Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis(N, N^{\prime}-dimethyl-formamide)cadmium(II)]- μ_{2}-oxalato]

Cédric Borel, ${ }^{\text {a }}$ Vratislav Langer, ${ }^{\text {a }}$ Johan Arnehed, ${ }^{\text {a }}$ Lisette Leikvoll ${ }^{\text {a }}$ and Mohamed Ghazzali ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden, and ${ }^{\text {b }}$ Chemistry Department, Faculty of Science, Alexandria University, PO Box 426, 21321 Alexandria, Egypt Correspondence e-mail: m_elghazali@hotmail.com

Received 30 November 2007; accepted 7 December 2007
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.025 ; w R$ factor $=0.077$; data-to-parameter ratio $=28.8$.

The title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{n}$, is isostructural with its $\mathrm{Mn}^{\mathrm{II}}$ analogue. The structure comprises zigzag polymeric chains with the oxalate groups situated on inversion centres and the $\mathrm{Cd}^{\mathrm{II}}$ atoms located on twofold rotation axes. The coordination geometry around $\mathrm{Cd}^{\mathrm{II}}$ is distorted octahedral and the intrachain $\mathrm{Cd} \cdots$ Cd distance is 5.842 (1) $\AA . \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exist between the parallel polymeric chains.

Related literature

For the isostructural $\mathrm{Mn}^{\mathrm{II}}$ analogue, see: Chan et al. (2007). For related literature, see: Borel et al. (2006); Decurtins et al. (1994); Imaz et al. (2005); Ma et al. (2007); Ockwig et al. (2005); Prasad et al. (2002); Xia et al. (2004); Zavalij et al. (2003); Zaworotko (2007).

Experimental

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
Orthorhombic, Pbcn
$M_{r}=346.61$

$$
a=15.153(4) \AA
$$

$b=8.006(2) \AA$
$c=10.403(3) \AA$
$V=1262.0(6) \AA^{3}$
$Z=4$

Data collection
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.523, T_{\max }=0.718$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad 80$ parameters
$w R\left(F^{2}\right)=0.077$
$S=1.01$
2301 reflections

Mo $K \alpha$ radiation
$\mu=1.75 \mathrm{~mm}^{-1}$
$T=153$ (2) K
$0.41 \times 0.31 \times 0.19 \mathrm{~mm}$

19498 measured reflections
2301 independent reflections
1705 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.98	2.65	3.456 (2)	140
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 2^{\text {ii }}$	0.98	2.70	3.516 (3)	141
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 1^{\text {iii }}$	0.98	2.63	3.468 (3)	144
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 3$	0.98	2.36	2.775 (2)	104
Symmetry codes: $-x+1, y+1,-z+\frac{1}{2} .$	(i) $x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$;		(ii) $x,-y+1, z+\frac{1}{2} ; \quad$ (iii)	

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL.

We are grateful to Professor Lars Öhrström for his interest in this work and to Chalmers University of Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2270).

References

Borel, C., Håkansson, M. \& Öhrström, L. (2006). CrystEngComm, 8, 666-669. Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, Y.-N., Zhao, H.-K., Wang, X.-G. \& Zhao, X.-J. (2007). Acta Cryst. E63, m70-m72.
Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. \& Gutlicht, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.

Imaz, I., Bravic, G. \& Sutter, J.-P. (2005). Dalton Trans. pp. 2681-2687.
Ma, F.-X., Meng, F.-X., Liu, K., Pang, H.-J., Shi, D.-M. \& Chen, Y.-G. (2007). Transition Met. Chem. 32, 981-984.
Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. \& Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.
Prasad, P. A., Neeraj, S., Vaidhyanathan, R. \& Natarajan, S. (2002). J. Solid State Chem. 166, 128-141.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Xia, S.-Q., Hu, S.-M., Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Zhang, J.-J. \& Du, W.-X. (2004). Polyhedron, 23, 1003-1009.

