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Lung adenocarcinoma (LA) is the 
most common cause of cancer-related 
death worldwide. Despite the advanc-
es over last decade in new targeted 
therapies, cancer genetics, diagnos-
tics, staging, and surgical techniques 
as well as new chemotherapy and ra-
diotherapy protocols, the death rate 
from LA remains high. The tumour mi-
croenvironment is composed of sev-
eral cytokines, one of which is trans-
forming growth factor β1 (TGF-β1), 
which modulates and mediates the 
expression of epithelial-mesenchymal 
transition (EMT), correlated with in-
vasive growth in LAs, and exhibits its 
pleiotropic effects through binding to 
transmembrane receptors TβR-1 (also 
termed activin receptor-like kinases – 
ALKs) and TβR-2. Accordingly, there is 
an urgent need to elucidate the mo-
lecular mechanisms associated with 
the tumoural spreading process and 
therapeutic resistance of this serious 
pathology. In this review, we briefly 
discuss the current role of contextu-
al signal TGF-β1 inducer of epithelial 
mesenchymal transition in meta-
static lung adenocarcinoma patients 
with brain metastases, and give an 
overview of our current mechanistic 
understanding of the TGF-β1-related 
pathways in brain metastases pro-
gression, TGF-β1 pathway inhibitors 
that could be used for clinical treat-
ment, and examination of models 
used to study these processes. Finally, 
we summarise the current progress in 
the therapeutic approaches targeting 
TGF-β1.
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Introduction

Lung adenocarcinoma (LA) is the most common cause of cancer-related 
death worldwide [1–8]. Despite the advances over the last decade in new 
targeted therapies, cancer genetics, diagnostics, staging, and surgical tech-
niques as well as new chemotherapy and radiotherapy protocols, the death 
rate from LA remains high [3, 4, 9–11]. A number of strategies have been 
employed. Early LA is asymptomatic, and the vast majority of patients are 
diagnosed at an advanced stage. LA is an umbrella term, under which fall 
multiple histologic variants that are mainly composed of an array of het-
erogeneous molecular subtypes, most of them characterised by a single 
oncogenic alteration [1, 3, 8]. From a clinical and pathological standpoint, 
the vast majority of LAs are diagnosed using a single adenocarcinoma mark-
er (e.g. TTF-1 or mucin) and are grouped histologically according to tissue 
morphology as epithelial lung tumours, which are further subclassified into: 
lipidic adenocarcinoma; acinar adenocarcinoma; papillary adenocarcinoma; 
micropapillary adenocarcinoma; solid adenocarcinoma; invasive mucinous 
adenocarcinoma, with its variants mixed invasive mucinous and non-muci-
nous adenocarcinoma; colloid adenocarcinoma; foetal adenocarcinoma; en-
teric adenocarcinoma; minimally invasive adenocarcinoma, with two types:  
mucinous and non-mucinous; and preinvasive lesions: atypical adeno-
matous hyperplasia and adenocarcinoma in situ, which can be mucinous or 
non-mucinous [4, 12–14].

LAs arise mostly from distal airways, commonly with glandular histology 
displaying biomarkers that are consistent with an origin in the distal lung, in-
cluding thyroid transcription factor 1 (NKX2-1) and keratin [3, 13, 15–17].

Unfortunately, the clinical, radiological, molecular, and pathological spec-
trum is widely divergent in terms of overall survival and prognosis due to 
histological heterogeneity of lung adenocarcinomas [4]. Accordingly, there 
is a critical need to elucidate the molecular mechanisms associated with 
the tumoural spreading process and therapeutic resistance of this serious 
pathology.

The tumour microenvironment is composed of several cytokines, one of 
which is transforming growth factor β1 (TGF-β1), which modulates and me-
diates the expression of epithelial-mesenchymal transition (EMT), correlat-
ed with invasive growth in LAs, and exhibits its pleiotropic effects through 
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binding to transmembrane receptors TβR-1 (also termed 
activin receptor-like kinases [ALKs]) and TβR-2. TGF-β is ex-
pressed on several malignancies, including LAs [9, 18–25].

