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Abstract: Since there is merit in noninvasive monitoring of muscular oxidative metabolism for
near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted
to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid
muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients.
The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of
interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients
(5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females,
24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen
saturation during a sternocleidomastoid isometric contraction was noted in patients compared to
asymptomatic individuals (10.43± 1.79 s vs. 13.82± 1.42 s, p < 0.001). Even though the lack of statically
significant differences in most of the muscular oxygenation variables failed to refine the definite
pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of
faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to
provide relevant physiological information regarding muscular oxidative metabolism and constituted
convincing preliminary evidences of the adaptive manipulations rather than pathological responses
of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with
mild disability.

Keywords: nonspecific neck pain; muscular oxygenation; near-infrared spectroscopy; oxygenation
oscillations
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1. Introduction

Various epidemiological data indicates that neck pain has become a general reason that people
seek medical assistance and a primary cause of disability worldwide [1–6]. Because of unequivocal
anatomical structural abnormalities or identifiable orthopedic and neurological problems, it is
commonly categorized as nonspecific neck pain [7,8]. Multifactorial origins, such as prolonged
workloads, poor work postures and even psychological distress, are likely to be associated with this
musculoskeletal condition [9–11]. Except for cervical kinematic and kinetic aberrations [12–21], previous
electrophysiological findings have demonstrated the appearance of neuromuscular adaptations for
patients with neck pain [22–30]. Increased activation of the superficial cervical flexor muscles and the
upper trapezius [23–27,30] and reduced activation of the deep cervical flexor muscles [27–29] account
for the compensatory modulation of hyper-activation of the superficial cervical flexor muscles for the
weak or inhibited activation of the deep cervical flexor muscles in neck pain patients [25,26]. Also,
patients with neck pain had neural recruitment strategies that showed relatively poor efficiency in the
superficial flexor muscles when required motor tasks were executed [31,32], reflecting the phenomenon
of greater fatigability of the superficial cervical flexor muscles [30,33].

Furthermore, near-infrared spectroscopy (NIRS) utilizes optical properties such as absorption and
scattering to provide pathophysiological information from biological system. Briefly, near-infrared
wavelength light between approximately 650 and 1000 nm is emitted into the muscle of interest from a
source, and a detector tracks the attenuation of the intensity of the emitted light. Subsequently, both
changes in the oxygenated and deoxygenated hemoglobin concentration could be further deduced
from changes in the light intensity through algorithmic transformation governed by the modified
Beer-Lambert law. Recent evidences have shown the potential of NIRS in various medical applications,
including functional analysis of the brain and continuous monitoring of changes in local muscular
oxygenation [34–45]. For example, functional NIRS has been used to monitor the time course of
oxygenated/deoxygenated hemoglobin signal to estimate regional neural activity of the brain [36] and
even could serve as an auxiliary diagnostic apparatus for distinguishing unipolar depression from
schizophrenia and bipolar depression [42]. Similarly, the clinical applicability of NIRS for noninvasive
evaluating of deconditioning and reconditioning of skeletal muscle oxidative functions has been
emphasized [40], showing slower rates of reoxygenation of lower limb after exercise in patients with
peripheral vessel disease [43], respiratory muscle hypoperfusion combined with the greater work of
breathing in patients with congestive heart failure [44], functional restoration of muscle oxidative
metabolism after renal transplantation [45] as well as regional heterogeneity in the distribution of blood
flow and oxygen consumption in exercising muscle in patients with chronic obstructive pulmonary
disease [38,39].