Zavalij, P. Y., Yang, S. \& Whittingham, M. S. (2003). Acta Cryst. B59, 753-759.
Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 4-9.

supplementary materials

Acta Cryst. (2008). E64, m185 [doi:10.1107/S1600536807066147]
catena-Poly[[bis(N, N^{\prime}-dimethylformamide)cadmium(II)]- $\mu_{2 \text {-oxalato }]}$

C. Borel, V. Langer, J. Arnehed, L. Leikvoll and M. Ghazzali

Comment

Crystal engineering of coordination polymers, based on pre-defined interactions of metal ions with organic spacers, is an area of research that has received substantial interest (Zaworotko, 2007). In this field, employing N-and/or O- donor ligands as bridging organic modules has been intensively implemented (Ockwig et al., 2005). Oxalate anions are known as chelating bis-bidentate ligands and many infinite two-dimensional and three-dimensional coordination polymers with a $\left[M M^{\prime}(\mathrm{ox})_{\mathrm{n}}\right]_{\mathrm{n}^{\prime}}$ formula have been reported comprising two different and/or similar metal centres (Borel et al., 2006: Imaz et al., 2005: Xia et al., 2004: Decurtins et al., 1994). However, solvent ligation to the metal centres may result in structures with lower dimensionality (Prasad et al., 2002). Here we present a coordination chain based on bis-oxalato cadmium(II) with coordinated DMF solvent molecules.

A perspective drawing of the title compound with the atomic numbering scheme is shown in Figure 1. The $\mathrm{Cd}^{\mathrm{II}}$ ions are situated on crystallographic twofold rotation axes while the oxalates are located on inversion centres. The $\mathrm{Cd}^{\mathrm{II}}$ ion displays a distorted octahedral coordination geometry with two dimethylformamide molecules ligated to the $\mathrm{Cd}^{\mathrm{II}}$ centre and the zigzag chain is built up from two oxalate units, linked via four O atoms to two $\mathrm{Cd}^{\mathrm{II}}$ ions with a $\mathrm{Cd}-\mathrm{O}$ distance in the range $2.262(1)-2.297(1) \AA[(\mathrm{Cd}-\mathrm{O})$ average $=2.275(19) \AA]$ (Figure 2). The intrachain $\mathrm{Cd} \cdots \mathrm{Cd}$ distance is 5.842 (1) \AA. Contrary to many oxalate-metal chains which are linked to each other in one direction by $\pi-\pi$ interactions (Ma et al., 2007) this structure exhibits only $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which are both interchain and intrachain. The intermolecular hydrogen bonds build a stack of chains with a Cd \cdots Cd distance of 8.006 (2) \AA in the b axis direction and 8.569 (2) \AA in the a axis direction. The three-dimensional architecture is maintained via coordination/covalent bonding in the c-direction and weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds in the $a b$-plane.

Experimental

All chemicals used in the first step of the synthesis were purchased from Aldrich and used without further purification. 1.81 g (2 mmol) oxalic acid was dissolved in $15 \mathrm{ml} \mathrm{H}_{2} \mathrm{O} .0 .42 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}$ and $0.62 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{H}_{3} \mathrm{BO}_{3}$ were dissolved in $15 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and added to the solution. The mixture was brought to boiling and evaporated to dryness. The resulting $\operatorname{Li}\left[\mathrm{B}(\mathrm{ox})_{2}\right]$ was dried in a desiccator (Zavalij et al., 2003). A solution of $3.9 \mathrm{~g} \mathrm{Li}\left[\mathrm{B}(\mathrm{ox})_{2}\right]$ in 50 ml DMF was prepared and heated to 343 K. A precipitate formed, probably a sign of the disintegration of the bis(oxalate)borate ion, and the solution was filtered. One eighth of this filtrate was then mixed with a solution of $0.2 \mathrm{~g} \mathrm{C} \mathrm{d}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and the resulting solution was set aside for 1-2 weeks, after which colourless prismatic crystals suitable for x-ray diffraction were collected and dried.