TGF-β signalling promotes the migration of tumour 
cells to metastasis sites. Humans express three highly 
potent homologous cytokine isoforms of TGF-β consisting 
of TGF-β 1, 2, and 3. In LA carcinogenesis TGF-β1 plays an 
important role in regulating cellular functions such as cell 
proliferation, differentiation, tumour suppression, epithe-
lial inflammation, cell motility, apoptosis, adhesion, inva-
sion, and immune response [26–29]. Functionally, TGF-β1 
cytokines exert pro-inflammatory effects in epithelial tu-
mourigenesis. Initially, TGF-β1 acts as a tumour suppressor. 
At later stages, as the tumour grows, TGF-β1 is produced 
by both tumour and stromal cells as a natural response to 
hypoxic and inflammation [30].

In this review, the current role of contextual signal 
TGF-β1 inducer of epithelial mesenchymal transition in pa-
tients with lung adenocarcinoma, and an overview of our 
current mechanistic understanding of the TGF-β1-related 
pathways in brain metastasis progression-inhibitors that 
could be used for clinical treatment, as well as an exam-
ination of the models used to study these processes, will 
be briefly discussed. Finally, current progress in the ther-
apeutic approaches targeting TGF-β1 will be summarize.

TGF-β1 signalling pathway plays a critical role  
in EMT expression in lung adenocarcinomas

Several studies have reported that TGF-β1 is involved 
in the tumorigenesis of lung adenocarcinoma cells. The 
TGF-β superfamily, first coined as sarcoma growth factor 
by de Larco and Todaro in 1978 [5, 31], seems to regu-
late the transdifferentiation process of EMT. Importantly, 
TGF-β1 protein has been shown to play a critical role in 
the development of EMT [1, 15, 18, 22, 31–62]. However, 
despite some excellent published work, the role of TGF-β1 
on cellular proliferation, invasiveness, immune response, 
angiogenesis, differentiation, oxidative stress, and metas-
tasis pathophysiology remains to be fully elucidated. EMT 
is a well-studied biologic phenotypic switching process by 
which epithelial cells lose their characteristic signals and 
cell adhesion properties converting into motile mesenchy-
mal cells [9, 19, 22, 47]. Three classes of EMT events have 
been identified. Type 3 EMTs occur in tumour cells [9, 20]. 

On the other hand, EMT play a pivotal role in the con-
text; it was shown that TGF-β1 coordinates and EMT plays 
an important role in control of growth, survival, and metas-
tasis [39, 59]. TGF/EMT signalling, which is mainly mediat-
ed by RAS-MAPK, a driver and critical downstream path-
way of human carcinomas, and PI3K-AKT/HIF-1a pathways 
affect gene expression and cell cycle progression through 
the binding of transcription factors [19, 45] such as the E26 
transformation-specific (ETS) family, regulating EMT by 
enhancing the expression of EMT-transcription factors in-
cluding ZEB1, Snail, VEGF, etc. [19, 42, 63–65]. Cytoplasmic 
signalling cascades mediated by PI3K-AKT and the GTPase 
RAC1 or cell division control protein 42 (CDC42) is found to 
be altered in several stages of tumour progression. MMP-3 
increases the level of RAC1b, which gives rise to cellular 

ROS, leading to EMT and oxidative damage to DNA, mod-
ulating cell survival, and eliciting actin and microtubule 
cytoskeletal changes, regulation of gene expression, cell 
polarity, and cell migration [10, 17].

The TGF-β1 signalling is regarded as an initial, com-
plex, and yet crucial cytokine to induce EMT during can-
cer progression and metastasis in a Smad2/Smad3 com-
plex-dependent C-terminal phosphorylated downstream 
manner via ALK-5 receptors, and also dependent on the 
protein-serine/threonine kinases that participate in the 
Ras-Raf-MEK5-ERK5 signal transduction cascade and nu-
clear translocation [1, 15, 18, 22, 25, 29, 31, 33, 45, 47–49, 
57, 65–72], with positive enhancement of T-cell and cy-
tokine production [73]. Subsequently this Smad2/Smad3 
bond forms a special hetero-oligomeric link with common 
mediator Smad4 giving way to a SMAD2/3/4 translocating 
complex into the nucleus, where it binds to transcription 
factors Snail/Slug, Twist, and Zeb, subsequently modu-
lating the transcription of target genes that regulate cell-
cell and ECM interactions, thus providing a favourable 
microenvironment for tumour cell spread [18, 47–49, 71, 
72, 74]. TGF-β1 acts as a pleiotropic factor and cytokine, 
promoting cell proliferation, survival, motility, scattering, 
differentiation, and morphogenesis. Physiologically, EMT 
is responsible for the cell-scattering phenotype. This pro-
cess involves the disruption of cadherin-based cell-cell 
contacts and subsequent migration of the dissolved cells 
into the circulation [75]. High TGF-β signalling promoting 
EMT invasiveness and metastatic growth is achieved by 
ligand binding to TGF-β receptor II, which associates with 
the type I receptor activin receptor-like kinase-5 (ALK-5) 
through the subsequent phosphorylation of Smad2 and 
Smad3, which is constitutively regulated by the cytoplas-
mic protein profilin-2 (PFN2) [23, 75]. However, a more re-
cent in vivo liver and lung metastasis mouse model study 
investigating whether PFN2 served specific roles in the 
progression of human colorectal cancer demonstrated, by 
reverse transcription-quantitative polymerase chain reac-
tion and western blotting techniques, that PFN2 expres-
sion was reduced in metastatic CRC [69].