Because of the capability of NIRS for offering non-invasive monitoring of tissue oxygenation in a
wide range of clinical scenarios, alternative potential modulatory mechanisms from a muscular oxidative
metabolism viewpoint for neck-related neuromuscular conditions have also been considered [36–49].
Existing observation noted that muscular oxygen saturation levels in the trapezius descendens muscles
were different between female workers with trapezius myalgia and healthy controls [49]. Another study
investigated the effects of maximal isometric contractions on the oxygenation of the trapezius muscles
in populations with chronic neck and shoulder pain and showed that trapezius muscles responding
to isometric contractions were characterized by inferior oxygenation and blood flow [48]. However,
a lack of studies that characterize the properties of muscular oxygenation for the neck flexor muscles in
neck pain patients contributes to the lack of clarity regarding the pathogenic mechanisms underlying
neck pain. Since there is merit in non-invasively monitoring muscular oxidative metabolism for NIRS
in various clinical conditions [34–41,43–45], the present study mainly aimed at evaluating the clinical
potential for characterizing the modulatory strategies of sternocleidomastoid muscular oxygenation by
means of NIRS in patients with mild nonspecific neck pain. Further, we hypothesized either adaptive
manipulations or pathological responses of oxidative metabolism capacity of sternocleidomastoid
muscles in nonspecific neck patients with mild disability. Accordingly, we were particularly interested
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in examining whether sternocleidomastoid muscular oxygenation variables (including the oxygenated
hemoglobin concentration and the deoxygenated hemoglobin concentration), the dynamic balance of
oxygen delivery and consumption and the periodic nature of muscular oxygenation oscillations would
be comparable between patients with mild nonspecific neck pain and asymptomatic individuals.

2. Materials and Methods

All the experimental procedures were approved by the Institutional Review Board of Kaohsiung
Medical University Chung-Ho Memorial Hospital (No. KMUH-IRB-20120078) and performed in
accordance with relevant guidelines of the Declaration of Helsinki. Prior to participation, all voluntary
participants clearly understood the major objectives of the current and written informed consent was
obtained from each individual participant.

2.1. Subjects

Two groups of volunteers were enrolled: one group of ten participants with nonspecific neck
pain (5 males, 5 females) who had sought medical treatment within the past 6 weeks with no medical
histories of spinal neurological and orthopedic problems, such as spinal vertebral fracture, abnormal
spinal lordosis, spinal spondylosis or spinal osteoarthritis. One group of ten participants (6 males,
4 females) with no history of cervical surgery, cervical trauma, cervical pain or neuromuscular problems.
Anthropometric details were initially recorded. Next, the level of neck functional disability and adipose
tissue thicknesses at the site of the probe were respectively assessed for each participant using the Neck
Disability Index (NDI) [50] and skinfold caliper. The detailed demographic data of the participants
are summarized in Table 1. Among these participants, patients with nonspecific neck pain, rated as
having mild neck disability, had a higher NDI score than asymptomatic individuals (9.23 ± 4.00 vs.
2.08 ± 0.50, p < 0.01). Moreover, the groups did not differ in terms of age, gender distribution, weight,
BMI and sternocleidomastoid skinfold thickness (p > 0.05).

Table 1. Characteristics of the demographic data for patients with nonspecific neck pain and
asymptomatic individuals.

Neck Pain Patients Asymptomatic Individuals p-Values

Age (years) 23.6 ± 4.2 24.0 ± 5.1 0.756
Gender 5 males, 5 females 6 males, 4 females 0.581

Height (m) 168.5 ± 7.5 165.1 ± 8.0 0.302
Weight (kg) 65.5 ± 15.8 61.5 ± 11.3 0.550
BMI (m2/kg) 22.9 ± 4.9 22.5 ± 3.7 0.943

Skinfold thickness (mm) 0.6 ± 0.2 0.5 ± 0.2 0.334
NDI score 9.2 ± 4.0 2.1 ± 0.5 0.008

2.2. Evaluation of Muscular Oxygenation Variables Using Near-Infrared Spectroscopy

In this investigation, the characteristics of sternocleidomastoid muscular oxygenation were
continuously monitored during isometric flexion by a commercial frequency-domain NIRS system
(Imagent, ISS Inc., Champaign, IL, USA) in real time at a 25 Hz sample rate. On the other hand,
as previous work had mentioned that the frequency-domain multiple-distance system with over
distances in the range of 1.5 to 4.5 cm could minimize the influence of between-subjects variations
in adipose tissue thickness on NIRS signals and accurately quantify the optical properties of the
superficial muscle [51], the multiple-channel NIRS probe was adopted to attenuate the confounding
effects of adipose tissue thickness on NIRS measurements [52,53] and attached on the sternal head of
the dominant or affected sternocleidomastoid muscle. The system had four sources and one detector
with interoptode distances of 2.05, 2.55, 3.05 and 3.55 cm. Moreover, the adipose tissue thickness at the
site of the probe was measured by a skinfold caliper (Beta Technology, Santa Cruz, CA, USA) and the
measured adipose tissue thicknesses were 0.6 ± 0.2 mm for the nonspecific neck pain patients and
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0.5 ± 0.2 mm for the asymptomatic individuals. The adipose tissue thickness was less than half of
the source-detector separation [54] and the penetration depth of the NIRS signal therefore reasonably
reflected the oxygenated and deoxygenated conditions of the testing muscle. In this work, emitted
light at wavelengths of 690 and 850 nm was used to estimate the oxygenated hemoglobin concentration
[HbO2], the deoxygenated hemoglobin concentration [Hb] and the total hemoglobin concentration
[tHb] ([HbO2]+ [Hb] µM).

