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Abstract: L-asparaginase (ASNase) is an important biological drug used to treat Acute Lymphoblastic
Leukemia (ALL). It catalyzes the hydrolysis of L-asparagine (Asn) in the bloodstream and, since
ALL cells cannot synthesize Asn, protein synthesis is impaired leading to apoptosis. Despite its
therapeutic importance, ASNase treatment is associated to side effects, mainly hypersensitivity
and immunogenicity. Furthermore, degradation by plasma proteases and immunogenicity short-
ens the enzyme half-life. Encapsulation of ASNase in liposomes, nanostructures formed by the
self-aggregation of phospholipids, is an attractive alternative to protect the enzyme from plasma
proteases and enhance pharmacokinetics profile. In addition, PEGylation might prolong the in vivo
circulation of liposomes owing to the spherical shielding conferred by the polyethylene (PEG) corona
around the nanostructures. In this paper, ASNase was encapsulated in liposomal formulations
composed by 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) containing or not different concentrations of 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N [methoxy (polyethylene glycol)-2000] (DSPE-PEG). Nanostructures of
approximately 142–202 nm of diameter and polydispersity index (PDI) of 0.069 to 0.190 were obtained
and the vesicular shape confirmed by Transmission Electron Microscopy (TEM and cryo-TEM). The
encapsulation efficiency (%EE) varied from 10% to 16%. All formulations presented activity in contact
with ASNase substrate, indicating the liposomes permeability to Asn and/or enzyme adsorption at
the nanostructures’ surface; the highest activity was observed for DMPC/DSPE-PEG 10%. Finally,
we investigated the activity against the Molt 4 leukemic cell line and found a lower IC50 for the
DMPC/DSPE-PEG 10% formulation in comparison to the free enzyme, indicating our system could
provide in vivo activity while protecting the enzyme from immune system recognition and proteases
degradation.

Keywords: liposome; pegylated liposome; nanoreactor; nanocarrier; L-asparaginase; acute
lymphoblastic leukemia

1. Introduction

Acute Lymphoblastic leukemia (ALL) is a cancer of the blood and bone marrow that
affects mostly children and adolescents. It is characterized by abnormal proliferation and
differentiation of clonal lymphocytes that causes anemia, thrombocytopenia, leukopenia
and granulocytopenia [1]. Treatment includes the enzyme L-asparaginase (ASNase), which
catalyzes the hydrolysis of L-asparagine (Asn) in bloodstream resulting on the products
aspartic acid (Asp) and ammonia (NH3) [2]. While normal cells produce Asn from L-
aspartate with the help of asparagine synthetase, leukemic cells lack this enzyme and
without Asn protein synthesis is impaired, resulting in apoptosis [3]. Since its introduction
in therapeutic protocols, in 1970, the survival rates increased from 5% to approximately
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90% [4]. Nonetheless, as a protein drug, ASNase, presents pharmacokinetic limitations,
such as short therapeutic half-lives, plasma instability and immunogenicity [5,6]. Due
to its bacterial origin, the degradation of ASNase by blood proteases is considerable
and the epitopes generated are easily recognized by the immune system, promoting an
immune response [7]. One way to tackle this problem refers to ASNase encapsulation in
nanostructures such as liposomes [8,9].

Liposomes are composed of amphiphilic molecules (phospholipids) that in aque-
ous media self-assemble in bilayers surrounding an aqueous core [10]. The benefits of
liposomes as nanocarriers are well known: they can modulate pharmacodynamics and
pharmacokinetics of encapsulated drugs [8,9,11], protect against biodegradation, enhance
solubility, decrease chemical degradation and decrease toxicity [12]. Nonetheless, the
rapid clearance of conventional liposomes owing to recognition by the Reticule Endothelial
System (RES) led to the development of stealth liposomes, i.e., coated with polymeric
molecules like polyethylene glycol [13]. PEGylated liposomes show higher stability and
longer half-life in blood due to reduced capture by RES [14]. An example of successful
formulation is Doxil®, doxorubicin in PEGylated liposomes [15,16]. It is worth mention-
ing not only pegylated nanostructures have been investigated to improve protein drugs
circulation time, but protein-PEG bioconjugation is also a common strategy [17], as well
as other polymer bioconjugation have recently been proposed [18,19]. Nonetheless, PEG
itself has the potential to induce an immune response, generating anti-PEG antibodies.
However, despite several studies showing that anti-PEG antibodies were responsible for an
attenuated response for pegylated protein drugs, few studies have investigated whether
they significantly influence the pharmacokinetics of the proteins. In a recent work, Grenier
et al. (2018) showed that the PEG effect on in vivo clearance varies among different types of
nanostructure. More specifically, they found it was much more pronounced for PEG-PLGA
nanoparticles (2.9-fold) than for pegylated liposomes (1.5-fold) [20].

