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Abstract: Poly (methyl methacrylate) (PMMA) bone cement is an excellent biological material for
anchoring joint replacements. Tensile strength ft and fracture toughness KIC have a considerable
impact on its application and service life. Considering the variability of PMMA bone cement, a
three-parameter Weibull distribution method is suggested in the current study to evaluate its tensile
strength and fracture toughness distribution. The coefficients of variation for tensile strength and
fracture toughness were the minimum when the characteristic crack of PMMA bone cement was
α∗ch = 8dav. Using the simple equation α∗ch = 8dav and fictitious crack length ∆αfic = 1.0dav, the mean
value µ (= 43.23 MPa), minimum value f min

t (= 26.29 MPa), standard deviation σ (= 6.42 MPa) of
tensile strength, and these values of fracture toughness (µ = 1.77 MPa ·m1/2, Kmin

IC = 1.02 MPa ·m1/2,
σ = 0.2644 MPa ·m1/2) were determined simultaneously through experimental data from a wedge
splitting test. Based on the statistical analysis, the prediction line between peak load Pmax and equiv-
alent area A1

e
(

A2
e
)

was obtained with 95% reliability. Nearly all experimental data are located within
the scope of a 95% confidence interval. Furthermore, relationships were established between tensile
strength, fracture toughness, and peak load Pmax. Consequently, it was revealed that peak load might
be used to easily obtain PMMA bone cement fracture characteristics. Finally, the critical geometric
dimension value of the PMMA bone cement sample with a linear elastic fracture was estimated.

Keywords: PMMA bone cement; Weibull distribution; tensile strength; fracture toughness

1. Introduction

Poly (methyl methacrylate) (PMMA) bone cement is a typical quasi-brittle material
commonly used in total joint replacements (TJRs) [1–7]. It can be anchored to continuous
bone for applications such as fixation of the implant, delivery of antibiotics, filling of bone
defects, etc. [8,9]. Fracture toughness KIC and tensile strength ft of PMMA bone cement
are two essential indicators for determining stability and service life performance. The
relevant information and mechanical characteristics of PMMA bone cement in the existing
literature are presented in Table 1. As shown in Table 1, the test results of KIC and ft of
PMMA bone cement have significant discreteness. Therefore, it is urgent and important
to define a reasonable distribution function for statistical analysis to help obtain the exact
parameter properties of PMMA bone cement.

Table 1. PMMA bone cement research table.

No. Main
Ingredient

Type of Test
Specimen

Tensile
Strength

(MPa)

Fracture
Toughness
(MPa·m1/2)

Source Remark

1 Palacos®R 3-p-b * 2.70 ± 0.22 Kim [10]
2 Simplex®P WS * 2.15 ± 0.11 Biggs [11]
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Table 1. Cont.

No. Main
Ingredient

Type of Test
Specimen

Tensile
Strength

(MPa)

Fracture
Toughness
(MPa·m1/2)

Source Remark

3
Kyphon

Xpede Bone
Cement

WS * 1.11 ± 0.03 Pba [12]

4 Palacos®R WS * 1.85 ± 0.12 Lewis [13]

5
Palacos®R

CMW3
Osteopal

CNSR * 1.75 ± 0.07
1.92 ± 0.10 Lewis [14]

6 Palacos®R CNSR * 1.81 ± 0.14 Lewis [15]

7 Simplex®P CNSR *
1.30 ± 0.26 1©

1.00 ± 0.05 2©

1.01 ± 0.04 3©
Wang [16]

1© UHM
specimens

2© CHM
specimens

3© CFG
specimens

8

Palacos®R
CMW-1

Simplex P
Zimmer D

CNSR * 33 ± 2
40 ± 8

1.59 ± 0.07 4©

1.73 ± 0.17 5©
Kindt-

Larsen [17]

4© Open
bowl mixing

5© Vacuum
mixing

9 Palacos®R DB * 51.4 ± 3.47 Harper [18]

10 IDX
Palacos®R 4-p-b * 43.4 ± 1.6 Jellson [19]

11
commercially

available
PMMA

DB * 44.7 ± 4.3 Harper [20]

12
Palacos®R

IDX
IHX

DB * 42 Kjellson [21]

Note *: 3-p-b: three-point bending specimens; WS: wedge-splitting specimens; CNSR: chevron notched short-rod
specimens; DB: dumb-bell specimens; 4-p-b: four-point bending specimens; UHM: uncontrolled hand-mixed;
CHM: controlled hand-mixed; CFG: centrifuged.

