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Abstract. The tRNA modification gene in eukaryotes is relatively conservative. As an important modification
gene, the TRDMTI gene plays an important role in maintaining tRNA structural maintenance and reducing mis-
translation of protein translation by methylation of specific tRNA subpopulations. Mouse and zebrafish TRDMT]
knockout experiments indicate that it may mediate growth and development through tRNA modification. How-
ever, there are no systematic reports on the function of tRNA-modified genes in livestock. In this study, Qinchuan
cattle DNA pool sequencing technology was used. A G>C mutation in the —1223 bp position upstream of the
TRDMT] translation initiator codon was found. At this locus, the dual-luciferase assay indicated that different
genotypes cause differences in transcriptional activity (P < 0.05). Our experiment detected a natural genetic
variation of a tRNA modification gene TRDMT1, which may provide potential natural molecular materials for

the study of tRNA modification.

1 Introduction

China has a wealth of local cattle breeds, of which the top
five cattle are representatives of high-quality cattle breeds,
namely Qinchuan cattle, Jinnan cattle, Nanyang cattle, Luxi
cattle and Yanbian cattle. Beef cattle mainly provide hu-
mans with high-protein beef products. With the improvement
of people’s living standards, the demand for beef and other
products is also increasing. Hence, the improvement of beef
cattle breeds is urgent. At present, gene-editing methods can
be modified at the level of nucleobase modification, includ-
ing DNA, histones, RNA, etc. which may all be useful in beef
cattle breeding (Vojta et al., 2016).

RNA modification is a common phenomenon in molecu-
lar biology. Various types of RNA in cells can be modified
after transcription. Many chemical modifications are conser-

vative, suggesting that RNA modification is related to pro-
tein translation (Grosjean et al., 2014). In biology, tRNA
is a key factor in the transition between mRNA and pro-
tein. The maturation of tRNA requires the splicing of in-
trons and chemical modification of specific loci to mature
(Hopper and Phizicky, 2003). Some tRNA-modified genes
are associated with metabolic defects, including CDKS5-like
regulatory subunit-related protein 1 (CDKALL1), tRNA aspar-
tate methyltransferase 1 (TRDMT]I) and tRNA methyltrans-
ferase 10 homolog A (TRMT10A) (Sarin and Leidel, 2014).
TRDMTI, as an RNA methyltransferase known to methylate
tRNA, is recruited to DNA damage sites and required for
the induction of RNA m5C (Kunert et al., 2003; Jurkowski
et al., 2008; Rai et al., 2007; Chen et al., 2020). Knockout
experiments confirmed that it weakly modified animal and
plant DNA, but there is no significant difference between
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the knockout type and wild type in Drosophila, Arabidopsis
and mice (Goll et al., 2006). Subsequently, it was found that
TRDMT 1 protein can form 5-methylcytidine (m5C) on tRNA
and mRNA. Tuorto et al. (2012) found that the double-knock-
type mouse embryonic fibroblasts have reduced proliferative
capacity, and at the same time, protein synthesis is restricted.
Xue et al. (2019) found that knockdown of TRDMT1 signifi-
cantly inhibited HEK?293 cell proliferation and migration but
had no effect on clonogenic potential. The inhibitory effects
could be attenuated by re-expression of TRDMT] in HEK293
cells.

TRDMT1 is also known as Dnmt2, the most conserved
member of the DNA methyltransferase family, which has
been shown to methylate tRNAs (Goll et al., 2006). As
a member of the epigenetic modification factor, TRDMTI
can both methylate genomic DNA and modify RNA. It has
mostly been characterized as either targeting tRNA or rRNA
and can be chemically modified for specific tRNA sub-
populations in different eukaryotes (Schumann et al., 2020;
Sibbritt et al., 2013; Bohnsack et al., 2019). Epigenetic modi-
fication is an important reason for the spatiotemporal expres-
sion of genes and also plays a key role in the growth and de-
velopment of animals. The knockdown of TRDMT1 expres-
sion caused a decrease in the level of tRNA modification, and
the development of animal bones, muscles and other tissues
was limited, suggesting that its expression may affect the rel-
evant life processes.