After completing the experimental setup and instrument calibration to acquire the effective optical
coefficients, all of the participants were familiarized with the experimental protocol followed by the
conduction of three brief, voluntary, maximum isometric contractions for three seconds separated by
a rest period of at least five minutes. The contraction with the highest exerted force recorded using
custom-designed force-measurement device that consisted of a tension/compression minibean load cell
was selected as the maximum voluntary contraction (MVC) and used for the calculation of the target
levels for submaximal contractions. Next, all participants performed a trapezoid isometric muscle
action of the sternocleidomastoid muscles, which displayed a linear increasing sternocleidomastoid
isometric contraction from the baseline to 25% MVC at a rate of 10% MVC/s, a submaximal constant
force of the target 25% MVC for 20 s, and a linear decrease back the baseline at 10%MVC/s. All recruited
participants were instructed to maintain their force output as close as possible to the target force. Trials
were repeated if the actual force production varied more than 5% from the target force and a sufficient
rest period of at least ten minutes was provided between each trial to avoid muscle fatigue. A visual
template and feedback trace of the force output during the trapezoid isometric muscle action and
verbal encouragements were available to facilitate the achievement of the requested task (Figure 1).
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Figure 1. Experimental set-up for collecting muscular oxygenation variables of the dominant or affected
sternocleidomastoid muscles by means of commercial NIRS system (Imagent, ISS Inc., Champaign, IL,
USA) in real-time at a 25 Hz sample rate during isometric flexion.

2.3. Data Analysis of the Features of Sternocleidomastoid Muscular Oxygenation

All continuous muscular oxygenation variables including the oxygenated hemoglobin concentration
[HbO2] and the deoxygenated hemoglobin concentration [Hb] were recorded. To further clarify the
dynamic balance of O2 delivery and consumption of the target muscles during contraction and recovery
periods, the StO2 was expressed using the following formula [51,52,55]:

StO2(%) =
[HbO2]

[tHb]
× 100% =

[HbO2]

[HbO2] + [Hb]
× 100% (1)
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A hyperbolic tangent equation (tanh) was applied to fit the oxygen saturation curves (Y) as a
function of time (t) during the contraction and recovery periods to constitute muscular oxygenation
kinetics [43] (Figure 2):

Y = a × tanh(b× t− c) + d (2)
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Figure 2. A representative example of time-domain analysis of muscular oxygenation kinetics.
The oxygen saturation expressed as ([HbO2]/[tHb]) × 100% was adopted and a hyperbolic tangent
equation with the least-square error method was applied to fit the oxygen saturation curves as a
function of time during the contraction and recovery periods.

Using the least-square error method, the best-fit coefficients, a, b c and d of the muscular
oxygenation kinetics were extracted. ∆StO2 (%) was estimated from the maximum and minimum
oxygen saturation values of while the requested task was performed from the parameters d - a and d +

a, respectively. From the two derived coefficients, c/b, which represents half-deoxygenation time of
StO2, implying the flection time taken to reach 50% of the maximal oxygen consumption during the
contraction phase, while it stands for half-reoxygenation time of StO2 in the recovery phase, accounting
for the time interval from the end of a contraction to the time that the muscular oxygenation returns to
the half-baseline value [55].

In addition to the time-domain view, the periodic nature of muscular oxygenation oscillations
during the contraction and recovery period was further observed using a fast Fourier transform
(FFT) algorithm. Before the FFT analysis, raw StO2 data were multiplied with a Hanning window
and padded with zeros to 7500 data points to increase the resolution of the frequency spectrum.
Next, the features of spontaneous oscillations of muscular oxygenation, such as the peak and median
frequencies, were extracted to clarify the potential modulatory mechanisms of sternocleidomastoid
muscular oxygenation in nonspecific neck pain condition. All of data analysis was processed using
self-developed computational code in the M MATLAB programming language (R2015®, the Mathworks,
Inc., Natick, MA, USA).