Molecularly, during embryogenesis TGF-β cytokine 
leads several biological processes such as cell cycle and 
apoptosis, EMT, and extracellular matrix (ECM) regulation. 
Recent studies investigating molecular mechanisms and 
epigenetic alterations of carcinogenesis have indicated 
that Smad6 antagonises Smad2-4 complex activation 
by competing with Smad2-4 binding to the activated 
TGF-β1 receptor [76] and that bone morphogenetic protein 
(BMP)-mediated SMAD signalling requires an arginine 
methylation step for the removal of an otherwise signal-
ling-inhibiting SMAD6 protein ahead of transphosphoryla-
tion of the TGF-β/BMP receptor kinases [3, 13, 76]. Further-
more, emerging evidence supports the theory that SMAD6 
inhibits BMP signalling by interacting with homeobox C8 
in the nucleus, and Smad6 antagonises TGF-β1 in the cy-
toplasm through the formation of a stable complex with 
TGF-βR1. In contrast, SMAD7 (mothers against decapen-
taplegic homolog 7) inhibits TGF-β, activin, and BMP sig-
nalling. Smad7 interacts with TGF-βR1 to inhibit R-smad 
activation and is commonly found in patients with chronic 
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inflammatory conditions of the colon and also enhances 
the invasiveness of non-small-cell lung cancer cells. Re-
cent studies have shown that Smad7 can be promoted 
and targeted by micro-RNAs (miR), such as miR-106b-25 
and miR-21-5p cluster, during EMT in breast cancer devel-
opment and NSCLC proliferation, respectively [77, 78].

Although the importance of epigenetic mechanisms 
regulating TGF-β1 has been recognised, several groups 
have reported genome-wide analyses of the binding pat-
terns of TGF-β1 receptor-regulated Smads in various can-
cer cell lines and embryonic stem cell-derived cells. Various 
Smad-binding profiles have been revealed in different cell 
types, indicating that the cell environment is of paramount 
importance for the response to signalling [3–5, 11, 23, 36, 
43, 44, 48, 67, 77, 79–84].

The combination of in vitro cell-based or in vivo mouse-
based models has been widely used to interrogate the 
dynamic behaviour of TGF-β1 signalling networks. Howev-
er, the majority of models have been created by directly 
inactivating the expression of negative feedback pathway 
regulators, such as the E3 ubiquitin ligase SMURF2 and 
SMAD7 of the TGF-β superfamily pathway [17, 32–36, 77, 
78, 85–87]. Considering its inhibitory roles in the TGF-β1 
receptor, inhibitory SMAD proteins may play a critical role 
by inhibiting the development of endothelial cells. Fur-
thermore, distinctive canonical (Smad-dependent) and 
non-canonical (Smad-independent) (Fig. 1) TGF-β super-