Liposomes and their polymeric counterpart, polymersomes, have also been inves-
tigated as biocatalytic nanoreactors. Depending on the composition, the phospholipid
or polymeric membrane can encapsulate the enzyme and at the same time allow small
MW substrates translocation, so the aqueous core provides a separate compartment for
the enzymatic reaction, similar to cells and organelles [21,22]. For liposomes, one can
modulate the bilayer permeability based on the phospholipids compositions, variating the
gel-to-fluid phase transition temperature of the phospholipids (Tm) or the pH [21–23]. As
a matter of fact, our group has recently proposed asymmetric polymersomes of PMPC25-
PDPA70/PEO16-PBO22 for ASNase nanoencapsulation and showed it was permeable to the
substrate [24]. Nonetheless, we could not test in vitro activity against leukemic cells, yet. In
addition, this is an initial proof of concept of a polymer-based nanostructure with a polymer
that is relatively new and not approved by the regulatory agencies (FDA and EMA). As
much as we consider it promising, we know it would take a while to have something like
this available, reason why we decided to investigate classic liposomes.

In a previous work, an ASNase-loaded conventional liposome formulation was de-
veloped; however, in vitro activity against leukemia cell lines was not determined [25,26].
Moreover, other related papers describe systems with significant variations in encapsula-
tion efficiency (from 20% up to 72%) and no clear correlation with enzyme activity [25–27].
Other concern that motivated this work is, as mentioned before, conventional liposomes
are easily recognized by the RES and present rapid clearance. Here, we produced PEGy-
lated liposomes for ASNase encapsulation that proved to be capable of Asn depletion and
presented in vitro activity against leukemic cells (Molt 4); therefore, we present a novel
formulation with strong potential to improve ASNase based treatment in a short period of
time.
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2. Materials and Methods
2.1. Materials

Phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N- [methoxy (polyethylene glycol)-2000] (DSPE-PEG) were purchased from Avanti Polar
Lipids® Inc. (Alabaster, AL, USA). Asparaginase (ASNase) was purchased from ProSpec
Tany (Rehovot, Israel), and α-tocopherol was from Sigma-Aldrich Chemical Co. (St. Louis,
MO, USA). Ultra-purified or distilled water were used to prepare the solutions. All other
reagents used were of analytical grade or HPLC grade when required.

2.2. Liposomes Preparation

Two types of phospholipids were used to prepare the liposomal formulations, namely
the saturated DMPC and the unsaturated DOPC. For the pegylated liposomes, different
concentrations of DSPE-PEG were added (5% or 10% molar). In addition, 1% (molar)
of α-tocopherol was added in the DOPC formulations to avoid oxidation. Liposomal
formulations were prepared by thin film hydration [28]. Briefly, the phospholipids were
solubilized in previously filtrated chloroform and the final solution concentration was
5 mg/mL. The solutions were dried for 1 h under reduced pressure (R-100 rotary evaporator,
Büchi, Flawil, Switzerland) to form a thin film that was further hydrated with saline
phosphate buffer (PBS) (pH 7.4) for 10 min in cycles of 1-min vortex (Vortex Mixer, VIXAR,
Berlin, Germany) and 1-min water bath at 37 ◦C. The systems were extruded 15-times
through 0.2 µm polycarbonate membranes housed in a hand-held mini-extruder (Avanti
Polar Lipids® Inc., Alabaster, AL, USA) at 37 ◦C.