2.4. Statistical Analysis

Statistical procedures were performed with commercial Statistical Package for the Social Science
software (SPSS 20.0®, IBM Corporation, Armonk, NY, USA). Descriptive statistics were used to
characterize the group means and standard deviations for the demographic data and muscular
oxygenation variables of interest for participants with nonspecific neck pain and asymptomatic
individuals. Because of non-normal distribution of these variables verified by the Kolmogorov–Smirnov
test, a nonparametric Mann–Whitney U test was chosen to further determine whether differences
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existed between the two tested populations. The results were considered to be statistically significant
if the p-value was below 0.05.

3. Results

3.1. Muscular Oxygenation Variables of Interest

A representative time course of the oxygen saturation kinetics for the sternocleidomastoid
muscle from a patient with nonspecific neck pain and an asymptomatic individual is shown in
Figure 3. Table 2 summarizes the muscular oxygenation variables of interest for both groups. Only the
half-deoxygenation time of oxygen saturation (StO2), which means the flection time taken to reach 50%
of the maximal oxygen consumption during the contraction phase [53] in patients with nonspecific
neck pain is shorter than asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001), but
no any statistically significant differences in other muscular oxygenation variables (p > 0.05) were
observed between these two groups. On the other hand, there were also no any differences between
males (pooled data of neck pain and asymptomatic individuals) and females (pooled data of neck
pain and asymptomatic individuals) in adipose tissue thickness, and muscular oxygenation variables
(Table S1 of Supplementary Material).
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Figure 3. Representative time course of the oxygen saturation kinetics for the sternocleidomastoid
muscle from one patient with nonspecific neck pain and an asymptomatic individual. ∆StO2 (%)
was estimated from the maximum and minimum values of oxygen saturation while performing the
requested task.

Table 2. Muscular oxygenation variables of interest for nonspecific neck pain and asymptomatic groups.

Neck Pain Patients Asymptomatic Individuals p-Values

Baseline StO2 (%) 83.57 ± 2.81 84.97 ± 3.22 0.353
∆StO2 (%) 16.18 ± 5.58 15.41 ± 7.61 0.912

Half-deoxygenation
time of StO2 (s) 10.43 ± 1.79 13.82 ± 1.42 <0.001

Half-reoxygenation
time of StO2 (s) 7.66 ± 2.96 6.20 ± 2.50 0.393

Median frequency (Hz) 0.35 ± 0.10 0.29 ± 0.17 0.436

3.2. Frequency Spectrum of Muscular Oxygenation Oscillations

Except for time-domain analysis of oxygen saturation kinetics, the periodic nature of muscular
oxygenation oscillations was further investigated using spectral analysis. Figure 4 is illustrative
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comparison of the frequency spectrum of muscular oxygenation oscillations from a patient with
nonspecific neck pain and an asymptomatic individual. The pattern of muscular oxygenation
oscillations between the nonspecific neck pain and asymptomatic groups was analogous and distinctive
peak with a low-frequency of less 0.1 Hz could be observed. Participants with nonspecific neck pain
had the detectable higher median frequency of muscular oxygenation oscillations (0.35 ± 0.10 vs.
0.29 ± 0.17), but the difference did not reach statistical significance (p = 0.436).
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Figure 4. Comparison of the frequency spectrum of muscular oxygenation oscillations from one patient
with nonspecific neck pain and asymptomatic individual. Arrowheads and vertical lines represent the
lower-frequency distinctive peak at less 0.1 Hz and median frequency of muscle oxygenation oscillation
from one patient with nonspecific neck pain and asymptomatic individual, respectively.