The Weibull distribution function, as a skewed function, is commonly used to inves-
tigate the discreteness of the parameters of quasi-brittle materials. For example, Amaral
investigated the flexural strength of granite through using the Weibull distribution function.
Based on statistical results, engineers can specify specific types of brittle building materials
to improve the safety of construction projects [22]. Blasi demonstrated, using Weibull
statistics, that the size effect has a significant impact on the flexural strength of marble [23].
Li utilized the Weibull function to calculate the fracture toughness and tensile strength of
concrete and predicted peak loads with 95% reliability [24]. Xu investigated the size effect
of concrete by using the Weibull function. The better the uniformity of concrete is, the more
obvious the size effect will be [25]. Lei reformulated and validated the three-parameter
Weibull statistical fracture theory for uniaxial flexure of prismatic beams by analyzing the
strength and experimental data of different ceramics [26]. Hu used the Weibull distribution
to investigate the microcrack toughness of Yttria-stabilized zirconia (3Y-TZP) [27]. Gorjan
indicated that the Weibull distribution provides the best accuracy for strength scattering
with high alumina ceramics, outperforming the normal, log-normal, and Gamma distri-
butions [28]. The Weibull function has also been used to investigate the fatigue properties
of concrete [29,30]. According to Bala’s research, the fatigue life of a composite asphalt
mixture follows the Weibull distribution [31]. Jin investigated the compressive strength
variability of tungsten particle (Wp)-reinforced Zr-based bulk metallic glass composites
using the Weibull distribution [32]. Furthermore, the Weibull function was employed to
analyze polymer properties. In this context, Carmona investigated the failure probability
of natural Luffa cylindrica fibers using the Weibull distribution function [33], whereas Sia
utilized the Weibull distribution to quantify variations in the tensile strength of pineapple
leaf fibers [34]. Wang investigated the effect of the length and diameter of bamboo fibers
on tensile strength by using a modified Weibull model. It was shown that the accuracy of
the Weibull model in terms of strength and predicted size correlation of bamboo fibers was
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satisfactory [35]. Wang described the statistical distribution of the critical energy release
rate (Gc) of the transverse layer (the transverse layer) by using a two-parameter Weibull
function. Combined with the numerical model, the mechanical behavior of the laminated
composite formed by unidirectional fiber reinforced laminae can be calculated [36]. Equiv-
alent fracture toughness of EPOLAM 2025 CT epoxy resin was also analyzed using the
Weibull distribution [37].

Previous studies have clearly revealed that the parameter characteristics of quasi-brittle
materials and high polymers can be statistically analyzed with the Weibull distribution
function. However, PMMA bone cement is a high polymer quasi-brittle material with
uncertain distribution characteristics regarding its fracture toughness and tensile strength
parameters. In this paper, based on the fracture test results for wedge-splitting specimens
(WS) [38], KIC and ft of PMMA bone cement were investigated using the three-parameter
Weibull distribution function; the mean and variance of its fracture toughness and tensile
strength parameters were obtained. According to the findings, the minimum coefficient
of variation (CV) was obtained when the relative characteristic crack was α∗ch = 8dav.
Using the constant value of β (= 1.0), the quasi-brittle fracture of PMMA bone cement was
predicted. Furthermore, the peak loads Pmax with a specified 95% reliability were predicted
by using three-parameter Weibull distribution analysis.