2.3. Dynamic Light Scattering (DLS), Zeta Potential (ζ) and Stability Analysis

The hydrodynamic diameter (z-average) and Zeta potential values of the formulations
were determined using NanoZS 90 Zetasizer (Malvern Instruments, Worcestershire, UK)
at a temperature of 25 ◦C. For DLS analysis, samples of the liposomal systems were
diluted 10 times in PBS. After equilibration time (60 s), three cycles of measurement with
a 90◦ scattering angle were conducted for each analysis and mean size (z-average) and
polydispersity index (PDI) were recorded. For the Zeta potential measurements, samples
were diluted five times in ultra-pure Milli-Q water or PBS and three cycles of measurements
were conducted for each analysis.

2.4. Asparaginase Encapsulation

A 5 mg/mL ASNase solution in PBS (pH 7.4) was mixed with an equal amount
(400 µL) of a pre-assembled liposome dispersion. The mixture was transferred to a 4 mm
electroporation cuvette (BioRad, Hercules, CA, EUA) and electroporated in a Gene Pulser
Xcell (BioRad, Hercules, CA, EUA) at voltage of 1000 V, using 10 pulses at 60-s intervals. Size
exclusion chromatography (SEC) was used to remove the non-encapsulated ASNase [29].
Briefly, 800 µL of each liposomal formulation was passed through a Sephadex 4B column
using PBS (pH 7.4) as eluent. Eluted fractions were collected and evaluated by DLS to
confirm the presence of nanostructures.

2.5. Determination of Encapsulation Efficiency

Size Exclusion Chromatography was performed to indirectly determine the ASNase
encapsulation efficiency in liposomes formulations based on a protocol adapted from
Bartenstein and collaborators [30]. ASNase-loaded liposomal systems without purification,
i.e., containing encapsulated enzyme as well as nonencapsulated enzyme, were injected into
a Superdex 200 Increase 0/300 GL column (GE Healthcare Life Science, Uppsala, Sweden)
and the elution was performed isocractically in a Fast Protein Liquid Chromatography
(FPLC) ÄKTA Purifier (GE Healthcare Life Sciences, Uppsala, Sweden) in PBS (pH 7.4) with
0.5 mL/min flow rate. The absorbance was monitored at 280 nm and protein concentration
calculated by integrating the peak corresponding to the free protein (Pnon−encapsulated) and
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the peak corresponding to the initial solution of enzyme (Pi). The EE% was calculated
according to the Equation (1):

%EE =

(
Pi − Pnon−encapsulated

)
Pi

× 100 (1)

2.6. Transmission Electron Microscopy Analysis

Transmission electron microscopy (TEM) was carried out in a Jeol 100 CX II microscope
at an acceleration voltage of 80 kV to characterize the morphological structure of liposomes
(shape and size). Carbon grids of Formvar/Carbon 300 Mesh (Electron Microscopy Sciences,
Hatfield, UK) were previously submitted to a Glow Discharge Cleaning System process
(PELCO easyGlow™, Redding, CA, USA) (30 mA for 45 s) under reduced pressure, then
5 µL of sample was pipetted onto the grid and left for 1 min. Sample excess was carefully
dried with filter paper, 20 µL uranyl acetate was added and left for 1 min; the excess was
removed with filter paper. The grids were dried at room temperature for 24 h. Cryo-EM
measurements of the liposomes were performed in a Talos Arctica (Thermo Fisher, Waltham,
MA, USA) at 200 kV with a CMOS camera OneView 4 k × 4 k (Stemmer Imaging, Graz,
Austria) at the the Brazilian National Laboratory of Nanotechnology (LNNano, Campinas-
São Paulo, Brazil). A 300 mesh Holey Lacey Carbon from Ted Pella® was previously
submitted to a glow discharge Cleaning System (15 mA, 10 s) prior to the drop casting of
the sample. Samples were vitrified in a Vitrobot® using liquid ethane. Finally, grids were
then transposed to a 12-spaces grid box in liquid nitrogen until measurements. The images
were processed using the Digital MicrographTM software (Pleasanton, CA, USA). ImageJ
was used to analyze liposome size and membrane thickness.

2.7. Liposomes Stability over the Time

The stability of the liposomal formulations at 4 ◦C and at 37 ◦C throughout a 40 days
period was investigated based on particle size distribution and polydispersity [31].

