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Abstract 

Objective:  The exact aetiology of multiple sclerosis (MS) remains elusive, although several environmental and 
genetic risk factors have been implicated to varying degrees. Among the environmental risk factors, viral infections 
have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control 
are largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. Addi-
tionally, the complex roles of different TLRs in MS pathology are highlighted in multiple, often contradictory, studies. 
The present work aims to analyse the TLR expression profile of NK cells isolated from MS patients. Highly purified 
CD56+CD3− NK cells isolated from peripheral blood of MS patients (n = 19) and healthy controls (n = 20) were ana-
lysed via flow cytometry for their expression of viral antigen-recognizing TLRs (TLR2, TLR3, TLR7, and TLR9).

Results:  No difference was noted in TLR expression between MS patients and healthy controls. These results aim to 
supplement previous findings which study expressional or functional differences in TLRs present in various subsets of 
the immune system in MS, thus aiding in a better understanding of MS as a complex multifaceted disease.
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Introduction
There is wide consensus defining multiple sclerosis (MS) 
as a chronic demyelinating disease, with studies showing 
apparent aspects of autoimmunity [1, 2]. The risk fac-
tors that play a role in disease pathogenesis vary widely, 
whether genetic or environmental risk factors, work-
ing either separately or in combinations; however, the 
exact mechanisms of how these might interact remain 
unknown [3–6]. Some of the environmental risk fac-
tors include age, gender, geographical location, and diet 
and lifestyle [4–6]. Viral infections have taken centre 
stage in recent years as one of the major environmental 

risk factors implicated in MS [4, 7, 8]. Examples include 
the Epstein-Barr virus (EBV), human cytomegalovirus 
(HCMV), varicella zoster virus (VZV), human herpes 
virus-6 (HHV-6), and even human endogenous retrovi-
ruses (HERV) [9].

Natural killer (NK) cells are classified as group I 
innate lymphoid immune cells [10] that have both 
cytotoxic and immunoregulatory functions depend-
ing on their subsets [11, 12]. NK cells have emerged in 
research in the past two decades as a possible player in 
the pathology of MS. One study showed the exacerba-
tion of experimental autoimmune encephalitis (EAE) 
as a result of the depletion of NK cells [13, 14]. Such 
observations have also been noticed in MS patients to a 
certain degree due, in part, to the wide variability in cri-
teria and protocols used to classify NK cell activity and 
frequency in patients, as well as variability in patient 
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selection [13, 15]. A recent study found rapid recon-
stitution of NK cells following autologous hematopoi-
etic stem cell transplantation in relapsing remitting MS 
(RRMS), which curbed an overexpansion of the effector 
memory T cell subset, Th17 cells [16]. Many of these 
findings have to be further investigated due to the com-
plexity of both NK cell subsets and functions as well as 
complexity of MS as a whole [15, 17, 18].

NK cells play a key role in host defence against viral 
infections, including those arising from members of the 
herpesvirus family [19–21]. The ability of NK cells to 
respond to viral stimuli relies on a series of germ-line 
encoded receptors, among them the toll-like receptors 
(TLRs), which can be expressed on the cell surface or 
within intracellular compartments [22]. TLRs that are 
known to recognize viral antigens include TLR2, TLR3, 
TLR7, and TLR9 [23].

It is safe to hypothesize that the lack, or even dysregu-
lation, of any one of the TLRs could have severe reper-
cussions on the ability of the immune cells, including 
NK cells, to control infections, or may possibly aid in the 
pathogenesis of diseases such as MS. Given the impor-
tance of NK cells in viral control and its suggested asso-
ciation with MS, we aimed to evaluate, for the first time, 
the expressions of TLR2, TLR3, TLR7 and TLR9 in the 
NK cells of Cypriot MS patients.

Main text
Study population
The study consisted of 19 patients with clinically definite 
MS and 20 healthy controls (HCs), who were matched 
for age and gender. Blood samples were collected from 
MS patients during their routine follow-up visits at the 
neurology clinic C of The Cyprus Institute of Neurology 
and Genetics. As described previously [24], the inclu-
sion criteria were: (1) individuals above 18 years of age; 
(2) MS patients with clinically definite multiple sclerosis 
(CDMS) and clear relapsing–remitting clinical course; 
(3) patients not experiencing any relapse symptoms at 
the time of blood collection; (4) availability of a detailed 
clinical history (age of onset, disease duration, Expanded 
Disability Status Scale (EDSS) score, and treatments 
received); (5) being born and having resided in Cyprus 
from birth to early adult life at the least. Exclusion cri-
teria were: (1) patients having suffered a relapse episode 
within 30  days before enrolment and/or blood collec-
tion; (2) inability or unwillingness to provide informed 
consent; (3) a history of alcohol or drug abuse; (4) preg-
nancy. The demographic details and clinical characteris-
tics (EDSS, diseases duration, treatment at time of blood 
collection) of the MS patients and HCs can be found in 
Additional file 1: Table S1.