Refinement

H atoms were placed in idealized positions and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. Perspective drawing showing the atom-numbering scheme and atomic displacement ellipsoids at the 50% probability level for non-H atoms. Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1,-y,-z$.

catena-Poly[[bis(N, N^{1}-dimethylformamide)cadmium(II)]- μ-oxalato]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$

$M_{r}=346.61$
Orthorhombic, $P b c n$
Hall symbol: -P 2n 2ab
$a=15.153$ (4) \AA
$b=8.006(2) \AA$
$c=10.403(3) \AA$
$V=1262.0(6) \AA^{3}$
$Z=4$

Data collection

Siemens SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=153(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.523, T_{\text {max }}=0.718$
19498 measured reflections
$F_{000}=688$
$D_{\mathrm{x}}=1.824 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2301 reflections
$\theta=2.7-32.9^{\circ}$
$\mu=1.75 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Prism, colourless
$0.41 \times 0.31 \times 0.19 \mathrm{~mm}$

2301 independent reflections
1705 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=32.9^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-23 \rightarrow 23$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w R\left(F^{2}\right)=0.077$
$S=1.01$
2301 reflections
80 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0446 P)^{2}+0.4422 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.28 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.75$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd1	0.5000	$0.16606(2)$	0.2500	$0.01965(7)$
O2	$0.42585(9)$	$0.14921(17)$	$0.06167(13)$	$0.0290(3)$
O1	$0.57439(8)$	$-0.02193(18)$	$0.12849(12)$	$0.0285(3)$
O3	$0.40504(9)$	$0.37996(18)$	$0.30029(13)$	$0.0278(3)$
N1	$0.33333(10)$	$0.6091(2)$	$0.22806(14)$	$0.0234(3)$
C3	$0.38865(12)$	$0.4853(2)$	$0.21484(18)$	$0.0247(3)$
H3	0.4185	0.4745	0.1349	0.030^{*}
C1	$0.45726(11)$	$0.0493(2)$	$-0.01929(16)$	$0.0212(3)$
C5	$0.31781(15)$	$0.7309(3)$	$0.1264(2)$	$0.0377(5)$
H5A	0.3549	0.7041	0.0521	0.057^{*}
H5B	0.3325	0.8429	0.1579	0.057^{*}
H5C	0.2556	0.7277	0.1010	0.057^{*}
C4	$0.28609(13)$	$0.6360(3)$	$0.34853(19)$	$0.0291(4)$
H4A	0.2970	0.5418	0.4066	0.044^{*}
H4B	0.2227	0.6445	0.3312	0.044^{*}
H4C	0.3068	0.7395	0.3887	0.044^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.02016(11)$	$0.02378(11)$	$0.01502(10)$	0.000	$-0.00112(5)$	0.000
O2	$0.0281(6)$	$0.0385(7)$	$0.0203(6)$	$0.0124(5)$	$-0.0054(5)$	$-0.0067(5)$
O1	$0.0272(6)$	$0.0388(8)$	$0.0194(5)$	$0.0088(5)$	$-0.0083(4)$	$-0.0069(5)$
O3	$0.0297(7)$	$0.0312(7)$	$0.0224(6)$	$0.0071(6)$	$0.0048(5)$	$0.0032(6)$
N1	$0.0242(7)$	$0.0274(8)$	$0.0187(6)$	$0.0024(6)$	$-0.0015(5)$	$-0.0004(6)$

