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Abstract

Heat treatment is a popular alternative to synthetic pesticides in disinfesting food-process-
ing facilities and empty grain storages. Sitophilus zeamais Mostchulsky is one of the most
cosmopolitan and destructive insects found in empty grain storage facilities and processing
facilities. The effect of acclimation in S. zeamais adults to sublethal high temperature on
their subsequent susceptibility to high temperatures was investigated. S. zeamais adults
were acclimated to 36°C for 0 (as a control), 1, 3, and 5 h, and then were exposed at 43, 47,
51, and 55°C for different time intervals respectively. Acclimation to sublethal high tempera-
ture significantly reduced subsequent susceptibility of S. zeamais adults to lethal high tem-
peratures of 43, 47, 51, and 55°C, although the mortality of S. zeamais adults significantly
increased with increasing exposure time at lethal high temperatures. The mortality of S. zea-
mais adults with 1, 3, and 5 h of acclimation to 36°C was significantly lower than that of S.
zeamais adults without acclimation when exposed to the same lethal high temperatures.
The present results suggest that the whole facility should be heated to target lethal high
temperature as soon as possible, avoiding decreasing the control effectiveness of heat
treatment due to the acclimation in stored product insects to sublethal temperature.

Introduction

The maize weevil, Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae), is a primary
insect pest of cereal grains, particularly in maize and wheat, whose infestation usually starts in
the field before harvest and extends in bulk grain and processing facilities [1-3]. Control of
stored-grain insect pests has ever been primarily achieved by continued applications of methyl
bromide and phosphine. However, methyl bromide has been phased out due to its ozone
depleting potential according to the Montreal Protocol in the world [4,5]. Currently, control of
S. zeamais population is primarily dependent upon intensive use of phosphine [6]. However,
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its repeated use for decades has disrupted biological control by natural enemies and led to seri-
ous concerns about insecticide resistance, environmental contamination, pesticide residue in
food, and lethal effects on non-target organisms [7-11].

Recently, the integrated pest management (IPM) concept encourages the development of a
sustainable nonchemical method to effectively manage S. zeamais. As an environment-friendly
and convenient method, heat treatment has been widely evaluated and applied to controlling
insect pests in empty grain storages and processing facilities [12-16]. Usually, the target facility
is gradually heated from ambient temperature to 50-60°C during heat treatment [13,17-20],
which naturally makes the stored product insects experience acclimation to sublethal high tem-
perature. Many studies have shown that acclimation can significantly affect the thermal toler-
ance of insects [21-23].

In addition, most studies have focused on the effects of constant elevated high temperatures
on mortality of stored grain insects [18,19]. In comparison, the effects of acclimation to suble-
thal temperatures on the mortality of stored-product insects are poorly understood, and such
information is important for developing effective heat treatment protocols, and understanding
responses to thermal stress and the adaptive evolution in response to climate warming [24,25].
In current study, the hypothesis is that acclimation to sublethal temperatures can enhance the
heat tolerance of S. zeamais adults and decrease their mortality. And the objective of this study
is to evaluate the effect of acclimation to sublethal temperature on subsequent susceptibility of
S. zeamais adults to lethal high temperatures.

Materials and Methods
Insects

S. zeamais was cultured in a controlled temperature and humidity chamber (27+2°C, 75+5%
relative humidity and 12:12 L:D) without exposure to any insecticide at the Institute of Stored
Product Insects of Henan University of Technology, Zhengzhou, China. The food media used
were washed, sterilized whole wheat grains at about 13.5% equilibrium moisture content. The
cultivar of the wheat used as a food media was Zhoumai 22. Healthy and 1-2-week old adults
were randomly chosen for bioassays.

Experimental protocol of acclimation to sublethal temperature

S. zeamais adults were randomly selected and put into empty plastic vials (twenty adults each
plastic vial with a few of small holes for heat quick distribution), and then exposed to 36°C [21]
for 0 (as a control), 1, 3, and 5 h as different acclimation times, respectively. Subsequently, the
S. zeamais adults were respectively exposed to high temperatures of 43, 47, 51, and 55°C for
varying periods, i.e. (1) 43°C for 165, 205, 245, 285, 325, 365, 405, and 445 min, (2) 47°C for 10,
20, 30, 40, 50, 60, 70, and 80 min, (3) 51°C for 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 min, and
(4) 55°C for 40, 50, 60, 70, 80, 90, 100, and 110 s. The relative humidity lied in the range of 50—
60% at all tested exposure temperatures. Upon completion of exposure to 43, 47, 51, and 55°C,
the plastic vial was immediately opened and the treated adults were gently brushed into a glass
jar containing whole wheat. Their mortalities were determined after 2 days. The adults were
considered dead if no movement was observed when prodded with a camel’s hair brush. Three
replicates were conducted. The total sample sizes are the following: 4 acclimation times x 4
high exposure temperatures x 8 exposure times = 128 treatments, and the total number of S.
zeamais adults tested in the experiments was 128 (treatments)x 20 (S. zeamais adults) x 3
replicates = 7680.