NK staining and evaluation via flow cytometry
Ethylene diamine tetraacetic acid (EDTA)-anticoagulated 
venous peripheral blood was collected and peripheral 
blood mononuclear cells (PBMCs) were extracted by 
Lymphoprep (Accu-Prep, 1.077  g/mL, Accurate Chemi-
cal and Scientific Corp., USA) gradient centrifugation, 
following the manufacturer’s instructions.

In a v-bottomed 96 well plate, 1 × 106 PBMCs per well 
were resuspended in 100 µL of cell staining buffer (Bio-
legend, Germany), and incubated first for 10 min on ice 
with human FcR blocking reagent (Miltenyi Biotec, Ger-
many), followed by 1  h at 4  °C with antibodies against 
CD3 (FITC, clone HIT3a, Biolegend, Germany) and 
CD56 (PE/Cy5, clone MEM-188, Biolegend, Germany). 
The excess antibodies were then washed off, and the cells 
were fixed with 2% paraformaldehyde (PFA) (Sigma-
Aldrich, Germany) in 1× PBS for 20 min at room tem-
perature. PFA was then washed off, and the cells were 
permeabilized using intracellular staining perm wash 
buffer (Biolegend, Germany), following the manufactur-
er’s instructions. For intracellular staining, the cells were 
then resuspended in 100 µL of the perm wash buffer and 
incubated separately for 1  h at room temperature with 
antibodies against TLR2 (PE, clone 2B4A1, Invitrogen, 
USA), TLR3 (PE, clone TLR3.7, Invitrogen, USA), TLR7 
(PE, clone 4G6, Invitrogen, USA), TLR9 (PE, clone eB72-
1665, Invitrogen, USA). Excess antibodies were then 
washed off and the cells were resuspended in 1× PBS for 
flow cytometric analysis.

Flow cytometry was performed using a CyFlow cube 8 
(Sysmex-Partec, Germany). The PBMC population was 
gated based on the FSC/SSC properties (Fig.  1), and 
100,000 events were acquired for analysis. The experi-
mental setup included a fluorescence-minus-one (FMO) 
sample, i.e. cells stained with anti-CD3 and anti-CD56 
only, to be used as the control overlay for TLR expression 
analysis, as well as single stained controls to be used for 
post-acquisition computed compensation. Data analysis 
was performed using FCS express 4, Research edition (De 
Novo software, CA, USA). The CD56+CD3− population 
was identified as NK cells (Fig. 1), and TLR expression of 
this population was measured via 2 parameters: (a) the 
percentage of cells which are positive with respect to the 
FMO overlay (%positivity) using the software-calculated 
algorithm, and (b) the percentage mean fluorescence 
intensity difference compared with the FMO overlay 
(%MFI) using the formula 
MFI of TLR stained sample −MFI of FMO sample

MFI of FMO sample
× 100.

Statistical analysis
The Mann–Whitney U test was used for age matching, 
and the Fisher’s exact test was used for gender match-
ing. The Mann–Whitney U test was also used to assess 
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significance (p < 0.05) in TLR expression differences 
between the studied groups in terms of both %positive 
and %MFI parameters.

Results
The percentage expressions of TLR2, 3, 7, and 9 in the 
total NK populations represented by the percentage 
positivity (%positivity) were not significantly differ-
ent among MS and HCs samples (Fig. 2). Similarly, the 
expressions of the TLRs per NK cell represented by the 
percentage MFI difference (%MFI) were also not signifi-
cantly different among MS and HCs samples (Fig. 3).

Further gating that discerns the CD56bright and the 
CD56dim populations of the NK cells was performed. 
Upon analysing the %positivity (Fig.  2) and %MFI 
(Fig.  3) of the two separate subpopulations, no sig-
nificant differences were found among MS and HC 
samples.

On another note, the MS group was separated into 
MS patients receiving medication versus MS patients 
not receiving any medication at the time of sampling. 
Comparing %positivity and %MFI between these 2 
groups showed no significant difference in TLR expres-
sion in either total NK cells, or the subsets of NK cells 
(CD56bright and CD56dim).

Discussion
Recent emphasis is being directed towards the relevance 
of the innate immune system in MS pathogenesis/pro-
gression due to the importance of the interplay between 
the innate and adaptive immunities [25, 26]. Further-
more, specific attention is being given to the effect or role 
of TLRs in MS [27, 28]. A lack or dysregulation of any one 
of the TLRs could theoretically have severe repercussions 
on the ability of the immune cells, including NK cells, to 
control infections, or may possibly aid in the pathogen-
esis of diseases such as MS. In concordance with that 
hypothesis, and taking into consideration the association 
of viral infections with MS, this study aimed to analyse 
NK cell expression of viral antigen-recognizing TLRs in 
MS patients for the first time.