2.8. Liposome Permeability Assay

Permeability to L-Asn was investigated by measuring ASNase activity in ASNase-
loaded liposomes over the time, using the Nessler method, a colorimetric assay that
measures ammonium released from L-Asn hydrolysis by ASNase [32]. Briefly, 50 µL of
PBS (pH 7.4), 200 µL of ultrapure water and 50 µL of asparagine (25 mg/mL) were mixed
and incubated at 37 ◦C for 5 min. Then, 50 µL of the purified ASNase-loaded liposomes
formulation was added and the mixture was incubated at 37 ◦C for 30, 60 or 120 min.
Following, 50 µL of 1.5 M trichloroacetic acid (TCA) was added to stop the enzymatic
reaction. A 100 µL sample was diluted 5 times with ultrapure water and 250 µL of Nessler
reagent was added. After 1 min of reaction, a 200 µL sample was transferred to a 96 well
plate and absorbance measured at 436 nm using a spectrophotometer SpectraMax Plus
384 (Molecular Devices, San Jose, CA, USA). The enzyme activity was calculated based
on a (NH4)2SO4 calibration curve, considering that one unit of ASNase (U) catalyzes the
formation of 1 µmol of ammonia per minute at 37 ◦C. The experiments were carried out
in triplicates. As a control, 5 mg/mL ASNase solution in PBS (pH 7.4) was mixed with an
equal amount (400 µL) of a pre-assembled liposome dispersion and submitted to the same
protocol, however without performing the electroporation.

2.9. In Vitro Cytotoxicity against MOLT-4 Cells

MOLT-4 cells previously frozen in liquid nitrogen were activated in Roswell Park
Memorial Institute medium (RPMI 1640) supplemented with 10% of fetal bovine serum,
2.5 g/L of glucose, 0.01 M of HEPES and 1 mM of sodium pyruvate. Cells were pealed after
reaching a high cell density with confluence greater than 90%. After reaching confluence,
cell lineages were centrifuged at 600 xg at 4◦C for 10 min and suspended in fresh RPMI
medium. Cell viability was visualized with Trypan blue (Sigma-Aldrich, Darmstadt, Hes-
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sen, Germany) and cells were counted in Neubauer’s chamber. MTT assay was performed
with the formulations ASNase-DMPC and ASNase-DMPC/DSPE-PEG 10% as well as with
empty liposomes, as a control. Free enzyme was also used to compare the results. All
samples (formulations and free enzyme solution) were sterilized by filtration in sterile filter
Millex 13 mm PVDF 0.22 µm.

For the MTT test, 96-well cell culture-treated flat-bottom microplate was used for
incubating 2 × 104 cells/well with the same RPMI medium used to activate the cells. MOLT-
4 cells were then treated with 0, 0.000088, 0.00032, 0.00088, 0.002, 0.004 and 0.0081 U/mL
of all formulations and free enzyme and incubated for 72 h at 37 ◦C and 5% of CO2. After
incubation period, 0.5 mg/mL of MTT was added in each well and incubated again for
3 h at 37 ◦C and 5% of CO2. To precipitate the formazan crystals, the microplate was
centrifuged at 280 g and room temperature for 10 min and the supernatant was discarded.
Finally, 200 µL of DMSO 100% was added and incubated for 5 min at 37 ◦C before reading
the absorbance at 570 nm. Experiments were performed in triplicate. Pure DMSO and PBS
1× were used as a positive and negative controls and IC50 values were calculated for each
formulation.

2.10. Statistical Analysis

Differences between the experimental groups were analyzed by Two-way ANOVA
followed by Tukey’s tests, GraphPad Prism were used. Results are expressed as the mean
± standard deviation (SD) or standard error (SEM). Groups were compared considering
95% confidence interval.

