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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-

2) infection has triggered the COVID-19 pandemic. Several

factors induce hypoxia in COVID-19. Despite being hypoxic,

some SARS-CoV-2-infected individuals do not experience any

respiratory distress, a phenomenon termed ‘silent (or happy)

hypoxia’. Prolonged undetected hypoxia could be dangerous,

sometimes leading to death. A few studies attempted to

unravel what causes silent hypoxia, however, the exact

mechanisms are still elusive. Here, we aim to understand how

SARS-CoV-2 causes silent hypoxia.
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Introduction
The severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) has initiated the current COVID-19 pan-

demic. COVID-19 symptoms are diverse and extend from

mild to severe manifestations of pneumonia, acquired

respiratory distress syndrome (ARDS) and multi-organ

failure [1]. A prevalent feature associated with COVID-19

is the onset of hypoxemia {low blood oxygen (O2) level}.

SARS-CoV-2 replication within the lungs causes an

uncontrolled inflammatory response, the ‘cytokine

storm’, which impinges on the lung function or perfusion,

leading to hypoxemia [2]. This causes a deficiency in

tissue oxygenation leading to hypoxia. Compensatory

mechanisms like increased ventilation and dyspnea,

which are generally initiated in hypoxia, are surprisingly
www.sciencedirect.com 
lacking in many COVID-19 patients. This phenomenon

is known as ‘silent/happy hypoxia’ or non-dyspneic hyp-

oxemia [3�,4]. Since the patient remains unaware of the

condition, undetected hypoxia could be dangerous. Stud-

ies indicate that gut dysbiosis (disruption of the gut

microbial homeostasis) is an important manifestation in

COVID-19 and can hamper respiratory control [5]. This

article explores the potential role of gut microbiota-brain

communication in causing silent hypoxia in COVID-19.

Hypoxia and hypoxia-sensing
The cause of hypoxia in COVID-19 is multifactorial and

includes thrombosis, pulmonary infiltration, viral invasion

in pneumocytes, profuse cytokine release and inflamma-

tory responses. Sepsis and pulmonary edema-mediated

thickening of the alveolar-capillary barrier, viremia and

dysregulated renin-angiotensin-aldosterone system

(RAAS) also cause systemic hypoxia in COVID-19 [2,6].

The central chemoreceptors of the respiratory center

(RC) (the medulla oblongata and pons in the brainstem)

and the peripheral chemoreceptors of the carotid body

(CB) sense O2 and carbon dioxide (CO2) in the arterial

blood [7,8]. RC is modulated by several metabolites

including lactate and are more sensitive in detecting

slight increases in CO2-tension (PaCO2) or a drop in pH

than PaO2-decrease. CB evokes peripheral chemoreflex

and ventilatory activity [9]. Although both RC and CB can

detect hypoxia, the CB has the main role in O2 homeo-

stasis. Hypoxia depolarizes glomus cells (type I) in the

CB, promoting the release of neurotransmitters that sig-

nal the nucleus tractus solitarius (NTS) via a small divi-

sion of the glossopharyngeal nerve (carotid sinus nerve)

[10]. These signals are integrated and relayed to the

rostral ventrolateral (‘pressor’) region of the medulla

and the hypothalamic paraventricular nucleus that initiate

ventilatory output which regulate breathing. Central che-

moreceptors communicate (glutaminergic) with the pre-

Bötzinger complex (PBC) of the medulla oblongata, the

medullary raphe (serotonergic), the fastigial nucleus (glu-

taminergic) of the cerebellum and the astrocytes of the

glial cells [11]. PBC and the retrotrapezoid nucleus/par-

afacial respiratory group of the brainstem neurons are

considered the primary and secondary respiratory

rhythm-regulators, respectively. The RC receives signals

from these chemoreceptors, the cerebrum and the hypo-

thalamus to determine the rate or depth of respiration as
Current Opinion in Physiology 2021, 23:100456

mailto:asima@niser.ac.in
http://www.sciencedirect.com/science/journal/24688673/23
https://doi.org/10.1016/j.cophys.2021.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cophys.2021.06.010&domain=pdf
http://www.sciencedirect.com/science/journal/24688673


2 Microbiome

Figure 1
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Components of the neuronal system involved in O2 sensing. The sagittal view of the brain showing components of the neuronal system involved in

sensing O2 level. Vagal afferents and afferent neurons of the glossopharyngeal nerve from the peripheral chemoreceptors reach the medulla and

the hypothalamus. Retrotrapezoid nucleus of the medulla contains the central chemoreceptors which is connected to the pre-Bötzinger complex

in the medulla oblongata and the cerebellum. Afferent connections from these regions to the thalamus relay the signal to the corticolimbic network

that ultimately control ventilatory responses. Areas which are possibly damaged in COVID-19 are colored in magenta. Inset: Decrease in partial

pressure of O2 in the blood causes depolarization of the type I glomus cells of the CB and release neurotransmitters.
well as the sensation of dyspnea [12]. Figure 1 provides a

schematic representation of the major neural components

involved in O2-sensing.