C3	$0.0259(8)$	$0.0293(9)$	$0.0189(7)$	$0.0019(7)$	$0.0027(6)$	$-0.0014(7)$
C1	$0.0197(8)$	$0.0251(7)$	$0.0186(7)$	$0.0027(6)$	$-0.0025(5)$	$-0.0002(6)$
C5	$0.0463(12)$	$0.0414(12)$	$0.0254(9)$	$0.0106(10)$	$-0.0008(8)$	$0.0063(9)$
C4	$0.0246(9)$	$0.0371(10)$	$0.0257(9)$	$0.0038(7)$	$0.0044(7)$	$-0.0024(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	2.2624 (14)
$\mathrm{Cd1}-\mathrm{O} 2$	2.2624 (14)
$\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	2.2658 (13)
Cd1-O1	2.2658 (13)
Cd1-O3	2.2971 (14)
$\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {i }}$	2.2972 (14)
O 2 - C 1	1.255 (2)
O1-C1 ${ }^{\text {ii }}$	1.2524 (19)
O3-C3	1.250 (2)
N1-C3	1.305 (2)
N1-C5	1.457 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	173.16 (7)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	74.00 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	101.33 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	101.33 (5)
$\mathrm{O} 2-\mathrm{Cd1}-\mathrm{O} 1$	74.00 (5)
$\mathrm{O1}{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	96.75 (8)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	99.11 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3$	86.02 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	93.24 (5)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$	159.05 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\mathrm{i}}$	86.02 (5)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	99.11 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	159.05 (5)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3^{\text {i }}$	93.24 (5)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {i }}$	83.60 (7)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cd} 1$	115.51 (11)
C1 ${ }^{\text {ii }}-\mathrm{O} 1-\mathrm{Cd} 1$	115.58 (11)
C3-O3-Cd1	117.74 (12)
C3-N1-C5	122.37 (16)
C3-N1-C4	121.15 (17)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	-93.56 (14)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	0.29 (13)
O3-Cd1-O2-C1	173.92 (14)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	91.07 (14)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1^{\mathrm{ii}}$	174.51 (13)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cl}^{\text {ii }}$	-0.35 (13)

N1-C4	1.459 (2)
C3-H3	0.9500
$\mathrm{C} 1-\mathrm{O} 1^{\text {ii }}$	1.2524 (19)
C1-C1 ${ }^{\text {ii }}$	1.569 (3)
C5-H5A	0.9800
C5-H5B	0.9800
C5-H5C	0.9800
C4-H4A	0.9800
C4-H4B	0.9800
C4-H4C	0.9800
C5-N1-C4	116.45 (17)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	124.40 (18)
O3-C3-H3	117.8
N1-C3-H3	117.8
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{C} 1-\mathrm{O} 2$	125.09 (16)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{C} 1^{\text {ii }}$	117.39 (18)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 1^{\text {ii }}$	117.52 (17)
N1-C5-H5A	109.5
N1-C5-H5B	109.5
H5A-C5-H5B	109.5
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
N1-C4-H4B	109.5
H4A-C4-H4B	109.5
N1-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	-43.38 (14)
O 1 - ${ }^{\text {Cd }} 1-\mathrm{O} 3-\mathrm{C} 3$	-144.53 (14)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	-26.0 (2)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	56.26 (12)
Cd1-O3-C3-N1	177.06 (15)
C5-N1-C3-O3	178.7 (2)

sup-4

supplementary materials

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1^{\mathrm{ii}}$	$99.55(14)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 3$	$1.1(3)$
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cl}^{\mathrm{ii}}$	$-18.4(2)$	$\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1^{\mathrm{ii}}$	$179.68(15)$
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1^{\mathrm{ii}}$	$-98.90(14)$	$\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{ii}}$	$-0.2(3)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	$141.17(14)$		
Symmetry codes: $(\mathrm{i})-x+1, y,-z+1 / 2 ;($ ii $)-x+1,-y,-z$.			

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.98	2.65	$3.456(2)$	140
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.98	2.70	$3.516(3)$	141
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\mathrm{v}}$	0.98	2.63	$3.468(3)$	144
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 3$	0.98	2.36	$2.775(2)$	104
Symmetry codes: (iii) $x-1 / 2, y+1 / 2,-z+1 / 2 ;$ (iv) $x,-y+1, z+1 / 2 ;(\mathrm{v})-x+1, y+1,-z+1 / 2$.				

supplementary materials

Fig. 1

Fig. 2