3. Results and Discussion
3.1. Liposomes Preparation and Characterization

DLS measurements, indicate that liposome formulations of both pure DOPC or DMPC
presented monomodal distributions (Figures S1 and S4) and Z-average of 202 nm and
193 nm, respectively, in agreement with the literature [33,34]. Pegylated liposomes were
smaller; mean Z-average 142–157 nm (Table 1, Figures S2, S3, S5 and S6). A significant
decrease in hydrodynamic diameter was observed for the systems with 5 % or 10 % of
DSPE-PEG (Table 1 and Figure 1); Z-average results confirm the influence of the pegylated
lipid on particle size, as described by other authors [31,35], which can be related to two
factors: (i) low solubility of DSPE-PEG 2000 in lipid bilayers (4 to 10 mol%) [36–38],
or (ii) different types of PEG conformation (mushroom or brush). More specifically, at
low concentrations the polymer tends to assume a mushroom-like configuration (the
polymer headgroups do not interact), leading to a compact bilayer. Upon increasing
concentration, the polymer headgroups of PEGylated phospholipids assume an extended
brush configuration and the steric interactions lead to a rise in lateral pressure that tend
to expand the lipid membrane. With further increase in the concentration of PEGylated
phospholipids, they tend to disperse in aqueous solution and induce micelle formation [39].
Literature reports that the hydrodynamic size of liposomes as well as PEGylation influences
its circulation time in the bloodstream [40]. An in vivo study reported longer circulation
times of PEGylated liposomes in mice in comparison to conventional liposomes [40], and
liposomes of 70–200 nm were described as long-circulating [41]. Regarding polydispersity,
all six formulations presented PDI values < 0.2 and were considered monodisperse [42].

Table 1. Dynamic light scattering and Zeta Potential profile of liposomes formulations. Formulations
were analyzed for particle size based on the Z-average size and polydispersity index (PDI). Data
correspond to mean ± standard deviation (n = 3) independent experiments, except for the zeta
potential measurements (n = 1).

Formulation Z-Average (nm) PDI Zeta Potential (mV)

DOPC 202 ± 9 0.143 ± 0.019 −3.57
DOPC/DSPE-PEG 5% 155 ± 10 0.084 ± 0.014 −3.69
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Table 1. Cont.

Formulation Z-Average (nm) PDI Zeta Potential (mV)

DOPC/DSPE-PEG 10% 154 ± 7 0.079 ± 0.009 −5.89
DMPC 193 ± 6 0.069 ± 0.024 −4.55

DMPC/DSPE-PEG 5% 157 ± 7 0.090 ± 0.014 −3.73
DMPC/DSPE-PEG 10% 142 ± 10 0.190 ± 0.020 −2.57
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Figure 1. Dynamic light scattering profile of liposome formulations. Z-average values for increasing
concentrations of DSPE-PEG. # formulations showed significant difference compared to PEGylated
liposomes. #, ## formulations showed significant difference compared to DOPC/DSPE-PEG 5%
and DMPC/DSPE-PEG 5%, respectively. Data are presented as mean ± SD (n = 3 independent
experiments), (Two-way ANOVA, α = 0.05, **** p < 0.0001, Turkey test).

The formulations reported here are based on zwitterionic and PEGylated phospho-
lipids; therefore, charge should not play a major role in colloidal stabilization. Nonetheless,
zeta potential was measured in PBS but only one measurement for each formulation due to
the cuvette deterioration in the presence of PBS [43]. As showed in Table 1, irrespective of
the DSPE-PEG presence, all formulations presented slightly negative zeta potential values
similar to the ones previously reported in the literature for DMPC and DOPC liposomes at
similar conditions, which present values between −2 and −6 mV [33,43,44]. As a matter of
fact, some authors refers to liposomes with zeta potential values from −5 mV to +5 mV as
neutrals [45].

3.2. Liposomes Stability

Formulations stability at 4 ◦C and 37 ◦C was evaluated for 40 days and results are
presented in Figures 2 and 3. No significant differences were observed in PDI and Z-average
for the formulations stored at either 4 ◦C or 37 ◦C, indicating stability for 40 days. The
only exception was DMPC/DSPE-PEG 10% that presented a significant variation in PDI
and Z-average from the 3rd to the 40th day of storage at 37 ◦C (Figure 3C,D). Usually,
significant size variations are correlated to liposomes instability, resulting mainly from
aggregation/fusion of vesicles or leakage of encapsulated material due to phospholipids
degradation [46–48]. Nonetheless, the presence of α-tocopherol (1%) in the formulations
possibly preserved the unsaturated DOPC from oxidation [49,50]. For the DMPC/DSPE-
PEG 10% at 37 ◦C, the higher temperature might had destabilized the PEG moiety and
resulted in DSPE-PEG expulsion of the bilayer with consequent alteration in its curva-
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ture. This was observed only for the DMPC-DSPE-PEG liposomes owing to the packing
mismatch (14:0, DMPC; 18:1, DOPC and 18:0, DSPE-PEG).
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3.3. L-Asparaginase Encapsulation in Liposomes