The specific modification of tRNA ensures the correct as-
sembly of tRNA during protein translation (Piitz et al., 1994),
avoiding erroneous loading. tRNA-specific modifications can
maintain the stability of tRNA, and the lack of necessary
modifications may lead to premature decay of tRNA, short-
ening its half-life period (Alexandrov et al., 2006). tRNA
modification can also stabilize its structure and enhance nu-
clease tolerance (Schaefer et al., 2010). In addition, tRNA
modification can maintain its structural and functional sta-
bility.

The occurrence of tRNA modification affects life activi-
ties by affecting the synthesis of proteins. Liu et al. (2015)
reported that the DNA chemical modification factor DNMT
family gene SNP locus was associated with corpus callosum
mass, lean meat color and flank thickness. The tRNA modi-
fication gene is evolutionarily conserved, but most of the re-
search exists only in the model organism such as yeast and
mouse. The state of tRNA modification is associated with
disease, growth and metabolism (Sarin et al., 2014; Rai et
al., 2007; Barrett er al., 2008; Citoi et al., 2015). Vitamin
B12 and folic acid levels in pregnant women with TRDMT1
mutations are significantly different from those in the wild-
type population, and this gene polymorphism is associated
with the occurrence of congenital spina bifida in the fetus
(Franke et al., 2009).

In this experiment, by detecting the mutation in the pro-
moter region of the bovine TRDMTI gene, fluorescent re-
combinant plasmids of different genotypes were constructed
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at this site, and the relative fluorescence intensity was ana-
lyzed by detecting the transfected 293T cells. The binding
and influence of the mutation site and the transcription factor
were analyzed by software. Meanwhile, we detected the rel-
ative expression of TRDMT1 gene in each tissue. This study
provides a certain theoretical basis for the study of livestock
TRDMTI gene expression on its life activities and the study
of tRNA modification in animal life processes.

2 Materials and methods

2.1 DNA extraction

A total of 224 Qinchuan cattle (2—6 years old) were collected
in this research. All selected individuals were healthy and
unrelated. All DNA was obtained from the blood samples by
phenol chloroform (Pang et al., 2011).

2.2 DNA pool construction

All DNA samples were diluted to working concentration
(50 ng/uL) according to previous report by Li et al. (2013).
Three groups of 30 individuals per group were randomly
composed, and each group of samples was uniformly mixed
into one tube. After shaking, the mixture was centrifuged to
form a DNA pool, which was used as templates for poly-
merase chain reaction (PCR) amplification.

2.3 Primer design, PCR protocol and DNA sequencing

The 5’ flanking region sequences of TRDMTI gene were
downloaded from Ensembl (http://asia.ensembl.org/index.
html, last access: 20 August 2019). As shown in Table 1, we
designed a total of five pairs of primers to scan the TRDMT1
gene including the first exon and the 5" flanking region total-
ing 1468 bp. The PCR program was set to ensure that a suf-
ficient number of the target fragments were amplified: pre-
degeneration at 95°C for 5min, followed by 35 cycles of
denatured at 95 °C for 30s, annealed at 55/57 °C for 30s,
and extended at 72°C for 30s, finally extended at 72°C
for 10 min. PCR amplification was performed using bovine
mixed-pool DNA as a template, and specific identification
was performed by 2.5 % agarose gel electrophoresis. Then,
the products were sequenced only when each pair of primers
showed a single objective band.