family member inhibitors have been identified using hu-
man and animal models [60] such as GDF15 (identified as 
a critical downstream mediator of CDP138, and described 
as a CDK5 binding partner that regulates cell prolifera-
tion and migration), which attenuates the TGF-β/Smad 
signalling pathway, leading to impaired radio-resistance 
and metastasis in lung cancer [10]; CK2 (formally named 
casein kinase 2) inhibitor CX-4945 affects the TGF-β1-in-
duced cadherin switch and the activation of the smad, 
non-smad, and focal adhesion signalling pathways, avoid-
ing the migration and invasion of A549 human lung epi-
thelial adenocarcinoma cells [61]; Bcl-xL, an anti-apoptotic 
and probably antioxidant protein overexpressed in LAs, 
has been demonstrated to neutralise the pro-apoptotic 
functions of Bcl-2-associated X protein (Bax) and Bcl-2-as-
sociated death promoter (Bad) through mitochondrial 
membrane permeability integrity, which mechanistically 
preclude pro-caspace-9 activation and cytochrome c re-
lease [50, 88, 89], among other factors. However, although 
these inhibitor pathways are attractive therapeutic tar-
gets in LAs [90], mounting evidence indicates that Smad/ 
TGF-β/EMT axis suppression, like most complex biological 
pathways, leads to compensatory over-activation of up-
stream pathways, resulting in sustained inhibition of the 
anti-angiogenic, anti-proliferative, and anti-metastatic 
effects of the recognised inhibitors. In order to examine 
and to understand the mechanism of the therapeutic po-

Fig. 1. Canonical (Smad-dependent) and non-canonical (Smad-independent) pathways. An oversimplified and modified (from [30]) scheme 
depicting the TGF-β pathway as well as a model of cerebral metastasis from lung adenocarcinoma. A) Disaggregation of cells from primary 
tumour mass to a particular metastatic niche is mediated mainly through integrins and proteases expressed at the surface of cancer cells, 
vasculature, and stromal cells [48]. In summary, cells [*] break through the vascular basement membrane via the expression of cellular ma-
trix metalloproteinase activity – MMP2 and MMP9. Many angiogenic factors secreted by both tumour and stromal cells, such as VEGF and 
platelet-derived growth factor β (PDGF-β), which are transcriptionally directly driven by hypoxia-inducible factor 1 or 2 (HIF1–HIF2). B) Lung 
adenocarcinoma is commonly defined as a slow-growing cancer that arises mostly from distal airways, typically with glandular histology 
displaying biomarkers that are consistent with an origin in the distal lung, including thyroid transcription factor 1 (NKX2-1) and keratin (7) 
with complex early diagnosis because it usually involves the periphery of the lung and has scarce symptoms, promoting early metastasis. 
C) The TGF-β1 signalling is regarded as an initial, complex, and yet crucial cytokine to induce EMT during cancer progression and metasta-
sis (20) in a Smad2/Smad3 complex-dependent C-terminal phosphorylated downstream manner via ALK-5 receptors, and also dependent 
on the protein-serine/threonine kinases that participate in the Ras-Raf-MEK5-ERK5 signal transduction cascade and nuclear translocation
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tential of targeting TGF-β, it is necessary to elucidate the 
full spectrum of feedback loops that are unleashed by sup-
pression of the smad/ TGF-β/EMT axis [60, 81, 91]. 

Carcinogenesis and evolution. Brain metastases 
from lung adenocarcinoma

Metastatic tumours are the most common neoplasms 
encountered in the brain. Brain metastases most com-
monly arise from lung, breast, genitourinary tract, and 
melanoma [41, 42, 55, 92]. Once brain metastases have 
developed, survival is commonly short, sometimes sec-
ondary by a scarce follow-up. 

Brain metastasis is a multistep process that involves 
multiple interactions between the tumour cells and the 
matrix proteins, with the microenvironment playing a key 
factor, characterised by abnormal changes at the cellu-
lar, genetic, and epigenetic levels. Initiation and develop-
ment of lung adenocarcinoma is partially attributed to 
the dysregulation and aberrant expression of chromo-
somes and proto-oncogenes, ranging from simple struc-
tural rearrangements and gene amplifications to losses or 
gains of entire chromosomes, which lead to cell growth, 
metastasis, and other tumour progressions. Several pro-
to-oncogenes have been reported in LAs, such as ALK, pro-
to-oncogene tyrosine-protein kinase (ROS1), c-Met, and 
RET proto-oncogene [58, 67, 70, 93]. Furthermore, it has 
been established that many miRNAs are down-regulated 
or up-regulated in certain types of cancers. MicroRNAs  
(miRNAs) are short endogenous non-coding RNAs impli-
cated in the regulation of gene expression of many rele-
vant physiological processes, including cell proliferation, 
cell death, and stress responses [35], and thus key driv-
ers of pathological control. It is estimated that up to 30–
50% of all human protein-coding genes are regulated by  
miRNAs [94]. 