ASNase was encapsulated in liposomes by electroporation, as previously reported
for polymersomes [24]. ASNase-loaded liposomes were separated from free ASNase
by Size Exclusion Chromatography (SEC). Figure 4 illustrates the chromatogram of the
ASNase-DOPC/DSPE-PEG 5% formulation that represents the typical profile obtained
for all ASNase-loaded liposome formulations. One can see that, as expected, the larger
vesicles were eluted first and separated from the free non-encapsulated enzyme. Moreover,
some degree of aggregation is observed in Figure 4A, peak 2, as expected for protein
solutions. The fractions corresponding to ASNase-loaded liposomes were analyzed by DLS
and, as can be seen in Figure 5, size distribution was preserved after purification by SEC.
In addition, no peaks corresponding to free protein were observed; however, we should
consider that the significant size difference between ASNase (~5 nm) and the liposomes
(150–200 nm) can mask the possible presence of free ASNase.

The peaks were integrated to calculate encapsulation efficiency (%EE) (Figure 6). The
%EE values varied from 10% to 16% and no correlation was observed between %EE and the
type of phospholipid or DSPE-PEG concentration (Figure 6). In fact, we expected equivalent
%EE values since the liposomes were similar in size and encapsulation of ASNase is only
dependent on the protein concentration in the electroporation solution. Literature reports
different %EE for proteins in liposomes; BSA (Bovine Serum Albumin) encapsulation in
liposomes by film hydration, for example, resulted in EE = 1% [51]. Nonetheless, our results
were similar to the ones previously found by Wang and collaborators for BSA encapsulation
in polymersomes [52].

3.4. Transmission Electronic Microscopy (TEM) and Cryogenic Electron Microscopy (Cryo-EM)

TEM imagens of blank liposomes of DMPC, DMPC/DSPE-PEG 5%, DMPC/DSPE-
PEG 10%, DOPC, DOPC/DSPE-PEG 5% and DOPC/DSPE-PEG 10% (Figure 7) presented
deformed structures that must be fragments of lamellae or fragmented liposomes (black
arrows) and clusters of liposomes (white arrows) (Figure 7C,E,F), which can be related to
the disruption or damage of the bilayer during the grid´s drying or microscopy electronic
vacuum [53,54].

A previous work in which ASNase was encapsulated in liposomes reports the rate
of protein/lipid, resulting in liposomes loading capacity of 30% to 70% (%w/w) [27].
However, we believe these results are overestimated due to the use of triton X-100 to
disrupt the vesicles, since this surfactant is known to interfere in the method used for
protein quantification.

Cryo-TEM images showed the liposomes shape and the lipid bilayer without deforma-
tions, PEGylated and non-PEGylated liposomes present similar morphology corresponding
to unilamellar bilayers and size range of 114–145 nm (Figures 8 and 9). The thickness of
the liposomes bilayer was estimated based on the Cryo-TEM images and non-pegylated
liposomes presented thickness of 4.8 nm ± 1 nm, similar to previous values presented in
the literature [55]. Pegylated liposomes presented slightly thicker bilayers, ranging from 5.8
to 6.6 nm (Table 2). Therefore, it seems the presence of the PEGylated phospholipid resulted
in an increase in the bilayer thickness, nonetheless this result needs further confirmation by
a more precise technique such as Small Angle X-ray Scattering (SAXS). The presence of the
enzyme and the electroporation did not influence the average size, shape and membrane
thickness of the liposomes (Table 2; Figures 8 and 9), corroborating with the DLS analyses
(Table 1).
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Figure 4. Chromatogram of Size Exclusion Chromatography. (A) L-asparaginase solution (5 mg/mL),
peak 1 residues flow-through; peak 2 probably corresponds to aggregated protein and peak 3 refers to
pure and soluble ASNase solution (area corresponding to 30.65 mAU·mL). (B) ASNase-DOPC/DSPE-
PEG 5% liposome system, peak 1 flow-through; peak 2 correspond to ASNase-DOPC/DSPE-PEG
5% liposomes and peak 3 ASNase non-encapsulated (area corresponding to 27.37 mAU·mL). n = 4,
isocratic elution with PBS (pH 7.4).
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DMPC/DSPE-PEG 10% (C): DMPC/DSPE-PEG 10%. Magnification of 62,000×. The bars indicate
size of 100 nm.
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Figure 9. Cryogenic electron microscopy of DOPC liposomes. (A): DOPC formulation. (B): ASNase-
DOPC/DSPE-PEG 5% (C): DOPC/DSPE-PEG 5%. Magnification of 25,000× (A) and 62,000× (B,C).
The bars indicate size of 100 nm (B,C) and 200 nm (A).