2.4 Product purification and vector transform

We used the fifth pair of primers to amplify the TRDMT1 pro-
moter region using the Qinchuan cattle mixed pool as a tem-
plate (Table 1). The complexity of the promoter base motif
leads us to only obtain non-specific products. SanPrep Col-
umn DNA Gel Extraction Kit was used to purify the target
sequence. PMD-19T vector was used to link purification and
enrichment products. Mutations were introduced using the
sixth and seventh pairs of primers (Table 2). Similarly, both
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Table 1. TRDMT1 promoter genetic variation detection primers.
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Fragment Sequences (5'-3') Tm  Product
(°C) size (bp)
F: ACTGTGCATCAGGCATGTGA
ITRDMTIQD R: TCCTGGGTACACTAGAGGGC 37 393
F: CTGCCCTGTGAAGACCTGAG
ZTRDMTIQD R: TAGTTCCGCGGCTTTTCAGT >7 280
F: ACTCAAGCTAAGGCCCAACC
3TRDMTIQD R: CTCAGGTCTTCACAGGGCAG 37 339
F: TTGGAGAAGGAAGGCCACAG
4TRDMTIQD R: GACACTGTGCATCAGGCATG 33 422
STRDMTI1QD F: GACCATTTCTGCTCCTCCC 1468

R: GCCCTGTACCGTCTCACCT

wild-type and mutant sequences were ligated to the T vector
and transformed using the DH5« competent state. The plas-
mids were extracted using the omega kit. All methods were
performed according to the protocol.

2.5 Digestion reaction and plasmid construction

Nhel and HindIII restriction endonucleases were used to di-
gest the pGL3-Basic plasmid; we get the wild type product
plasmid and the mutant product plasmid after digestion. The
digestion products were purified and ligated into pGL3-Basic
plasmid with Solution I.

2.6 Cell transfection and transfection

Human embryonic kidney (HEK) 293T cell was cultured
in Dulbecco’s modified Eagle’s medium (DMEM) high-
glucose medium containing 10 % fetal bovine serum (FBS)
(Gibco, USA), supplemented with 100 units/mL penicillin,
0.1 mg/mL streptomycin, and incubated at 37 °C in 5 % CO,.
The cells were passaged every 1 to 2d. Before transfec-
tions, cells were seeded into 24 well plates at a density of
1 x 10* cells per well and incubated 1 to 2d. When the cell
density was 80 %, it was replaced with antibiotic-free and
serum-free DMEM/F12 medium (Gibco, USA) and incu-
bated for 6 h. The experiment was divided into four groups:
A, B, C and D, which were transfected with pGL3-Control,
pGL3-Basic, WT and Mut plasmids, respectively, with three
replicates in each group. Transfection medium was prepared
by mixing 4 uL Lipofectamine 2000 with 0.8 pg transfected
plasmid and 10ng pRL-TK plasmid in 0.5 mL OPTI-MEM
medium (Gibco, USA) and incubating the mixture for 20 min
at room temperature. Transfection was carried out by sub-
stituting 0.5 mL from the DMEM/F12 medium covering the
cells with the transfection mix. After 12h, the transfec-
tion medium was removed, covered with 1 mL OPTI-MEM
medium.
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2.7 Dual-luciferase reporter gene assay

According to a report by Derikx et al. (2015), 48 h after trans-
fection, cells were rinsed with PBS. Relative luciferase activ-
ity was measured using Synergy H1 (BioTek, USA).

2.8 Tissue expression profiling test

RNA was extracted from different tissues of Qinchuan cat-
tle by the TRIzol method. The cDNA was obtained by re-
verse transcription using the PrimeScript RT kit (TaKaRa,
Kusatsu, Shiga Prefecture, Japan), and the concentration was
controlled to a uniform 50 ng/uL.

Primers of the TRDMTI mRNA expression test were
designed using Beacon Designer 8.14 software (Pre-
mier Biosoft International, Palo Alto, CA, USA), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as an internal reference gene (Table 3). The reac-
tion contained 100ng of ¢cDNA, 10uL SYBR® Premix
Ex Taq TM II (TaKaRa, Japan) and 10 pmol of primers in
a volume totaling 20 pL. The mixture was denatured for 30 s
at 95 °C and was followed by 40 cycles of 5s at 95°C and
30s at 60°C.

2.9 Statistical analysis

Independent sample ¢ test was used to evaluate the relative
the statistical significance of the differences in wild type and
promoter variant of TRDMTI gene.