2. The Theoretical Background of PMMA Distribution Characteristics
2.1. Intrinsic Causes of PMMA Fracture Discreteness

A previous experimental study on the subject revealed that, since the same batch of
PMMA bone cement specimens with the same size and loading procedure were used on
the same equipment, the recorded peak load Pmax maintained its discreteness [38]. As
illustrated in Figure 1, the fictitious crack growth in PMMA bone cement specimens of the
same size was discrete due to the random distribution of material particles, which caused
the unpredictability of Pmax. This meant that separation was the key feature of PMMA
bone cement. The variation dispersion coefficient β is introduced in the current paper to
investigate this discreteness, and Equation (1) was utilized to establish the relationship
between the fictitious crack growth ∆afic and the average particle size dav at the peak load
Pmax [39]. As shown in Figure 2, the three-parameter Weibull distribution function was
used to characterize the distribution characteristics of the variation dispersion coefficient
β to assess the statistical characteristics of the fracture strength of PMMA bone cement.
Further, ∆afic and Pmax related to β match the three-parameter Weibull distribution.

∆αfic = βdav (1)
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The Weibull distribution function is commonly used to characterize the statistical
distribution of parameters of materials such as rocks, concrete, ceramics, and polymers. This
section provides a brief description of the three-parameter Weibull distribution function.
The parameters x (x1, x2, x3...xi...xN) were adjusted to fit the three-parameter Weibull
distribution function. The probability density of parameter x is calculated by Equation (2)
as follows:

Pf(x ≤ xi) = Fi =
Ni

N
(2)

where Pf(x ≤ xi) is equal to or less than the cumulative frequency of x, N represents the
total number of parameters, and Ni is equal to or less than the value of xi.

The probability density function of the three-parameter Weibull distribution can be
expressed as follows:

Pf(x) = f (x) =
K
ω

(
x− xmin

ω

)K−1
exp

[
−
(

x− xmin

ω

)K
]

x ≥ xmin (3)

The corresponding probability distribution function is shown in Equation (4)

Pf(x ≤ xi) = F(x ≤ xi) = 1.0− exp

[
−
(

x− xmin

ω

)K
]

x ≥ xmin (4)
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where ω is the size parameter of the Weibull distribution, K is the shape parameter of the
Weibull distribution, and x is the position parameter (it is the minimum value obtained by
fitting the parameter x, no parameter is smaller than this point).

The mean value µ and standard deviation σσ of the three-parameter Weibull distribu-
tion function is obtained by Equations (5) and (6):

µ = E(x) = xmin + ωΓ
(

1 +
1
K

)
(5)

σ2 =

√
ω2
[

Γ
(

1 +
1
K

)]
− Γ2

(
1 +

1
K

)
(6)

where Γ is the gamma function.

2.2. A Brief Description of the Boundary Effect Model (BEM)

Wedge-splitting specimens (WS) [11,13], three-point bending specimens [10], and
chevron-notched short-rod specimens [14–16] are commonly used in laboratory testing to
examine the fracture parameters of PMMA bone cement. The tensile strength of PMMA
bone cement was obtained through four-point bending specimens [19] and dumb-bell
specimens [18,21]. A large number of experiments are required to obtain the necessary
parameters, which increases costs and the time required for the experiments. It is proposed
in this section that the BEM model be adapted to PMMA bone cement specimens; thus, the
two parameters of fracture toughness and tensile strength can be calculated simultaneously
only based on WS test results. In this paper, the distribution form of the nominal stress at
the crack tip was assumed to be rectangular [39], as shown in Figure 3. Furthermore, the
BEM considering the variation dispersion coefficient β, the average aggregate size dav, and
the peak load Pmax is given in Equation (7) [39–42].
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1
σ2

n(Pmax, ∆αfic)
=

1
σ2

n(Pmax, βdav)
=

1
f 2
t
+

4ae

K2
IC

(7)

where σn represents nominal stress.
For the WS specimens, the equivalent crack ae can be determined by the following

Equation [39–42]:

ae =

 2(1−α)2

2+α ×Y(α)
1.12

2

× a0 (8)

where α is the ratio of a0 to W, α = a0/W, a0 is the initial crack length, and Y(α) is the
geometric factor. The expression of Y(α) is as follows [39–42]:

Y(α) =
(2 + α)×

(
0.866 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4)

4
√

πα(1− α)3/2 (9)
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According to the stress distribution form in Figure 4, the expression for nominal stress
σn can be derived by balancing the force and moment of force according to the following
Equation [39–42]:

σn(Pmax, βdav) =
Pmax(3W2 + W1)

6B
(

W2
1

6 + W1
6 (βdav) +

(
W−a0

2

)
(βdav)

) (10)

where B is the width of the specimen and W is the height of the specimen.