Table 2. Evaluation of size (nm) and membrane thickness of liposomes. Average liposome diameter
and bilayer thickness mean values were obtained from Cryo-EM images, using the ImageJ software.
For each system, at least two vesicles were measure with 10 spots of measurement each. SD of ± 1 nm
for all sample.

Formulations Average Size (nm) Bilayer Thickness Average (nm)

DOPC 114 4.7
DOPC/DSPE-PEG 5% 140 6.0

DMPC 157 4.9
DMPC/DSPE-PEG 10% 126 5.8

ASNase-DOPC/DSPE-PEG 5% 148 5.8
ASNase-DMPC/DSPE-PEG 10% 145 6.6

3.5. Liposomes Permeability to Asparagine

The permeability of liposomes was evaluated based on the ammonia release, a product
of the L-asparagine hydrolysis catalyzed by L-asparaginase (Figure 10). As can be seen,
the concentration of ammonia detected for all the systems was low (up to 0.45 M). Three
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hypotheses can justify these low levels of ammonia: (i) low ASNase encapsulation effi-
ciency; (ii) low L-Asn penetration in the liposomes; and (iii) volatilization of the ammonia
generated. Nonetheless, a significant increase in ammonia concentration is observed after
120 min, indicating enzyme activity and possibly vesicle permeability.
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α = 0.05.

Nanocarrier permeability can be modulated by varying the phospholipids composi-
tion, since different tail length and saturation, different gel-to-fluid phase transition tem-
perature (Tm) as well as PEGylation result in different degrees of bilayer packing [21–23].
Usually, unsaturated phospholipids self-assemble in loosely packed bilayers and, there-
fore, we expected higher permeability for the liposomes composed of DOPC. Nonetheless,
ASNase-DMPC/DSPE-PEG 10% corresponded to the highest ammonia release. We at-
tributed this behavior to the packing mismatch between DMPC (14 methylene groups in
the alkyl chain) and DSPE-PEG (18 methylene groups in the alkyl chain) that does not
happen for DOPC (18 methylene groups in the alkyl chain). A packing mismatch results in
a loosely packed bilayer [56]. One should bear in mind, that DOPC has one unsaturation
on each of the alkyl chains.

A correlation between lipid bilayer permeability and DSPE-PEG concentration was
observed, mainly for the DMPC-based formulations (Figure 10). The influence of PEGyla-
tion on permeability was previously investigated for liposomes of DPPC and DPPE-PEG
5000/DPPE-PEG 2000. According to the authors, increased permeability was observed for
PEGylated vesicles in the range of DPPE-PEG transition from the mushroom (compacted)
to the brush (extended) conformation [57,58]. Transition regions between the mushroom
and brush conformations can generate defects in the bilayer and allow the flow of small
molecules, such as L-Asn [57–60].
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We must keep in mind that activity can also be related to ASNase adhered to the
liposomes’ surface. We purified the systems by size-exclusion chromatography and the
DLS after purification did not indicate the presence of free protein. Nonetheless, even a
small number of ASNase at the surface of the vesicles could result in activity (increase in
ammonia concentration).