Respiratory-responses hugely vary among individuals and

are further complicated by respiratory virus infections.

SARS-CoV-2 reaches the central nervous system (CNS)

by various routes. As discussed later, the neuroinvasive

potential of SARS-CoV-2 might directly impair hypoxia-

response by targeting the chemosensors [13–15]. In addi-

tion, SARS-CoV-2 can disturb the intricately balanced

gut-brain axis [16] to ultimately impact the functioning of

the RC.

Gut dysbiosis in COVID-19
The symbiotic relationship of gut microbes with the host

regulates metabolic pathways, immune and neuroendo-

crine crosstalk [17]. Gut microbes can interact with the
Current Opinion in Physiology 2021, 23:100456 
brain via the vagus nerve and produce many neuroactive

substances such as metabolites, endocrine modulators

and neurotransmitters.

The Bacteroidetes (Bacteroides, Alistipes, Prevotella) and

Firmicutes (Eubacteria, Clostridium, Faecalibacterium,
Roseburia) are the most dominant phyla in the human

gut, followed by the Actinobacteria, Proteobacteria, Fuso-

bacteria and Verrucomicrobia [18�]. The loss of microbial

diversity in COVID-19 correlates with increased inflam-

mation [19��]. Firmicutes (Ruminococcus torques and Rumi-
nococcus gnavus) and Bacteroidetes (Bacteroides dorei) get

enriched while other Firmicutes (such as Eubacterium
rectale, Faecalibacterium prausnitzii) and Actinobacteria

(such as Bifidobacterium adolescentis, Bifidobacterium bifi-
dum) are depleted in COVID-19 [20��]. The GI tract and

the respiratory epithelia express angiotensin-converting

enzyme 2 (ACE2) which acts as the binding receptor of
www.sciencedirect.com
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SARS-CoV-2 and is involved in the maintenance of the

gut microbiota [21]. Interestingly, Bacteroides downre-

gulate ACE2 in the rodent gut and are depleted in

COVID-19 patients [21]. An impaired ratio of Bacteroi-

detes to Firmicutes is reflective of the disease severity.

Shotgun metagenomics of patients’ fecal samples exhibit

depletion of commensals and an upsurge in the popula-

tion of opportunistic pathogens [20��]. Opportunistic

pathogens Clostridium ramosum, C. hathewayi, Coprobacillus
sp., Streptococcus sp. and Actinomyces sp. increase with the

disease severity [20��,22]. The symbionts F. prausnitzii,
Ruminococcus obeum, E. rectale, Dorea formicigenerans, Lach-
nospiraceae bacterium and Alistipesonderdonkii are depleted

in COVID-19. Since systematic efforts to understand the

contribution of SARS-CoV-2-mediated gut dysbiosis

towards silent hypoxia have never been made, here we

summarize the mechanisms that might be involved.

Gut dysbiosis disrupts hypoxia-sensing in
SARS-CoV-2 infection
SARS-CoV-2 directly infects enterocytes by binding with

ACE2 and causes gut dysbiosis [21,23]. Like many other

viruses, SARS-CoV-2 disrupts the intestinal barrier func-

tion, causes hematological dissemination of gut microbes

and initiates systemic inflammation [23]. High levels of

proinflammatory cytokines, interferon g (IFN-g), tumor

necrosis factor a (TNF-a) and interleukin 6 (IL-6) are

found in the blood of COVID-19 patients [24]. These

cytokines travel via the systemic circulation and alter the

blood–brain barrier (BBB) permeability [16]. Systemic

inflammation increases the level of circulating reactive

O2 species (ROS) that may further affect the brainstem

and the cerebrum [25,26]. The brain has a limited anti-

oxidant capacity and, therefore, is known to be prone to

oxidative stress [27]. Oxidative stress causes neuroinflam-

mation and mitochondrial DNA damage in the NTS [28].

Studies involving germ-free mice also indicate that gut

dysbiosis compromises the BBB integrity, consequently

allowing the transmission of proinflammatory cytokines to

the brain causing neuroinflammation [29]. a-synuclein is

generated in the gut due to SARS-CoV-2-mediated cyto-

kine storm, bacterial endotoxins {mainly, lipopolysaccha-

ride (LPS)} and is subsequently transported to the brain

by the vagus nerve causing neuronal damage [30]. LPS

may also reach the brain, cause neuroinflammation and

BBB disruption [31]. Another major mechanism behind

SARS-CoV-2 entry into the brain is the reverse axonal

transport from the peripheral nerves [32].