W1 = W − a0 − βdav (11)

W2 = W + a0 + βdav (12)
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Figure 4. Three-parameter Weibull distribution of fracture toughness KIC at dav = 52.5 µm.

In the BEM, the ratio of characteristic crack length α∗ch to average aggregate size dav is
a constant C, obtained as follows [39]:

C = α∗ch/dav = 0.25(KIC/ ft)
2/dav (13)

Combining Equations (7), (13), and (14), (15) provides the following:

ft = σn(Pmax, βdav)

√
1 +

ae

Cdav
(14)

KIC = 2σn(Pmax, βdav)
√

ae + Cdav (15)
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Substituting Equation (10) into Equations (14)–(17) obtains:

ft =
Pmax(3W2 + W1)

6B
(

W2
1

6 + W1
6 (βdav) +

(
W−a0

2

)
(βdav)

) ×√1 +
ae

Cdav
(16)

KIC =
Pmax(3W2 + W1)

3B
(

W2
1

6 + W1
6 (βdav) +

(
W−a0

2

)
(βdav)

) ×√ae + Cdav (17)

Individual fracture toughness and tensile strength can be calculated according to C, β, dav,
Pmax, and the geometric parameters of the specimens, as seen from Equations (16) and (17).
The dispersion coefficient β, fictitious crack growth ∆afic, and peak load Pmax all provide the
three-parameter Weibull function distributions. Therefore, tensile strength ft and fracture
toughness KIC also provide the three-parameter Weibull function distributions. Addition-
ally, the mean value µ and standard deviation σ of the statistical distribution for PMMA
bone cement strength fracture parameters were obtained according to Equations (5) and (6).

3. Statistical Analysis of Test Data
3.1. Raw Data of the Experiment

A specific quantity of the experimental sample data set is needed to test the validity of
the statistical analysis results. In this paper, experimental data from PMMA bone cement
wedge separation samples by Merta were selected for analysis as a data set [38]. The
geometric information of the specimens and the test results of the load peak value Pmax
are presented in Table 2. The width B of the test specimens was 6 mm. The α (the ratio of
a0 to W) variation range of the specimen height W (= 15 mm) was 0.13~0.53. The α (the
ratio of a0 to W) variation range of the specimen height W (= 22 mm) was 0.09~0.64. The α
(the ratio of a0 to W) variation range of the specimen height W (= 29 mm) was 0.07~0.69.
The α (the ratio of a0 to W) variation range of the specimen height W (= 36 mm) was
0.05~0.81. For each combination of a0 and W, 5 to 9 specimens were produced, with a total
of 160 specimens, and all specimens with cracks larger than 2 mm were removed, thus
leaving 96 specimens. The numbering rule for specimens in this paper is E + “height” +
“-initial crack length” for the convenience of expression. As an example, E15-2 represents
a specimen with a height of 15 mm and a 2 mm initial crack length. In the analysis, the
constant C was taken as 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 9, and 10, respectively; β adopted
the constant method to take a value (= 1, 2, 3, 4). According to reports in the relevant
literature, the aggregate size d of PMMA bone cement ranges from 5 to 100 µm40, with
average aggregate size dav equal to 52.5 µm. Fracture toughness KIC and tensile strength ft
were calculated according to Equations (16) and (17). The statistical distribution results of
fracture toughness KIC and tensile strength ft were then obtained using the three-parameter
Weibull distribution function.