4. Discussion

The present study attempted to evaluate the clinical usability for featuring the modulatory
strategies of sternocleidomastoid muscular oxygenation in nonspecific neck pain patients with mild
neck disability. We, therefore, testified whether sternocleidomastoid muscular oxygenation variables,
the dynamic balance of oxygen delivery and consumption and the periodic nature of muscular
oxygenation oscillations would be comparable between patients with mild nonspecific neck pain and
asymptomatic individuals. Even though the lack of statically significant differences in most of the
muscular oxygenation variables, including baseline StO2, oxygen extraction, half-reoxygenation time
of StO2 and patterns of the spontaneous oscillations of muscular oxygenation between nonspecific
neck pain patients and asymptomatic individuals failed to refine the definite pathogenic mechanisms,
the findings of the shorter half-deoxygenation time of StO2 implied that NIRS appears to have practical
potential to provide relevant physiological information regarding muscular oxidative metabolism for
mild nonspecific neck pain patients. It could be deduced from our findings that the mild pathological
condition for the recruited nonspecific neck patients was not associated with oxidative metabolism
capacity of sternocleidomastoid muscles. Most importantly, neck pain patients with mild disability
displaying shorter half-deoxygenation time of StO2 and detectable but not statistically significant
increase in the median frequency of muscular oxygenation oscillations soundly constituted preliminary
evidences for the appearance of adaptive strategies of muscular oxygenation while executing a
sternocleidomastoid isometric contraction.

On the top of that, the nonspecific neck pain patients displayed shorter half-deoxygenation time
of StO2 of the sternocleidomastoid muscle in contrast to asymptomatic individuals, reflecting a need
for greater oxygen extraction. Now that another important finding from the present work revealed
comparable changes in oxygen saturation between the nonspecific neck pain and asymptomatic groups,
it is reasonably inferred that the nonspecific neck pain patients would be likely to raise the capacity of
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muscle perfusion to achieve the acceleration of oxygen delivery, again hinting an adaptive mechanism
to sustain a balance between oxygen delivery and utilization in sternocleidomastoid muscle.

Previous efforts indicated the physiological relevance of muscular oxygen metabolism for muscle
function in healthy and pathological conditions, and it is generally thought that adaptive manipulations
of muscular oxygenation are associated with various neuromuscular deficiencies [35,48,49,56–61].
Reduced muscular oxygenation and longer half-reoxygenation time of StO2 of the erector spinae
muscle have been demonstrated in patients with low back pain [60,61]. Likewise, several reports also
claimed larger decreases in the oxygenation of the trapezius muscles during repetitive pegboard tasks
in female workers with trapezius myalgia [49] and indicated a lower oxygenation and a prolonged
half-reoxygenation time of StO2 of the trapezius muscles in neck pain patients after one set of isometric
exercises was executed [48,56]. These clinical findings implied that the affected muscles around
an injured area would be more likely have an inferior capacity to consume and utilize oxygen
in neuromuscular deficiencies. Unexpectedly, the current observation indicated that no definite
evidence could account for the significant differences in oxygen extraction during contraction and
the half-reoxygenation time of StO2 after contraction of the sternocleidomastoid muscles between
the nonspecific neck pain and asymptomatic groups. Different muscles and muscular pathogenic
conditions investigated in both the current and previous studies would interpret these discrepancies.
Additionally, the enrollment of experimental volunteers with mild neck disability in the present work
was likely to result in rather unexpected results.

Although our findings were contrary to common hypotheses of disturbed muscular oxygenation
characteristics associated with neuromuscular deficiencies [35,48,49,56–61], the present results
somewhat tallied with the discoveries regarding the response of muscular oxygenation in work-related
muscle pain [47]. In previous investigation, patients with work related muscle pain had a poorer
muscular endurance ability and became fatigued earlier than the healthy controls, but no apparent
group differences in the responses of the StO2 of the extensor carpi radialis and the trapezius muscles
during low level sustained muscular contractions were detected. The findings of no group differences
in oxygen extraction during contraction found from the current studies complied with the proven
inference, which stated that early pathogenic condition or fatigue of patients with work-related muscle
pain did not seem to be associated with muscular oxygenation and hemodynamics [47].

A noteworthy issue for discussion is the relevant role of oxygen availability for modulating
motor unit recruitment and discharge patterns of activated motor units during contraction [62,63].
It is generally accepted that regardless of newly recruited motor units or an increased firing rate of
already activated units, the rate of muscular oxygen utilization and consumption would increase as the
increased excitatory drive of the motor units of a working muscle [56]. Since altered neuromuscular
control strategies involving elevated initial firing rates of activated motor units for withstanding
muscle tone in neck pain patients had proven [31], in conjunction with the current findings of shorter
half-deoxygenation time of StO2 while initiating contraction, a conceivable modulatory strategy of
sternocleidomastoid muscular oxygenation in nonspecific neck pain patients with mild neck disability
could be deduced. The adaptive manipulation of faster oxygen delivery may be due to urgent
requirement of oxygen supply for facilitating the augmentation of the initial discharge rates of the
activated motor units.