Mounting evidence suggests that miRNAs are dereg-
ulated in various human cancers, including LAs, by regu-
lating expression of multiple target genes [52]. They func-
tion as oncogenes or tumour suppressor genes. In the 
context of cancer, a recent study using TGF-β1 in different 
concentrations to induce EMT in lung cancer A549 cells 
demonstrated that the lung cancer A549 cells became 
elongated and the cell-cell junction became loose after 
EMT [24, 29], resulting in E-cadherin downregulation and 
the mesenchymal markers vimentin and fibronectin being 
up-regulated, supporting the theory that EMT has an ef-
fect on the expression of miRNAs, and regulating metas-
tasis of lung cancer cells via EMT [34]. To investigate the 
function of miR-26a in the development of lung cancer, 
based on recent published data, in order to find progno-
sis-related miRNA, miR-29c isoform, a member of miR-29 
family, aberrantly expressed in different types of human 
cancers and functionally involved in cell proliferation, cell 
cycle, apoptosis, and metastasis, has been demonstrated 
to revert aberrant methylation by targeting DNA methyl-
transferases 3A and 3B and inhibits cell proliferation, mi-
gration, and invasion in cell lines by targeting integrin β1 
and matrix metalloproteinase 2 expression [74, 95]. Inter-
estingly enough, miR-29c may target different genes and 

pathways to inhibit tumour growth and metastasis, impli-
cating miR-29c as a novel promising prognostic biomarker 
as well as a therapeutic target to provide clinical benefit, 
through modulating proliferation and migration/invasion 
of LA cells by VEGFR-2l [29]. 

Notably, increasing evidence has demonstrated that 
TGF-β through EMT induces the expression of matrix 
metalloproteinases on both endothelial cells and tumour 
cells, which then facilitates the differentiation into stromal 
stem cells such as pericytes, and is able to create a tissue 
environment permissive to the metastatic dissemina-
tion and colonisation of distant organs [36, 40]. More 
specifically, cells break through the vascular basement 
membrane via the expression of cellular matrix metallo-
proteinase activity – MMP2 and MMP9. Many angiogenic 
factors secreted by both tumour and stromal cells in the 
brain, such as VEGF and platelet-derived growth factor β 
(PDGF-β) are transcriptionally directly driven by hypox-
ia-inducible factor 1 or 2 (HIF1–HIF2) [19, 29, 73]. 

Additionally, acidosis, cellular stress, and hypoxia lead 
to decreased expression of E-cadherin and occludins, re-
sulting in less cell adhesion and entry of the dissolved 
or circulating tumour cells (CTCs) intro the bloodstream, 
some of which express the EMT phenotype [20]. E-cad-
herin is a calcium-dependent cell adhesion glycoprotein 
abundantly expressed by surface epithelial cells that func-
tion as an inhibitory factor for malignant transformation, 
cell dissociation, and metastasis. Therefore, E-cadherin 
is a rate-limiting step of invasion and differentiation of 
cells, downregulated in epithelial cancers, categorised as 
a marker for EMT. In fact, EMT is well known as a cellular 
program characterised by loss of an epithelial gene ex-
pression signature, such as E-cadherin, and gain of genes 
that define mesenchymal features, such as vimentin and 
neural cadherin (N-cadherin) [9, 18, 34, 63, 96, 97].

At epigenetic level, increased Smad2 and Smad3 ex-
pression operates in the lung adenocarcinomas and 
brain metastasis, enhancing TGF-β1 and the production 
of angiogenic factors such as VEGF [23, 83, 95]. Some 
investigators have also focused on the role of vascular 
basement membrane (VBM) in the pathogenesis of brain 
metastasis [92, 98]. Concordantly, VBM promoted ad-
hesion and invasion of malignant cells. Disaggregation 
of cells from the primary tumour mass to a particular 
metastatic niche is mediated mainly through integrins 
and proteases expressed at the surface of cancer cells, 
vasculature, stromal cells, etc. [92]. The β1 subunit of in-
tegrin is an adhesion molecule involved in cell survival 
and cancer resistance to radio and chemotherapy. Coop-
eration between β1 integrin and c-Met regulates tyrosine 
kinase inhibitor resistance in lung cancer. Blockade of the 
β1 integrin subunit in tumour cells prevented adhesion 
to VBM and attenuated metastasis establishment and 
growth in vivo [29, 34, 38, 41, 58].