P < 0.05 was considered significant. Based on the am-
plification efficiency of the target gene and the reference
gene, according to the CT value obtained by qRT-PCR, a
group close to the average value was selected as the con-
trol group. Then, the relative expression level was calculated
using 2~ 22€t The GraphPad Prism 8.0 software (GraphPad
Software Inc., San Diego, CA, USA) was used for the analy-
sis.
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Table 2. TRDMT 1 promoter introduced mutation primer.
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Primer Sequences (5'-3') T (°C)

Ftrdmt] eC F1: ctaGCTAGCGACCATTTCTGCTCCTCCC 64
gC  R1: GAGGCTATGGGGGAAGAGGTC

Lirdmt1gC F2: GACCTCTTCCCCCATAGCCTC 64

R2: cccAAGCTTGCCCTGTACCGTCTCACCT

Table 3. The primers used for gPCR analysis.

Primer Sequences (5'-3") Tm

°C)

F1: CACCCTCAAGATTGTCAGCA
GAPDH R1: GGTCATAAGTCCCTCCACGA 56

F2: TTTAATGAGCCCACCCTGTCA
TRDMTI R2: TGTCCTTGGATCAGTCACATCA 56
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Figure 1. TRDMT1 promoter genetic variation site.

3 Results

3.1 Genetic variation detection and introduction of
promoter mutations of TRDMT1 promoter

As shown in Table 1, the union set of the sequencing re-
gions of the five pairs of primer amplification products was
detected. We first discovered the G>C mutation located
upstream of the cattle TRDMT] translation initiator codon
(Fig. 1). The transcription initiation site was predicted using
the Promoter 2.0 Prediction Server software (http://www.cbs.
dtu.dk/services/Promoter/, last access: 10 May 2019). The
results showed that the —1216 was the transcription initia-
tion site. Methylation island prediction (Li and Dahiya, 2002)
showed that there was a methylation island between the first
exon and —725 (Fig. 2), suggesting that this position may be
involved in the regulation of gene expression. We have set
up gradient PCR, but unfortunately the fifth pair of primers
in Table 1 can only produce non-specific amplification prod-
ucts.

3.2 Predicting promoter variation and transcription
factor binding difference

The FtrdmtlgC and LtrdmtlgC amplification products
were diluted 50-fold respectively and used as a tem-
plate. FtrdmtlgC F was used as the upstream primer, and
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Ltrdmt1gC R was used as the downstream primer. After PCR
amplification, we obtained the mutant promoter sequence.
After vector sequencing, the accuracy of all fragments lig-
ated into the T vector in the experiment was confirmed. The
combination of TRANSFAC and Genomatix found that the
G>C mutation may cause a difference in binding between
the transcription factor Spl, the pleomorphic adenoma gene
(PLAGY1), the zinc finger protein (ZNF35) and the bone mar-
row zinc finger 1 factor (MZF1) transcription factor (Figs. 3
and 4).

3.3 Double luciferase activity analysis of TRDMT1
promoter genetic variation

Promoter activity of different genotypes of TRDMT1 was as-
sessed using luciferase reporter gene expression. After cali-
bration by the control group and the basic group, the results
showed that the relative activity of the mutant promoter was
1.4 times that of the wild type (P < 0.05) (Fig. 5).

3.4 The tissue expression profile of TRDMTT in
Qinchuan cattle

Heart, spleen, kidney, rumen, liver, lung, small intestine and
muscle tissues were utilized to detect the expression of the
TRDMTI gene. The result showed the different expression
levels in each tissue. The result revealed that TRDMTI was
differentially expressed in the different tissues. Its expres-
sion is significantly higher in lung than in other tissues
(p <0.01), followed by the highest expression in rumen
(p <0.05), and the lowest expression in muscle and liver.
There was no significant difference in the expression level
among other tissues. the lowest in the fetal cattle, but the dif-
ference in calves and adult cattle stage was not statistically
significant (p > 0.05) (Fig. 6).