Further, the periodic nature of muscular oxygenation oscillations was characterized and
approximately analogous patterns of the spontaneous oscillations of muscular oxygenation between
the nonspecific neck pain and asymptomatic groups were identified. Specifically, the appearance of a
low-frequency distinctive peak at less 0.1 Hz was noted in accordance with previous finding [57,64],
which implied that the blood flow of the testing muscle was not severely occluded [65]. Furthermore, a
nearly parallel trend of the median frequencies of muscular oxygenation oscillations was present in
the nonspecific neck pain and asymptomatic groups. Past researches had shown effects of various
physiological conditions, such as endothelial related metabolic, neurogenic and intrinsic myogenic
activities on spontaneous oscillatory manifestations of muscular oxygenation [66–68] The amplitude of
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muscular oxygenation oscillations could mirror the activity level of these physiological origins [68] and
the more significant low-frequency muscular oxygenation oscillations represented a higher activity of
physiological origins [55]. Reduced activity of physiological origins, such as neurogenic or myogenic
activity resulting from aging effects would also disturb the regulations of muscular oxygenation
oscillations [68]. In other words, despite lack of statically significant differences in most of the features
of muscular oxygenation oscillations between nonspecific neck pain patients and asymptomatic
individuals herein, the detectable increase in the median frequency of muscular oxygenation oscillations
(0.35 ± 0.10 for nonspecific neck pain patients vs. 0.29 ± 0.17 for asymptomatic individuals), to a certain
extent, would also infer the occurrence of an adaptive manipulation of physiological origins in mild
pathogenic condition of nonspecific neck pain during a sternocleidomastoid isometric contraction.

Since the proposed frequency-domain NIRS system possesses practical potential for featuring the
characteristics of the modulatory strategies of sternocleidomastoid muscular oxidative metabolism in
mild nonspecific neck pain, comparing the characteristics of sternocleidomastoid muscular oxidative
metabolism between nonspecific neck pain patients and asymptomatic individuals provide an auxiliary
approach to differentiate on earth adaptive manipulations or pathological responses of oxidative
metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.
Even the understanding of the characteristics of sternocleidomastoid muscular oxidative metabolism
in nonspecific neck pain with different severities allow guiding the clinicians to evaluate the extent of
impairment of the cervical spine and monitor the efficacy of rehabilitation programs in clinical practice.

Besides, because of the limited sample size and the enrollment of patients with mild neck disability,
the significance relating to the preliminary findings from the current work and the comparisons
thereof is exploratory and not confirmative. Next, using muscle contraction force instead of direct
electromyography assessment for ensuing muscle activation level is another methodological limitation.
For these reasons, the present findings should be interpreted with more caution. Further research is
warranted to resolve these deficiencies and comprehensively elucidate the pathogenic mechanisms of
neck pain.

5. Conclusions

Taken together, except for cervical kinematic and kinetic assessments, potential pathological
mechanisms from a muscular oxidative metabolism viewpoint for neck-related neuromuscular
conditions could be considered alternatively since the preliminary proof of clinical applicability
of NIRS for noninvasive monitoring local muscular oxygenation. Another key point to mention is that,
even if nearly sound oxidative metabolism capacity of sternocleidomastoid muscles, as evidenced by
no statistically significant differences in most of the features of muscular oxygenation variables between
the neck pain and asymptomatic groups, the current work corroborated a shorter half-deoxygenation
time of StO2 during a sternocleidomastoid isometric contraction in the nonspecific neck pain patients.
It could be at least partly speculated the adaptive manipulations rather than pathological responses
of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with
mild disability. In addition, in keeping with our previous finding of the reinforcement of motor unit
recruitment firing rates [31], it was inferred that, in order to achieve the prescribed tasks, the adaptive
modulation of faster oxygen delivery would likely be responsible for rapidly supplying sufficient
oxygen to the target muscle, which, in turn, would facilitate the augmentation of the initial discharge
rates of the activated motor units for initiating the contraction of the stiffer sternocleidomastoid muscles
in the mild pathogenic condition of nonspecific neck pain.
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