Recent insights into the brain tumour microenviron-
ment have begun to uncover the close association be-
tween metastatic cells and the blood-brain barrier, by 
disrupting the endothelium through the vascular base-
ment membrane to gain entry into the circulation and 
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promoting tumour cell dedifferentiation transcriptionally. 
The VBM serves also as a reservoir for growth factors, such 
as TGF-β1 and vascular endothelial growth factor (VEGF), 
which reduce the endothelial barrier function by disrupt-
ing the E-cadherin–β-catenin complex and therefore fa-
vouring endothelial cell junction opening [26, 84, 99]. 

Interestingly, bevacizumab is a humanised MAb tar-
geting VEGF. The inhibition of VEGF signalling via beva-
cizumab treatment may normalise tumour vasculature, 
promoting a more effective delivery of chemotherapy 
agents. A randomised phase III trial (ECOG 4599) com-
bining paclitaxel and carboplatin with or without bevaci-
zumab in patients with advanced LA found a significant 
improvement in median survival for patients in the bev-
acizumab group, with a total of 5 of 10 treatment-relat-
ed deaths occurring as a result of haemoptysis, all in the 
bevacizumab group [100]. Indeed, the median survival was 
12.3 months in the group assigned to chemotherapy plus 
bevacizumab, as compared with 10.3 months in the che-
motherapy-alone group (p = 0.003). In the former study, 
VEGF levels did not correlate with overall survival. In addi-
tion to distant invasion, another characteristic gained by 
metastatic cells is the adaptive and disorganised forma-
tion of new blood vessels with ultrastructural abnormali-
ties from pre-existing vessels possibly mediated by VEGF. 
Conversely, a recent study found that the treatment with 
cisplatin/gemcitabine/bevacizumab (PGB) was superior 
to erlotinib-bevacizumab treatment in patients displaying 
a mesenchymal phenotype (low E-cadherin or high vimen-
tin), but not in those with an epithelial phenotype (high 
E-cadherin or low vimentin) [101]. VEGF binds to precur-
sors of endothelial cells via transmembrane receptors of 
the tyrosine kinase family, flt-1, and FLK-1/KDR, promoting 
the expansion, migration, and differentiation of vascular 
networks [23, 95].

In previous research on coculture in vitro experiments 
by injecting human A375 parental cells into the internal 
carotid artery of nude mice, astrocytes were found to be 
involved as critical protectors of the tumour cells from 
5-fluorouracil and cisplatin-induced apoptosis in human 
melanoma cells [102]. Moreover, Chu et al. found that 
astrocytes produce SDF-1a, IL-3, IL-6, interferon-y, TNF-a, 
TGF-β, and PDGF, which the tumour cells use to promote 
survival, growth, and potentially organ-specific metasta-
sis [1, 3]. The essential role of the tumour microenviron-
ment in cancer progression, the paracrine growth factors 
involved, and the interactions between tumour cells and 
the brain microenvironment have been elegantly demon-
strated by isolation of a brain-specific metastatic variant 
of the MDA-MB-231 human breast cancer cell line, one of 
the most metastatic cell lines, through repeated selection 
in vivo by Bos et al. [38]. In an early study investigating the 
molecular mechanisms of angiogenesis in experimental 
brain metastasis, it was found that tumour cells with high 
rates of metastatic spread to the brain overexpressed sig-
nificantly higher levels of VEGF activity than tumour cells 
with low rates of brain metastasis, and also suggesting 
that VEGF is necessary but not sufficient for the produc-
tion of brain metastases [103].

Therapeutic potential of TGF-β1 inhibitors  
in lung adenocarcinoma

Targeted therapies have a response rate of up to 80%, 
but progression almost always occurs within one to two 
years. Traditional chemotherapy has a response rate 
of about 20% with one-year survival rates near to 30%. 
TGF-β1 is the most abundant isoform in mammals. At pres-
ent there is a prospective randomised trial exploring the 
therapeutic options. For example, there are several phar-
macokinetic approaches and ongoing trials that interfere 
with the EMT mechanism and the migration of cancer cells 
induced by TGF-β1, such as BIX02189. 