3.2. Raw Data of the Experiment

Based on the findings of the peak load Pmax test on 96 PMMA bone cement WS
specimens and using Equations (16) and (17), 96 values of tensile strength ft and frac-
ture toughness KIC were calculated for each combination of C, β, and dav values, respec-
tively. Further analyses were performed using the three-parameter Weibull function, and
Equations (5) and (6) were used to obtain the statistical mean value µ, standard deviation
σ, and coefficient of variation CV (= σ/µ) for fracture strength parameters of PMMA bone
cement. The three-parameter Weibull distributions of tensile strength ft and fracture tough-
ness KIC for C = 8.0 at dav = 52.5 µm are shown in Figures 4 and 5, which are constrained
by article space. It can be clearly seen that the distribution curve is in good agreement with
the experimental results.
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Table 2. Experimental results of WS samples.

Height
(W) (mm)

Initial
Crack

Length
(a0) (mm)

Peak Load
(Pmax) (N)

Height
(W) (mm)

Initial
Crack

Length
(a0) (mm)

Peak Load
(Pmax) (N)

Height
(W) (mm)

Initial
Crack

Length
(a0) (mm)

Peak Load
(Pmax) (N)

15

2

352.47

29

5

521.23

36

11

318.81
325.47 518.00 298.50
328.45 453.23 290.32
372.29 447.03 291.82

5

211.80

8

422.57

14

285.38
207.34 361.23 282.65
173.90 356.99 254.17
171.68 354.99 231.63

8

89.19

11

314.48

17

216.53
91.43 292.38 218.52
71.36 283.60 194.00
69.13 272.27 194.49

22

2

499.78

14

223.65

20

171.69
457.27 219.08 160.56
463.97 215.19 133.80
450.63 201.33 113.25

5

361.51

17

140.92

23

107.06
314.95 129.47 102.60
299.04 118.85 92.95
287.90 122.84 83.53

8

245.13

36

20

96.19

26
82.54245.73 83.06

232.10 75.20
71.40230.31 72.18

11

216.92

2

693.65

29
42.91158.99 691.56

152.10 580.10
35.23152.80 528.34

14

84.77

5

515.45

\ \ \85.47 443.64
78.76 418.11
74.65 398.80

29 2

670.70

8

381.21

\ \ \637.41 376.26
635.20 358.93
621.61 332.43
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Figure 5. Cont.
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Figure 5. Three-parameter Weibull distribution of tensile strength ft at dav = 52.5 µm.

The statistical findings for the experimental data obtained from Merta using the three-
parameter Weibull distribution are listed in Table 3 [38]. The coefficient of variation CV
curves of tensile strength ft and fracture toughness KIC, with the respective C value, are
shown in Figure 6. As can be observed, the coefficient of variation CV of ft reaches a
lesser or minimal value when C = 8.0, regardless of the value of β. As shown in Table 3,
the value β has little impact on the statistical characteristics of fracture strength when the
value of C is constant. For the convenience of calculation, the constant C for the PMMA
bone cement specimen was 8.0, and the variation dispersion coefficient β was 1.0. The
calculated average tensile strength ft of PMMA bone cement was 43.23MPa. It is located in
the range of 33.0 MPa~ 51.4 MPa for tensile strength ft which has been reported in related
literature [17–21]. The average value of fracture toughness KIC was 1.77 MPa ·m1/2, which
likewise falls within the range of 1.0 MPa ·m1/2 ~ 2.7 MPa ·m1/2 as reported by related
literature [10–17]. In addition, the minimum value f min

t of tensile strength was 26.29 MPa.
The minimum value Kmin

IC of fracture toughness was 1.02 MPa ·m1/2. Minimum values of
tensile strength and fracture toughness provided a basis for evaluating the safety of PMMA
bone cement.

Table 3. PMMA three-parameter Weibull distribution calculation results at dav = 52.5 µm.