Insects are ectotherms, and ambient temperature therefore significantly affects their life
activities. The optimal temperatures are 25-33°C for growth and reproduction of most stored
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product insects. Our preliminary experiment results showed that the S. zeamais adults could
withstand a long-term heat stress before they eventually died at 36°C. Ma and Ma [21] accli-
mated two aphid species, Sitobion avenae and Rhopalosiphum padi at 36°C for testing their
heat-escape temperatures. Meanwhile, heat treatment usually raises the ambient temperature
of the target facility to 50-60°C, and the high exposure temperatures of 43, 47, 51, and 55°C fre-
quently occur in the heating process. Thus, we selected 36°C as a short-term sublethal acclima-
tion temperature, and 43, 47, 51, and 55°C as high exposure temperatures.

Statistical analysis

S. zeamais adult mortality data after exposure to different high temperatures for varying peri-
ods were calculated as percentages. Mean + SE mortality of the control adults in each combina-
tion of exposure temperature and exposure time was 0.0 + 0.0. Therefore, treatment mortality
data were not corrected for control mortality [26]. Treatment percentage mortalities were
transformed to arcsine square-root values for two-way analysis of variance (ANOVA) proce-
dure with insect mortality as response variable and acclimation time, and exposure time as
fixed effects, and the mean mortalities were compared and separated by Scheffe’s test at

p =0.05. These analyses were performed using SPSS Version 16.0 software.

Results
The mortality of S. zeamais at 43°C

The mortality of S. zeamais adults significantly increased with increasing exposure time at
43°C (Table 1). Compared with the mortality of S. zeamais adults without acclimation (set as a
control, 0 h), the mortality of S. zeamais adults with acclimation was significantly lower, espe-
cially when the exposure times were more than 365 min at 43°C. The acclimation time, expo-
sure time, and the interaction between the acclimation time and exposure time significantly
affected the mortality of S. zeamais adults at p<0.05 level (Table 2).

The mortality of S. zeamais at 47°C

The mortality of S. zearmais adults exposed to 47°C is listed in Table 3. The mortality of S. zea-
mais adults also significantly increased with increasing exposure time at 47°C. The mortality of
S. zeamais with acclimation was significantly lower than that of S. zeamais without acclimation
(control) to sublethal high temperature, especially when the exposure times were more than

Table 1. The effect of acclimation to sublethal high temperature on mortality (%) of S. zeamais exposed to 43°C.

Exposure time /min Acclimation time /h

0 1 3 5
165 3.3+1.67dA 5.0+2.89cA 0.0£0.00dA 1.7+1.67dA
205 5.0+2.89dA 3.3+3.33cA 3.3+1.67cdA 1.7+1.67dA
245 18.3+3.30dA 10.0+5.77cAB 6.7+3.33cdAB 1.7+1.67dB
285 41.6x11.67cA 15.0+7.64cB 13.3+3.33bcdB 8.3+4.41cdB
325 45.0+15.28cA 25.0+5.00bcAB 21.7+0.00bAB 10.0+6.67bcB
365 65.0+2.89bcA 38.3+8.82abB 30.0+8.66abB 20.0+2.89bB
405 86.7+7.26abA 40.0+8.66abB 26.7+4.41abB 21.7+4.41abB
445 95.0+5.00aA 53.3+9.28aB 35.0+1.67aB 33.0+5.00aB

Note: Data are Mean * SE of three replicates. Different lowercases indicate significant differences in the same column, and different capital letters indicate
significant differences in the same row (p<0. 05. The same as Tables 3, 5 and 7.

doi:10.1371/journal.pone.0159400.t001
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Table 2. Two way analysis of variance (ANOVA) parameters for main effects and associated interactions for the mortality of S. zeamais exposed to

43°C.

Source df Type lll SS Mean square F-value p-value
Acclimation time 3 15409.115 5136.372 81.841 0.000
Exposure time 7 31635.156 4519.308 72.009 0.000
Acclimation time x Exposure time 21 8101.302 385.776 6.147 0.000
Error 64 4016.667 62.760

Total 96 117425.000

doi:10.1371/journal.pone.0159400.1002

40 min at 47°C. The acclimation time, exposure time, and the interaction between the acclima-
tion time and exposure time significantly affected the mortality of S. zeamais adults at p<0.05
level (Table 4).