The downregulation or inhibition of TGF-β1 (the most 
abundant isoform in mammals) receptors results in cel-
lular resistance to the usual suppressive effects of the 
TGF-β1 ligand, contributing to cancer development and 
apoptosis. Existing therapies that target TGF-β1 receptors 
in a variety of human cancers for potential clinical use are 
based on antisense molecules (oligonucleotides), mono-
clonal antibodies against the receptors, soluble TGF-β 
inhibitors, receptor kinase inhibitors, peptide aptamers, 
and human vaccines. These therapies were designed to 
act against specific targets, including Smad proteins and 
other targets downstream the TGF-β1 signalling pathway. 
Nonetheless, despite its initial promise, currently many 
targeted therapies either against ligand, ligand-receptor, 
or intracellular level of the TGF-β1 on lung adenocarcino-
ma, which are considered relevant, have been discarded 
from both in vitro and in vitro research.

Due to brain metastasis from lung adenocarcinoma and 
its highly complex microenvironment, it is difficult to find 
a fully comprehensive and effective therapeutic approach. 
The ability of therapeutic strategies targeting the activat-
ing or inhibitory receptors on TGF-β1 to stop or reverse the 
EMT has been reported in A549 lung cancer cells [15, 104]. 
In an experimental model on cultured human A549 cells 
investigating the involvement of ERK1/2 in phosphoryla-
tion of Smad3 linker region and EMT induced by TGF-β1, it 
was found that kaempferol, a common natural flavonoid, 
acts as a potent antitumour growth agent by reversing 
TGF-β1-mediated Snail induction and E-cadherin repres-
sion by weakening Smad3 binding to Snail promoter [105].

The role of the immune system in cancer progression 
has been studied for decades. Programmed death-ligand 1 
(PD-L1) is a 40kDa type transmembrane protein, a member 
of the B7-CD28 immunoglobulin superfamily expressed on 
activated T-cells and B-cells, with an important role in me-
diating immune evasion in the tumour microenvironment 
closely related to the EMT process through a negative 
feedback loop. An outstanding recent study reported that 
the AKT, ERK, and TAK1 pathways regulated the expression 
of PD-L1 by mediating transportation of the transcription 
factor Stat3 and the p65 subunit of NF-kB from the cyto-
plasm to the nucleus, with such findings determined by 
western blotting and flow cytometric analyses [63]. 

Recently, by investigating volatile anaesthetic agents 
such as sevoflurane on cell viability and chemoresistance 
to cisplatin on LA A549 cells in an in vitro study, it was 
found that sevoflurane positively upregulated expression 
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of nuclear Smad3 and TGF-β1 with enhanced chemosen-
sitivity to cisplatin but without effect on migration of 
A549 cells [44]. 

As previously mentioned, MEK/ERK5 (mitogen-activat-
ed protein kinase/extracellular signal-regulated kinase 
[ERK]5) signalling pathway, strongly linked to chemore-
sistance, encoded by MAP2K5, can be inhibited in human 
A549 lung cancer cells. BIX02189, a pharmacological in-
hibitor of the MEK5 signalling pathway, has been shown 
to significantly interfere with the EMT mechanism and in 
the migration of cancer cells induced by TGF-β1 [27, 56, 
64]. Furthermore, a previous study has further shown that 
cyclooxygenase-2 (COX-2) inhibitors enhance the MEK/
Snail1 signalling and lead to metastasis and chemoresis-
tance via EMT induction in NSCLC [106].

Antisense oligonucleotides are a class of molecule that 
can specifically bind to RNA target molecules in order to 
manipulate gene expression. Unfortunately, there is no 
therapy approved by the US Food and Drug Administration 
for the treatment of LAs, but it may be a feasible approach 
to minimise levels of TGF-β1 [73].

Fresolimumab, a human neutralising antibody of all 
mammalian active isoforms of TGF-β, commonly well tol-
erated, was developed initially in a phase I study to treat 
patients with advanced melanoma and renal cell carcino-
ma, with contradictory results [107]. 

Conclusions

Additional challenges will be faced, shaping the design 
of clinical trials in cancer biology and pathway targets. In 
recent years, several researchers have focused on devel-
oping TGF-β1 pathway inhibitors, and immense effort has 
been made to investigate methods for selective eradication 
of therapeutically resistant cells in lung adenocarcinoma. 

The goal of the present review was to give a brief and 
non-conclusive overview of the most recent data about 
the implication of TGF-β1 receptors and ligands on lung 
adenocarcinoma related to the contextual EMT and the 
multiple therapeutic strategies that have been investigat-
ed for improving the effectiveness of TGF-β1 inhibitors. As 
noted, TGF-β1 is frequently identified as being integral in 
regulating invasiveness and metastasis in a variety of hu-
man cancer types and represents an opportunity to devel-
op therapeutic approaches.
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