C = α∗ch/dav β = ∆afic/dav 1 2 3 4

0.5

ft 155.61 154.64 153.69 152.76
f min
t 85.40 83.88 82.30 80.77
σ 23.82 23.76 23.70 23.65

CV 0.1531 0.1536 0.1542 0.1548

KIC 1.59 1.58 1.57 1.57
Kmin

IC 0.86 0.79 0.78 0.77
σ 0.2461 0.2454 0.2447 0.2441

CV 0.1543 0.1549 0.1554 0.1559

1.0

ft 110.90 110.21 109.53 108.87
f min
t 61.59 60.56 59.43 58.39
σ 16.89 16.84 16.80 16.76

CV 0.1523 0.1528 0.1534 0.1539

KIC 1.61 1.60 1.59 1.58
Kmin

IC 0.82 0.81 0.80 0.78
σ 0.2468 0.2460 0.2453 0.2446

CV 0.1536 0.1540 0.1545 0.1550

1.5

ft 91.25 90.68 90.12 89.57
f min
t 51.32 50.41 49.51 48.65
σ 13.83 13.79 13.75 13.71

CV 0.1516 0.1521 0.1526 0.1531
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Table 3. Cont.

C = α∗ch/dav β = ∆afic/dav 1 2 3 4

KIC 1.62 1.61 1.60 1.59
Kmin

IC 0.84 0.82 0.81 0.80
σ 0.2476 0.2467 0.2460 0.2452

CV 0.1529 0.1533 0.1538 0.1542

2.0

ft 79.62 79.13 78.64 78.16
f min
t 45.26 44.50 43.71 42.95
σ 12.02 11.98 11.94 11.91

CV 0.1510 0.1514 0.1518 0.1523

KIC 1.63 1.62 1.61 1.60
Kmin

IC 0.85 0.84 0.83 0.81
σ 0.2485 0.2476 0.2467 0.2459

CV 0.1523 0.1527 0.1531 0.1537

2.5

ft 71.75 71.30 70.86 70.43
f min
t 41.17 40.48 39.81 39.16
σ 10.79 10.75 10.72 10.68

CV 0.1504 0.1508 0.1512 0.1516

KIC 1.64 1.63 1.62 1.61
Kmin

IC 0.87 0.85 0.84 0.83
σ 0.2494 0.2485 0.2476 0.2467

CV 0.1517 0.1521 0.1525 0.1532

3.0

ft 65.98 65.57 65.16 64.77
f min
t 38.18 37.58 37.00 36.39
σ 9.90 9.85 9.82 9.78

CV 0.1500 0.1503 0.1506 0.1510

KIC 1.66 1.65 1.64 1.63
Kmin

IC 0.88 0.87 0.86 0.84
σ 0.2505 0.2495 0.2485 0.2476

CV 0.1512 0.1516 0.1519 0.1519

4.0

ft 57.97 57.60 57.25 56.90
f min
t 34.06 33.56 33.07 32.53
σ 8.65 8.61 8.57 8.54

CV 0.1492 0.1495 0.1497 0.1500

KIC 1.68 1.67 1.66 1.65
Kmin

IC 0.91 0.90 0.88 0.87
σ 0.2528 0.2516 0.2505 0.2495

CV 0.1505 0.1507 0.1509 0.1512

5.0

ft 52.57 52.24 51.92 51.60
f min
t 31.28 30.85 30.41 29.97
σ 7.82 7.78 7.74 7.70

CV 0.1488 0.1489 0.1491 0.1493

KIC 1.70 1.69 1.68 1.67
Kmin

IC 0.94 0.93 0.91 0.90
σ 0.2554 0.2540 0.2528 0.2517

CV 0.1499 0.1500 0.1503 0.1505

6.0

ft 48.65 48.34 48.04 47.74
f min
t 29.23 28.87 28.48 28.10
σ 7.22 7.18 7.14 7.10

CV 0.1485 0.1485 0.1486 0.1487

KIC 1.73 1.72 1.71 1.69
Kmin

IC 0.97 0.96 0.94 0.93
σ 0.2582 0.2567 0.2553 0.2540

CV 0.1495 0.1496 0.1497 0.1499
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Table 3. Cont.