The mortality of S. zeamais at 51°C

Table 5 shows the mortality of S. zeamais adults exposed to 51°C. The mortality of S. zeamais
also significantly increased with increasing exposure time at 51°C. The mortality of S. zeamais
with acclimation was significantly lower than that of S. zeamais without acclimation (control)
to sublethal high temperature, especially when the exposure times were 2, 5, and 5.5 min at
51°C. The acclimation time and exposure time significantly affected the mortality of S. zeamais
adults at p<0.05 level, and the interaction between the acclimation time and exposure time
had no significant effect on the mortality of S. zeamais adults (Table 6).

The mortality of S. zeamais at 55°C

Table 7 shows the mortality of S. zeamais adults exposed to 55°C. The mortality of S. zeamais
also significantly increased with increasing exposure time at 55°C. The mortality of S. zeamais

Table 3. The effect of acclimation to sublethal high temperature on mortality (%) of S. zeamais exposed to 47°C.

Exposure time /min

Acclimation time /h

0 1 3 5
10 1.7+2.89dA 0.0+0.00bA 0.0+0.00dA 1.7+1.67cA
20 3.3+2.89dA 0.0+0.00bA 0.0+0.00dA 1.7+1.67cA
30 16.7+12.58cA 5+2.89bA 7.7+2.41cdA 3.3£1.67cA
40 35.0+13.23bA 13.3+6.01bB 8.3+3.33cdB 6.7+3.33bcB
50 86.7+5.77aA 35.0+10.00aB 16.7+4.41bcdB 16.7+4.41bB
60 91.7+2.89aA 46.7+6.01aB 28.3+10.93bcB 24.3+5.33aB
70 91.7+£5.77aA 36.7+7.26aB 36.7+9.28bB 31.7+4.41aB
80 93.3+2.89aA 55+13.23aB 42.2+6.41aB 37.6+6.82aB

doi:10.1371/journal.pone.0159400.t003

Table 4. Two way analysis of variance (ANOVA) parameters for main effects and associated interactions for the mortality of S. zeamais exposed to

47°C.

Source df Type Il SS Mean square F-value p-value
Acclimation time 3 21202.865 7067.622 101.071 0.000
Exposure time 7 45397.906 6485.415 92.745 0.000
Acclimation time x Exposure time 21 12149.552 578.550 8.274 0.000
Error 64 4475.333 69.927

Total 96 155003.000

doi:10.1371/journal.pone.0159400.t004
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Table 5. The effect of acclimation to sublethal high temperature on mortality (%) of S. zeamais exposed to 51°C.

Exposure time /min

Acclimation time /h

0 1 3 5
2.0 3.3+2.89cA 0.0+0.00bB 0.0+0.00bB 0.0+0.00bB
2.5 16.7+20.21bcA 1.7+1.67bA 8.3+14.43bA 6.7+1.67abA
3.0 25.0+25.98bcA 1.7+1.67bA 7.7+2.89bA 10.0+2.89abA
3.5 41.3+14.43abA 36.7+14.24abA 30.0+19.05abA 30.0£16.07abA
4.0 51.7+11.55abA 40.0+20.21abA 33.3+17.86abA 23.3+8.33abA
4.5 56.7+8.66bA 41.7£19.22abA 40.0+£22.72abA 31.7+1.67abA
5.0 86.7+11.55aA 51.7+10.14abAB 52.3+12.55aAB 38.3+19.22aB
5.5 95.0+5.77aA 65.0+20.82aAB 60.0+16.00aAB 41.7+17.40aB

doi:10.1371/journal.pone.0159400.t005

with acclimation was significantly lower than that of S. zeamais without acclimation (control)
to sublethal high temperature, especially when the exposure times were 50, 60, 70, 80, 90, and
110 s at 55°C. The acclimation time and exposure time significantly affected the mortality of S.
zeamais adults at p<0.05 level, and the interaction between the acclimation time and exposure
time had no significant effect on the mortality of S. zeamais adults (Table 8).

Discussion

The current study indicated that acclimation to sublethal high temperature could significantly
enhance the survival of S. zeamais adults subsequently exposed to lethal high temperatures and
reduce their mortality. In other words, acclimation to sublethal high temperature significantly
enhanced the heat tolerance level of S. zeamais adults and reduced their subsequent susceptibil-
ity to lethal high temperatures.