4 Discussion

As an apparent modifier, TRDMTI can chemically modify
not only DNA but also a specific tRNA subgroup modifier.
The occurrence of modification affects life activities by af-
fecting protein synthesis. Liu et al. (2015) reported that the
SNP locus of DNA chemical modifier DNMT family gene
is related to carcass quality, lean color, flanks thickness and
other traits. The TRDMTI gene is relatively conserved in the
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Figure 3. TRANSFAC predicts differences in promoter variation and transcription factor binding.

biological evolution process. Although it is named tRNA as-
partate methyltransferase 1, Tuorto et al. (2012) constructed
an RNA bisulfite sequencing map and found that the mouse
TRDMTI gene has an effect on tRNA-AspGTC and tRNA.
tRNA-ValAAC, tRNA-GlyGCC and tRNA-LeuCAA all have
a methyl modification at position C38, and the modified
tRNA subgroups may be tRNAs that connect mRNA and pro-
tein during the translation of most proteins in life activities.
TRDMTI gene mediates tRNA through modification self-
stability and reduces misreading during protein translation.
Gene function verification in mice showed that TRDMT] ex-
pression is related to embryonic bone development and brain
development (Tuorto et al., 2012). In zebrafish gene func-
tion verification, TRDMT1 is related to the development of
tissues such as the retina and brain (Rai et al., 2007). The
tRNA modification genes are evolutionarily conserved, but
most studies only exist at the level of model animals such as
yeast and mice, and there is a lack of functional studies on
the tRNA modification genes of large animals, such as cattle
and sheep.
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In this study, initially we used Promoter 2.0 Prediction
Server software to predict that the transcription start site of
the bovine TRDMTI gene is the promoter region —1216.
Then we used mixed-pool sequencing to scan the G>C mu-
tation at the promoter region —1223 polymorphic loci. For
different genotype sequence models, we used TRANSFAC
to predict the binding sites of transcription factors and found
that G/C mutation may cause a difference in the binding of
basic transcription factor spl (Fig. 3). The spl transcription
factor belongs to the sp protein family and is the most abun-
dant type of transcription factor in cells. Spl has a certain
preference for binding to GC-rich promoters (Kadonaga et
al., 1986). As a nucleoprotein, spl expression changes dur-
ing development, and spl knockout mice exhibit embryonic
lethality (Letovsky and Dynan, 1989). Spl is involved in the
regulation of the cell cycle, and its protein level is reduced
in senescent cells, and its expression level is also related to
some cancers (Oh et al., 2007; Takami et al., 2007; Safe and
Abdelrahim, 2005). We speculate that the expression level of
spl protein in each tissue cell is the same among cattle in-
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Figure 4. Genomatix predicts differences in promoter variation and transcription factor binding.
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Figure 6. Expression profiling of the TRDMTI gene in Qinchuan
cattle.

dividuals during the same period. The change of gene motif
leads to the deletion of spl binding site and may downregu-
late the gene expression level. Then we used Genomatix to
predict transcription factor binding and found the following:
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G>C mutation may increase the binding of the pleomorphic
adenoma gene PLAGI, zinc finger protein ZNF35 and the
bone marrow zinc finger 1 factor MZF1 transcription factor
(Fig. 4), suggesting that the TRDMTI gene may also be the
target gene regulated by PLAGI. Tang et al. (2013) reported
that PLAG1 regulates the expression of IGF2 and affects hu-
man embryonic development. The PLAG! gene has a 96.4 %
homology to humans, suggesting that the PLAGI gene struc-
ture is similar to humans and may participate in its expression
regulation as a potential transcription factor for the TRDMT1
gene.