C = α∗ch/dav β = ∆afic/dav 1 2 3 4

7.0

ft 45.63 45.34 45.06 44.78
f min
t 27.62 27.30 27.00 26.64
σ 6.77 6.73 6.68 6.64

CV 0.1484 0.1483 0.1483 0.1484

KIC 1.75 1.74 1.73 1.72
Kmin

IC 1.00 0.98 0.97 0.95
σ 0.2612 0.2596 0.2581 0.2566

CV 0.1493 0.1493 0.1494 0.1494

8.0

ft 43.23 42.96 42.69 42.43
f min
t 26.29 26.05 25.75 25.47
σ 6.42 6.37 6.33 6.29

CV 0.1485 0.1483 0.1482 0.1482

KIC 1.77 1.76 1.75 1.74
Kmin

IC 1.02 1.01 0.99 0.98
σ 0.2644 0.2626 0.2610 0.2594

CV 0.1492 0.1491 0.1491 0.1492

9.0

ft 41.27 41.01 40.75 40.50
f min
t 25.18 24.95 24.71 24.47
σ 6.14 6.09 6.04 6.00

CV 0.1487 0.1485 0.1483 0.1481

KIC 1.79 1.78 1.77 1.76
Kmin

IC 1.03 1.03 1.02 1.00
σ 0.2683 0.2659 0.2640 0.2623

CV 0.1495 0.1491 0.1490 0.1490

10.0

ft 39.63 39.38 39.13 38.89
f min
t 24.21 24.02 23.83 23.61
σ 5.91 5.86 5.81 5.76

CV 0.1491 0.1487 0.1484 0.1482

KIC 1.82 1.80 1.79 1.78
Kmin

IC 1.05 1.04 1.04 1.03
σ 0.2723 0.2698 0.2674 0.2654

CV 0.1499 0.1495 0.1491 0.1489
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Figure 6. Variation curve of coefficient of variation CV for fracture toughness and tensile strength
with C value at dav = 52.5 µm.

4. Three-Parameter Weibull Distribution Prediction of PMMA Bone Cement Fracture

The constant C was taken as 8.0 and the variation dispersion coefficient β as 1.0 based
on the analysis results in Section 3. The statistical distribution results of tensile strength ft
and fracture toughness KIC were obtained from the three-parameter Weibull distribution
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function. Combined with Equation (7), the complete fracture prediction curve of PMMA
bone cement can be predicted.

The lower limit of the material parameter can be established based on the minimum
value of the parameter, according to the three-parameter Weibull distribution principle.
Namely, according to the minimum value of tensile strength ft and fracture toughness KIC,
a minimum safety line is determined as the minimum safety control index. According
to the complete fracture prediction line of PMMA bone cement, the tensile strength ( ft)
control zone (ae/a∗ch ≤ 0.1), the quasi-brittle fracture control zone (0.1 ≤ ae/a∗ch ≤ 10), and
the fracture toughness (KIC) control zone (ae/a∗ch ≥ 10) can be obtained.

Figure 7 depicts the predicted results of the 95% confidence interval (µ± 2σ) of the
PMMA bone cement WS specimen based on the mean value and standard deviation. By
analyzing the minimum value, the lower limit of the material parameter was determined.
As shown in Figure 7, the PMMA bone cement WS data points in the laboratory experiments
are all in the quasi-brittle fracture control zone and above the lower limit fracture failure
curve fitted by the minimum value. Almost all experimental data are within the 95%
confidence interval.
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By transforming Equations (16) and (17), a simplified prediction model for the tensile
strength ft and fracture toughness KIC of PMMA bone cement WS specimens can be
obtained. Tensile strength ft = Pmax/A1

e and fracture toughness KIC = Pmax/A2
e, with

respect to the equivalent area A1
e
(

A2
e
)

and the peak load Pmax, can be obtained as shown
in Equations (18) and (19). Conversely, the peak load Pmax of the test piece can also be
calculated from the equivalent area A1

e
(

A2
e
)

and ft (KIC). Mean value µ and standard
deviation σ of fracture strength parameters were obtained according to three-parameter
Weibull distribution statistics. As shown in Figure 8, the predicted results of the peak load
Pmax for the PMMA bone cement WS specimen with a 95% confidence interval (µ± 2σ)
were obtained at the lower limit of the prediction of peak load Pmax. As can be seen in
Figure 8, the vast majority of data are within the 95% confidence range, and all experimental
data were above the minimum fit’s lower limit prediction curve.