3.6. In Vitro Cytotoxicity against MOLT-4 Cells

Due to the higher permeably of ASNase-DMPC/DSPE-PEG 10% to Asn, in vitro
cytotoxicity against Molt-4 leukemic cell line was determined and compared to free ASNase
and ASNase-DMPC as a control (Figure 11) and the IC50 values calculated (Table 3). As
can be seen, no significant difference was detected between free ASNase and ASNase-
DMPC, confirming that enzyme activity was preserved even after encapsulation and
the formulation was not toxic by itself. In contrast, others authors showed a reduction
in cytotoxicity of ASNase-loaded liposomes against CHO cells in comparation to free
ASNase [25]. On the other hand, the IC50 for ASNase-DMPC/DSPE-PEG 10% was lower,
highlighting the potential of this system that could allow the enzyme to circulate longer
without activating the immune system.
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Figure 11. In vitro analyses of formulation. In vitro cytotoxicity of free ASNase (A), ASNase-DMPC
(B) and ASNase-DMPC/DSPE-PEG 10% (C) formulations against MOLT-4 cells. The error bars
correspond to standard deviation.
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Table 3. Values of IC50 of pure ASNase, ASNase-DMPC and ASNase-DMPC/DSPE-PEG 10% based
on cytotoxicity assays against Molt-4 cell line. Mean ± SD, n = 2.

Formulations IC50 (U/mL)

ASNase 0.000376 ± 0.000027
ASNase-DMPC 0.000548 ± 0.000044

ASNase-DMPC/DSPE-PEG 10% 0.000267 ± 0.000029

4. Conclusions

We developed ASNase-loaded liposomes of DMPC or DOPC containing or not differ-
ent amounts of DSPE-PEG (DOPC/DSPE-PEG 5%, DOPC/DSPE-PEG 10%, DMPC/DSPE-
PEG 5%, DMPC/DSPE-PEG 10%) and encapsulated the anti-leukemic drug ASNase. For-
mulations were found to be capable of depleting the amino acid L-asparagine, an indication
of its penetration inside the liposomes that could be working as nanoreactors. In particu-
lar, the DMPC/DSPE-PEG 10% formulation was found to be more efficient in depleting
L-asparagine compared to the other systems. In vitro assay also showed that ASNase-
loaded DMPC/DSPE-PEG 10% systems increased cytotoxicity against MOLT-4 leukemic
cell line when compared to free ASNase and the ASNase-loaded pure DMPC liposomes.
In conclusion, the system developed could be an alternative to improve the therapy with
ASNase.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14091819/s1, Figure S1. Dynamic Light Scattering graphs. Size distribution
by intensity and Raw correlation data of DOPC formulations. Figure S2. Dynamic Light Scattering
graphs. Size distribution by intensity and Raw correlation data of DOPC/DSPE-PEG 5% formulations.
Figure S3. Dynamic Light Scattering graphs. Size distribution by intensity and Raw correlation data of
DOPC/DSPE-PEG 10% formulations. Figure S4. Dynamic Light Scattering graphs. Size distribution
by intensity and Raw correlation data of DMPC formulations. Figure S5. Dynamic Light Scattering
graphs. Size distribution by intensity and Raw correlation data of DMPC/DSPE-PEG 5% formulations.
Figure S6. Dynamic Light Scattering graphs. Size distribution by intensity and Raw correlation data of
DMPC/DSPE-PEG 10% formulations. Figure S7. Dynamic Light Scattering graphs. Size distribution
by number and Raw correlation data of ASNase-DOPC. Figure S8. Dynamic Light Scattering graphs.
Size distribution by number and Raw correlation data of ASNase-DOPC/DSPE-PEG 5%. Figure
S9. Dynamic Light Scattering graphs. Size distribution by number and Raw correlation data of
ASNase-DOPC/DSPE-PEG 10%. Figure S10. Dynamic Light Scattering graphs. Size distribution by
number and Raw correlation data of ASNase-DMPC. Figure S11. Dynamic Light Scattering graphs.
Size distribution by number and Raw correlation data of ASNase-DMPC/DSPE-PEG 5%. Figure
S12. Dynamic Light Scattering graphs. Size distribution by number and Raw correlation data of
ASNase-DMPC/DSPE-PEG 10%.
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