Table 6. Two way analysis of variance (ANOVA) parameters for main effects and associated interactions for the mortality of S. zeamais exposed to

51°C.
Source df Type lll SS Mean square F-value p-value
Acclimation time 3 7711.458 2570.486 8.219 0.000
Exposure time 7 45732.292 6533.185 20.889 0.000
Acclimation time x Exposure time 21 3838.542 182.788 0.584 0.915
Error 64 20016.667 312.760
Total 96 178050.000
doi:10.1371/journal.pone.0159400.t006
Table 7. The effect of acclimation to sublethal high temperature on mortality (%) of S. zeamais exposed to 55°C.
Exposure time /s Acclimation time /h
0 1 3 5
40 1.7+2.89dA 0.0+0.00bA 0.0+£0.00cA 1.7+1.67dA
50 5.0+0.00dA 0.0+0.00bB 0.0+0.00cB 1.7+1.67dB
60 21.7429.30cdA 20.0+17.56bA 3.3+3.33cB 1.7+1.67dB
70 31.7+24.66cdA 35.0+12.58bA 25.0+22.55bcAB 3.3+3.33dB
80 56.7+20.21bcA 33.3+10.92bA 28.0+9.23bcA 8.3+4.41dB
90 78.3+33.29abA 70.0+10.00aAB 65.0+7.64abBC 55.0+13.23cC
100 86.7+23.09abA 83.3+16.67aA 76.7+16.67aA 75.0+2.89bA
110 96.7+5.77aA 96.3+1.67aA 81.7+1.67aB 81.7+3.33aB

doi:10.1371/journal.pone.0159400.t007
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Table 8. Two way analysis of variance (ANOVA) parameters for main effects and associated interactions for the mortality of S. zeamais exposed to

55°C.

Source

Acclimation time

Exposure time

Acclimation time x Exposure time
Error

Total

doi:10.1371/journal.pone.0159400.t008

df Type Il SS Mean square F-value p-value

3 4869.531 1623.177 6.153 0.001
7 106805.990 15257.999 57.839 0.000
21 3382.552 161.074 0.611 0.896
64 16883.333 263.802

96 272625.000

The susceptibility of S. zeamais to lethal high temperatures was affected by various treat-
ment factors, including insect strain, developmental stage, temperature-time combination,
acclimation to sublethal high temperature, heating rate and treatment condition [27]. Li et al.
[27] reported that the slowest heating rate (0.1°C/min) achieved the highest mortality of S. zea-
mais in controlled atmosphere conditions but lowest mortality in regular air conditions. In the
present study, we investigated the effect of acclimation to sublethal temperature on subsequent
susceptibility of S. zeamais adults to lethal high temperatures. The effect of acclimation on dif-
ferent strains and developmental stages (egg, larva, and pupa stages) of S. zeamais needs to be
further investigated in the future.

The ability of insects to deal with heat stress can be achieved through physiological and bio-
chemical mechanisms [28-31], including short-term processes such as acclimation or long-
term processes such as evolutionary adaptation [32](Huey, 2010). Short-term heat acclimation
in laboratory shapes part of the insect responses to their ambient environment, which may
involve physiological and biochemical changes to cope with environmental temperature varia-
tion [29,33,34]. Tungjitwitayakul et al. [35] reported that heat shock at 30-50°C for 1 h
increased three heat shock protein (hsp) genes expression in S. zeamais as follows: Szhsp70 >
Szhsp90 > Szhsc70. In the present study, S. zeamais adults were acclimated at 36°C for 0 (con-
trol), 1, 3, and 5 h. Probably, the three hsps and other hsps, as well as some other metabolic reg-
ulation pathways, were responsible for the enhanced heat tolerance of S. zeamais adults with
acclimation. Furthermore, when S. zeamais adults were exposed to 43, 47, 51, or 55°C for vari-
ous time intervals, no significant differences were observed among the mortalities of S. zeamais
adults with 1, 3, and 5 h of acclimation to 36°C, indicating that similar physiological and bio-
chemical mechanisms were involved in the increased thermal tolerance of S. zeamais adults
with acclimation. Therefore, the physiological and biochemical adaptation mechanisms of S.
zeamais adults with acclimation necessarily deserves to be further investigated, which are in
favor of understanding responses to thermal stress and the adaptation evolution in response to
ongoing climate warming [25].

Generally, the temperatures are not evenly distributed in the whole treated facility during
heat treatment. This inevitably results in the acclimation in stored product insects to sublethal
temperature during heat treatment process, which will enhance their survival in the heat stress
environment. The survived individuals will form a threat to the stored products after the heat
treatment. According to the present research results, the whole target facility should be elevated
to over 50°C as soon as possible to avoid reducing the disinfestation effectiveness resulting
from the acclimation of stored product insects to sublethal temperature.
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