Pmax = ft

6B
(

W2
1

6 + W1
6 (βdav) +

(
W−a0

2

)
(βdav)

)
(3W2 + W1)×

√
1 + ae

Cdav

= ft A1
e (18)
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Pmax = KIC

6B
(

W2
1

6 + W1
6 (βdav) +

(
W−a0

2

)
(βdav)

)
1.12×

√
π(3W2 + W1)×

√
ae + Cdav

= KIC A2
e (19)

Figure 8. (a) Prediction curve of ft for dav = 52.5 µm, β = 1, and C = 8. (b) Prediction curve of KIC

for dav = 52.5 µm, β = 1, and C = 8.

5. Discussion

The situation of β = 1.0, 2.0, 3.0, and 4.0 is discussed in this section according to
Table 3. When C = 8, the mean value, minimum value, standard deviation σ, coefficient of
variation CV of tensile strength ft, and these values of fracture toughness KIC presented
slight variations with increases in β. For example, when β was increased from 1 to 4,
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the mean values of ft only varied from 42.43 MPa to 43.23 MPa, and values of fracture
toughness KIC only varied from 1.74 MPa ·m1/2 to 1.77 MPa ·m1/2. Limited by space,
only the destruction full curve and prediction curves for β = 4 were plotted, as shown in
Figures 9 and 10. Nearly all experimental data are also located within the scope of a 95%
confidence interval. However, as shown in Figure 4, when β = 1 the correlation coefficients
of ft and KIC both have the maximum value of 0.9867 and 0.9191, respectively. With the
increase in β, the correlation coefficients of ft and KIC present a downtrend. Thus, it is
reasonable to take β = 1 for the convenience of calculation and application. In addition,
more test data are required to demonstrate the correctness of three-parameter Weibull
distribution of material parameters in the future.
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Figure 9. Destruction prediction full curve for dav = 52.5 µm, β = 4, and C = 8.

Figure 10. Cont.
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Figure 10. (a) Prediction curve of ft for dav = 52.5 µm, β = 4, and C = 8. (b) Prediction curve of KIC

for dav = 52.5 µm, β = 4, and C = 8.

6. Conclusions

A three-parameter Weibull distribution approach was used to assess the fracture
property of PMMA bone cement based on the experimental results of wedge-splitting
specimens of PMMA bone cement. During the process, the characteristic crack of PMMA
bone cement (α∗ch = Cdav = 0.5dav, 1.0dav, 1.5dav, 2.0dav, 2.5dav, 3.0dav, 4.0dav, 5.0dav, 6.0dav,
7.0dav, 8.0dav, 9.0dav, 10.0dav) at peak loads, and at a constant value of β (= 1.0, 2.0, 3.0, 4.0),
was investigated.

The results obtained from the study are as follows:

1. Due to the random distribution of PMMA bone cement particles, a three-parameter
Weibull distribution method was employed to analyze the discrete characteristic of
the fracture property. For different values of β, when the characteristic crack was
α∗ch = 8dav, tensile strength ft and fracture toughness KIC with the smallest coefficient
of variation ( CV ) were obtained. The minimum CV values for ft and KIC were 0.1485
and 0.1492, respectively.

2. The mean value µ (= 43.23 MPa), minimum value f min
t (= 26.29 MPa), standard devia-

tion σ (= 6.42 MPa) of tensile strength ft, and these values of fracture toughness KIC
(µ = 1.77 MPa ·m1/2, Kmin

IC = 1.02 MPa ·m1/2, σ = 0.2644 MPa ·m1/2) were determined
simultaneously from the three-parameter Weibull distribution method by using the
characteristic crack α∗ch = 8dav and the fictitious crack growth ∆αfic = 1.0dav. Further-
more, the lower safety control index of PMMA bone cement was obtained based on
the statistical properties of the minimum value of ft and KIC.

3. The whole prediction breaking curve with 95% reliability for PMMA bone cement was
obtained. Additionally, based on the simplified prediction model, the prediction line
between peak load Pmax and equivalent area A1

e
(

A2
e
)

was obtained with 95% reliability.
Nearly all experimental data are located within the scope of a 95% confidence interval.
All experimental data were gained above the lower limit for safe prediction value.
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