

c Since the actual crossover probability is the sum of two crossover probabilities, crossover probability values were limited to (0,0.5).

The chromosome parameters were limited to have physically reasonable values as detailed above. The c value mentioned in the table is not part of a parameter block,
but a chromosome related value in the model controlling the crossover probability, as detailed in the reproduction section.
doi:10.1371/journal.pone.0001863.t003
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The above findings, highlighting the importance of spike time

precision from an evolutionary point of view, raise several

questions concerning their generative source, the way the time

precision is read out, and the causes that make this computational

element so frequent in the model. Answering these questions using

a simulative evolutionary model like the one presented here should

be easier than answering them in the broad biological scope, and

might shed some light on the structure of biological neural systems.

Materials and Methods

Calculating Cross Correlation values
The cross correlation ccor per time lag d series of two neurons x

& y was calculated as follows:

ccord x,yð Þ~

P
i

xi{mxð Þ yi{d{my

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

xi{mxð Þ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

yi{d{my

� �2
r

where xi is 1 if neuron x fires at time i and 0 otherwise. yj is 1 if

neuron y fires at time j and 0 otherwise. mx and my are the average

values of x and y respectively.

The cross correlation of two neurons ccor(x,y) and the lag

correlation lag(x,y) between them were calculated as follows:

ccor x,yð Þ~ max
d

ccord x,yð Þ

lag x,yð Þ~ arg max
d

ccord x,yð Þ

Estimating mutual information
The estimation of mutual information of two stationary signal

pairs is based on a biased histogram-based method to estimate

mutual information as detailed in [36]. The information logarithm

base is 2 (bits).

Motor Cells & Movements
The effect of a motor cell was generated only tmU(0,1)

milliseconds after the motor cell fired. The correlation measures

were made only in a tm millisecond window. In the experiments a

value of 25 ms was used as tm.

Chromosome model
We used cis and trans elements as sequences of 16 real numbers.

Several evolutionary simulations were run with different cis and

trans lengths (8 or 32 numbers); a significant correlation for these

lengths was also found between IS
ccorlag, ID

ccorlag and the generation

(P,0.05). As ‘‘parameter blocks’’ we used sequence numbers

representing the parameters in Table 1. In order to keep these

values within reasonable ranges, the values were limited to

predefined ranges as detailed in Table 3.

Population size
The population size was forced to be in the range of 100610

simultaneous agents by removing agents or producing new agents

when the number of agents reached or exceeded the population

size limits. Agents were also removed from the environment after

passing their fitness-based life span and added to the environment

when their parents contacted each other. Therefore, successive

generations could overlap.

Several sessions with a different population size of 500 were

examined regarding the correlation between the generation and

the IS
ccorlag, ID

ccorlag values, without observing a significant change in

the results (Maximal P,0.05).
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