The conservation of tRNA-modified gene structures in
eukaryotes suggests similar functions and regulatory roles
(Hopper and Phizicky, 2003). The effect of the TRDMTI
gene on zebrafish and mouse development leads us to care
about its effects on livestock development (Rai et al., 2007).
In yeast experiments, the modified genes produced few phe-
notypes except for the tRNA anticodon loop region. But the
TRDMT1I gene modifies a specific tRNA subpopulation in the
anticodon loop. In addition to mutant construction, the phe-
notypic effects produced by differences in gene expression
levels are also a method of reflecting gene function. Differ-
ences in the transcriptional activity of genetic promoter ge-
netic variants can be indirectly identified by dual-luciferase
assays. Establishing the relationship between genetic vari-
ation and expression was also important for the protection
of germplasm resources and the development of genetic re-
sources. Hence, we performed a dual-luciferase assay. We
used 293T cells for verification, which has the characteris-
tics of high transfection efficiency and easy culture. How-
ever, 293T cells are derived from humans. As an experi-
ment material, it was able to analyze the transcription fac-
tors shared by eukaryotic cells, but they did not reflect the
endogenous characteristics unique to the cattle. The differ-
ential binding of transcription factors showed that the ge-
netic variation of this site caused a difference in the activity

https://doi.org/10.5194/aab-64-147-2021
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of bovine TRDMT1 promoter, which may cause a difference
in the expression level of TRDMTI. In addition, we found
a correlation between the strong linkage structure of bovine
TRDMTI exon genetic variation and the growth traits of cat-
tle (data not published). It was suggested that the expression
level and structural variation of bovine TRDMTI gene may
have a potential impact on its growth and development. Al-
though we predicted that the transcriptional factors of the
TRDMT]I promoter may cause differential binding, transfec-
tion of different genotypes into 293T cells showed that the
variant affected its transcriptional activity at the eukaryotic
level, but we were not sure which transcription factors are
differentially combined, suggesting that the use of different
tissues of the cattle to study the promoter variant structure is
important for regulating the expression of the TRDMT1 gene.

Due to the complexity of the sequence structure of the
bovine TRDMT1 promoter region, the test predicts the pro-
moter region by transcription start site prediction and CpG
island position prediction. The promoter truncation vec-
tors were not constructed, and the specific position of the
TRDMTI gene core promoter was not explored. The dual-
luciferase vectors pGL3-Basic (G) and pGL3-Basic (C)
were constructed, both of which represent the region of the
TRDMT]I promoter —1387/ + 81 fragment. Excessive frag-
ments may result in decreased transcriptional activity and
regulation of transcriptional repressors. However, the results
of the experiment indicated that the G>C mutation at the
—1223 bp position upstream of the TRDMT] translation ini-
tiator codon caused a difference in the transcriptional activity
(Fig. 5). When the promoter region of bovine TRDMT] gene
was in the C genotype, the transcriptional activity of the gene
was significantly higher than that of the G genotype. It was
suggested that the G>C mutation may affect the binding ac-
tivity of key transcription factors in the promoter region of
bovine TRDMTI gene and affect the transcription level of
the gene.

In the past, TRDMT1 gene function studies were restricted
to model animals such as mice and zebrafish. The research
of TRDMT1 gene function mainly involved interference, in-
hibition, knockdown and knockout experiments and did not
overexpress the expression of TRDMTI. The study of the
charge of tRNA modification was lacking. The modifica-
tion of tRNA and the translation of protein did not establish
a comprehensive and accurate correspondence. The related
studies did not respond to cell fate led by sufficient or ex-
cess tRNA modification. In this experiment, mixed-pool se-
quencing technology was used to find that there was a G>C
mutation in the promoter region —1223 of the yellow cattle
TRDMT1I gene. Fluorescent recombinant plasmids of differ-
ent genotypes were constructed at this site. The transfected
293T cells were analyzed, and the relative fluorescence inten-
sity was analyzed. The fluorescence intensity is significantly
higher than that of wild-type G. Through software analysis,
the mutation is located near the transcription start site, and
the C allele increases the possibility of the binding of tran-
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scription factors such as spl, PLAG1, ZNF35 and MZF1 and
affects the transcriptional regulation of bovine TRDMT] and
detected the relative expression of TRDMT1 gene in each tis-
sue. This study provides a theoretical basis for the study of
livestock TRDMT1 gene expression on its life activities and
the study of tRNA modification in animal life processes.
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