Neurons or glial cells, which express ACE2, get infected

by the virus [4]. Studies on neurotropic flaviviruses indi-

cate that astrocytes, by virtue of performing aerobic

glycolysis, might provide the ideal replicative environ-

ment for SARS-CoV-2 [13]. The CNS damage can be

triggered by neurotropic or neuroimmune effects of

SARS-CoV-2 on the brainstem [33��]. The PBC-infection

might directly hamper hypoxia-sensing [34]. Ventilatory
www.sciencedirect.com 
responses and dyspnea are tightly regulated by

PaCO2. Prevailing hypotheses explaining the COVID-

19-associated silent hypoxia are associated with existing

hypocapnia (low PaCO2 in the blood) that prevents brain-

stem-involvement [35]. During SARS-CoV-2 infection-

induced hypoxia, the brain raises the metabolic rate and

produces lactate but the cerebral blood flow, which is

well-maintained, carries away the excess CO2 generated

during the process [36]. This hypocapnic hypoxia may

hamper the function of central chemoreceptors and cause

dyspnea. A study involving a small group of COVID-19

patients show that PaCO2 lower than 39 mm Hg blunts the

CNS-response to hypoxia [37]. In contrast, CB detects

changes in PaO2 in the arterial blood but it cannot sense

O2-saturation. In pyrexia, prevalent in COVID-19

patients, the O2-dissociation curve shifts to the right (i.

e. causes hemoglobin-desaturation) rendering CB-che-

moreceptors unstimulated and contributes to silent hyp-

oxia. Poor respiratory control and BBB integrity in the

elderly and diabetic COVID-19 patients may explain the

prevalence of silent hypoxia in these populations.

The vagus nerve forms a major neural route connecting

the gut to the brain and has innervations in the respiratory

tract and the NTS [38]. As dysbiosis modulates the vagal

tone, it can perturb the input signaling to the NTS

[38,39], thereby affecting respiration. Damage to the lung

vagal receptors and respiratory muscle mechanoreceptors

further explains the absence of dyspnea in COVID-19

[40]. Microbe-released metabolites alter immune-inflam-

matory responses in the CNS [41]. As inflammatory

mediators cause CNS neurodegeneration [16,42], gut

dysbiosis-induced neuroinflammation damages the RC

and might be a potential mechanism behind silent hyp-

oxia [16,41]. These studies highlight gut-dysbiosis as a

critical deregulator of neuronal function.

Gut microbiota-derived circulating
metabolites blunt hypoxia-sensing
in COVID-19
The gut microbiota generates several neurotropic metab-

olites, neurotransmitters, peptides and gaseous sub-

stances, many of which show altered levels in COVID-

19 (Table 1). Fermentation of undigested starch and

dietary fibers by the colonic bacteria generates short chain

fatty acids (SCFA) such as butyrate, propionate and

acetate as the major metabolites [43�]. Bacteroidetes

mainly produce acetate and propionate, but butyrate is

largely produced by Firmicutes which modulate rate/

depth of breathing [44,45]. SCFA-producing commensal

Firmicutes, for example, Roseburia, Eubacterium and F.
prausnitzii are depleted in COVID-19 [20��]. Butyrate and

propionate regulate serotonin, dopamine, adrenaline or

noradrenaline which alter the brain-neurochemistry [46].

SCFA, especially butyrate, maintain the intestinal tight

junctions, BBB integrity, show neuroprotective effects

[47] and even are capable of ACE2 downregulation in the
Current Opinion in Physiology 2021, 23:100456
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Table 1

Altered gut microbiota leads to the dysregulation of neurotropic metabolites in COVID-19 patients altering neuronal responses

Bacterial phylum/genus (and status in COVID-19) Microbial metabolite/

neurotransmitter

Impacts of the microbial metabolites/

neurotransmitters

References

E. rectale, F. prausnitzii (decreased) Butyrate Neuroprotective, anti-inflammatory,

antioxidant

[20��,44,47]

Roseburia sp., Akkermansia muciniphilia,

Ruminococcus (decreased)

Propionate Neuroprotective, anti-inflammatory,

antioxidant

[20��,44,47]

Bifidobacterium sp. (decreased) Acetate Neuroprotective, anti-inflammatory [5,20��,47]
B. dorei, B. ovatus, B. caccae, B. vulgatus (increased) g-aminobutyric acid (GABA) Neuroinhibitor [19��,59,60]
Enterococcus sp., Clostridium sp. (increased) Dopamine Neuroinhibitor, blunts ventilation under

normocapnic hypoxia

[9,20��,57,61–
63]

Corynebacterium sp., Brevibacterium sp.,

Ruminococcus sp. (decreased)

Glutamate Neurostimulator [20��,59,64]
colonic organoids of rats [48]. Murine RC and CB are

responsive to SCFA by the mediation of Olfr78, a Gs-

coupled receptor involved in mild-moderate hypoxia-

sensing [49]. All the evidence implicate that SARS-

CoV-2-mediated depletion of SCFA can impair hyp-

oxia-sensing.