Our results showed that viral antigen-recognizing TLR 
expression profile of NK cells in MS patients was simi-
lar to that of the healthy controls, in terms of percent-
age of NK cells expressing the TLRs as well as expression 
per NK cell, regardless of their phenotypic differences 
(CD56bright or CD56dim). Given the specific setup and 
conditions followed in our methodology, we were not 
able to validate our initial hypothesis about the possi-
ble involvement of specific TLRs in MS. Nevertheless, 
there are other TLRs as well as other pattern recogni-
tion receptors that are expressed and play a role in NK 

Fig. 1  Representative workflow contour plots and histograms from flow cytometry measurements of TLR2, TLR3, TLR7 and TLR9 expressions in 
NK cells. The blue gate in the FSC/SSC plot represents the PBMC population, and the red gate in the CD3-FITC/CD56-PerCP/Cy5 plot represents 
the CD56+ CD3− NK cells. The red histogram represents background fluorescence from the fluorescence-minus-one (FMO) sample, and the black 
histogram represents the fluorescence from the TLR2-PE (a), TLR3-PE (b), TLR7-PE (c), and TLR9-PE (d) stainings
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cell immunity [29, 30]. It is essential, therefore, to dis-
sect the different expressional and functional profiles of 
the immune system and present the findings as to build a 
better understanding of the different complex pathways 
implicated in MS pathogenesis/progression.

In fact, studies have focused on specific TLRs in dif-
ferent cell subsets of the immune system in association 
with MS [31–37]. For instance, Nyirenda et al. found that 
TLR2 expression is higher in Treg cells of MS patients 
compared to HCs [38]. Upon stimulation using a TLR2 
agonist, reduction of Treg function and Th17-like pheno-
type skewing occurred in MS patients more than in HCs 
[38]. Enhanced TLR2 responsiveness to its agonist was 
reported in monocytes and PBMCs of MS patients [31]. 
The same study found no differences in TLR2 expres-
sion in monocytes of MS patients compared to HCs [31]. 
In the murine model of MS, experimental autoimmune 
encephalomyelitis (EAE), the lack of TLR2 in CD4+ T 
cells was shown to ameliorate EAE [32], while inducing 
TLR2 tolerance via low-levels of a microbiome-derived 
TLR2 agonist resulted in amelioration of EAE [39]. 
One study showed an enhanced expression of TLR3 in 
inflamed CNS tissues [40]. Genetic correlation studies 
on different TLR3 variants have found no association 
between the variants and MS [41, 42]. However, we have 

recently found such an association, i.e. between a TLR3 
variant (rs3775291) and MS, in the Cypriot MS popula-
tion [24]. This discrepancy can be explained by the imbal-
ance in genetic studies that favour North American and 
North European studies, as opposed to a more diversified 
approach. Due to the importance of IFN-β in MS [43], 
TLRs that regulate IFN-β expression play a pivotal role in 
the development of the disease, as seen by data from EAE 
models [44]. The TLRs shown to be involved in IFN-β 
production, include TLR3, 7, and 9 [45]. Additional evi-
dence shows the correlation of TLR9 expression in glial 
cells with disease severity in EAE [33]. Concurrently in 
MS patients, a study on TLR7 showed the importance of 
TLR7 activation via its agonist, alongside administration 
of exogenous IFN-β, as a means to re-establish proper B 
cell immunoregulatory signalling in RRMS patients [46]. 
The study also found a decreased TLR7 gene expres-
sion in B cells of RRMS patients which lead to a lowered 
endogenous IFN-β production by the B cells [46]. Simi-
larly to TLR7, TLR9 was found to have reduced expres-
sion in B cells of MS patients, which lead to decreased 
production of IL-10 by the B cells [47].

At the very least, the results show that TLR expres-
sion in NK cells is not affected in Cypriot MS patients. 
However, considering the many efforts to study TLR 

Fig. 2  The percentage positivity distributions of TLR2 (a), TLR3 (b), TLR7 (c), and TLR9 (d) in MS patients (n = 19) versus healthy controls (HCs) 
(n = 20). The percentage positivity is compared in total NK cells, the CD56bright NK subpopulation, and the CD56dim NK subpopulation. Bars represent 
the median and the interquartile range for each group
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expression as well as function in different immune cells 
separately, future studies may need to focus on whether 
NK cells respond differently to activation via TLRs in MS, 
or whether various treatments in MS affect that response. 
Considering the fact that NK activation by TLR is also 
dependent on co-stimulatory signals by local cytokines 
[48], future studies may focus on TLR expression during 
different disease states and/or in the presence of different 
co-stimulatory signals, such as IL-2, IL-12, or IFNγ. Stud-
ies may also look into the downstream implications of 
such a response on other immune cells and/or the demy-
elination and remyelination mechanisms.

Limitations

•	 Limited sample pool size.
•	 Rudimentary classification of NK cell population; 

other markers could be used to further divide the NK 
population into more specific subpopulations.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-05300​-1.
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MS patients and healthy controls. The Mann-Whitney U test was used for 
age matching, and the Fisher’s exact test was used for gender matching.
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