Inflammatory bowel diseases (IBD), which include ulcer-

ative colitis (UC) and Crohn’s disease (CD), show strik-

ing-similarities with COVID-19 in their pathophysiologi-

cal mechanisms. IBD are associated with immune

dysregulation, damaged intestinal barrier and gut dysbio-

sis [50]. Eventually, inflammatory processes spread extra-

intestinally and affect other organs including the respira-

tory organs and the brain. IBD patients display

“pathological hypoxia” frequently but some patients

remain nondyspneic [51] and asymptomatic unless

assessed by lung function test [52]. The gut microbiome

of IBD patients, has fewer SCFA producers such as

Roseburia and F. prausnitzii accompanied by depletion

of beneficial Faecalibacterium sp., Ruminococcus and

increased Clostridium sp. abundance [50]. As in

COVID-19, SCFA, specifically butyrate, is consistently

low in the gut of individuals with IBD. Interestingly,

ACE2 receptors are induced in IBD [53] and possibly

correlates with the SCFA downregulation. These reports

signify the need for future studies to unravel the rela-

tionship of gut metabolites with respiratory controls

dependent and independent of SARS-CoV-2 infection.

The molecular mechanism of hypoxia-sensing is still

elusive; however, the role of hypoxia-adaptive hypoxia-

inducible factor-1 (HIF-1) and HIF-2 are well-known.

Hypoxia stabilizes the a-subunit of HIF. HIF-1a defi-

ciency and HIF-2a accumulation contributes towards a

blunted hypoxic response by the CB [54]. Moreover,

direct invasion by SARS-CoV-2 induces inflammatory

responses in the CB [15]. In contrast to SARS-CoV-2,

other viruses attacking the respiratory system such as the

influenza virus and respiratory syncytial virus, which do
Current Opinion in Physiology 2021, 23:100456 
not have any association with silent hypoxia, increase

SCFA or valerate [55]. SCFA increase HIF-1a stability in

enterocytes which contributes in improving the intestinal

barrier function [56]. It will be interesting to know

whether SCFA downregulation in COVID-19 contributes

towards HIF-1a downregulation in CB and blunting of

hypoxia-response.

Gut microbiota produces various neuromodulators

[43�,57]. Among the neuronal compounds detected in

the rat glomus cells are NO, enkephalins, neurotensins,

neuropeptide Y, substance P, dopamine, GABA, vasoac-

tive intestinal peptide and tyrosine hydroxylase [58]. The

major catecholamine functional in the CB is dopamine

which exerts inhibitory signals to both hypoxia-sensing

and ventilatory efforts [9]. Pathogenic Clostridium sp.,

positively correlated with COVID-19 in elderly people,

can synthesize dopamine and thus, possibly impairs hyp-

oxia-sensing. The chemoreceptors present at the cardio-

respiratory center of the NTS, the medulla oblongata and

the cerebellum are glutaminergic and inhibited by GABA

[59]. Enrichment of GABA synthesizing Bacteroides pop-

ulation in COVID-19 might inhibit these neurons impact-

ing O2-sensing [20��,60].

In summary, we theorize that SARS-CoV-2 modulates gut

microbes which fine-tune gut-derived metabolites,

potentially altering hypoxia-sensing (Figure 2).

Conclusions and future remarks
COVID-19-research is still in its nascent stage. The

problem associated with silent hypoxia in COVID-19 is

the lack of dyspnea which also deters the opportunity to

study the gut microbiota-brain axis during this stage.

Increased testing can help in identifying infected indi-

viduals even if they do not show any respiratory distress

and bring them under medical surveillance. Early detec-

tion of circulating metabolites in asymptomatic individu-

als would help in the prediction of silent hypoxia. The

focus should be on exploring the reversal of gut dysbiosis
www.sciencedirect.com
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Figure 2
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Silent Hypoxia

Summary figure comparing the gut-brain communication during hypoxia in the uninfected and SARS-CoV-2-infected non-dyspneic hypoxic

individuals. The gut microbiota is involved in maintaining the intestinal barrier, the BBB integrity as well as overall homeostasis in the host. In

COVID-19, SARS-CoV-2-mediated altered inflammatory and metabolic responses damage the intestinal barrier and the BBB. As a result, in the

infected individuals, viral particles, increased inflammatory mediators, ROS, neurotropic gut microbial metabolites and depleted SCFA can cause

damage to the central and peripheral neurons involved in hypoxia-sensing.

www.sciencedirect.com Current Opinion in Physiology 2021, 23:100456
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in COVID-19 through microbiota-modification therapy

(food, prebiotic/probiotic and fecal material transplant)

[65] which look promising in reversing gut dysbiosis in

several diseases.
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