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Electronic zero-point fluctuation forces inside
circuit components
Ephraim Shahmoon1* and Ulf Leonhardt2

One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir
forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation
potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like
potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples
of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces
between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route
toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a
function of parameters of the environment. These tunable potentials may be useful for future nanoelectromecha-
nical and quantum technologies.
INTRODUCTION
Understanding the role of quantum phenomena in electrical circuits
has opened numerous possibilities in quantum information and optics
(1, 2). Here, we show how conceptually simple systems, such as linear
electrical circuits, provide a new direction in the study and application
of quantum fluctuation phenomena, in analogy to the van der Waals
(vdW) and Casimir forces (3–5). A key element of the ensuing discus-
sion is the generalization of the familiar Casimir force in three aspects,
namely, the source of the quantum fluctuations, the physical effect
they entail, and, most importantly, how the effect is measured and
manipulated.

The Casimir and vdW forces are typically associated with quantum
zero-point fluctuations of the electromagnetic field modes. A physical
system coupled to these modes then acquires additional potential en-
ergy, which, for a composite system, leads to a force between its com-
ponents, for example, a pair of particles or surfaces in the case of vdW
or Casimir, respectively. Nevertheless, such a quantum fluctuation–
driven potential may exist for any system that can exchange energy
with a quantum reservoir, following the fluctuation-dissipation theo-
rem (6–10). In the case of electrical circuits considered here, we use
this principle within the framework of circuit theory, by considering
the quantum zero-temperature noise emerging from resistive circuit
elements, in analogy to the Johnson-Nyquist noise at finite tempera-
tures (11, 12).

The electromagnetic vacuum causes forces between polarizable
objects (4, 5, 9, 13–19) and generalized forces such as torques (20–23)
and lateral forces (24–27), or energy-level shifts in atoms (8, 28). In anal-
ogy, we consider here forces/torques acting on internal mechanical
degrees of freedom of capacitive elements, such as between capacitor
plates, and energy shifts in superconducting qubits (SCQs), all of which
are driven by the electronic zero-point noise of the circuit (Fig. 1). We
show that a macroscopic circuit theory approach can be used to predict
such zero-point potentials and forces.Whendivergences in these poten-
tials occur, they are renormalized by subtracting the zero-point potential
of a reference circuit; therefore, our approach often predicts the relative
forces due to variations in circuit parameters. This approach is thus
complementary to more microscopic formulations, sensitive to the
physical details andmaterial properties of circuit components (29), such
as the recent work on the effect of charge fluctuations in capacitors
made of graphene (30). One advantage of the macroscopic approach
presented here is its capability to predict observable forces in realistic
systems using simple lumped-element modeling. For example, consid-
ering the macroscopic experimental parameters of a recently realized
quantum electromechanical plate capacitor (31, 32), we find tunable re-
lative forces between its plates (on top of the familiar Casimir force),
which arewithin its currentmeasurement sensitivities.We demonstrate
that both the sign and spatial dependence of the relative force can be
controlled by simply tuning the circuit parameters. This suggests that
the manipulation and understanding of these electronic zero-point
forces may become relevant for current quantum electromechanical
devices, which are expected to play a role in hybrid quantum tech-
nologies (33–35).

An important opportunity opened by the exploration of zero-point
fluctuation phenomena in circuits is the possibility to measure them as
a function of various circuit parameters. Casimir-like forces are typi-
cally characterized and measured as a function of distance between the
interacting objects (9), whereas their surrounding electromagnetic
environment remains unchanged between measurements. In contrast,
here, both the surrounding environment and zero-point fluctuations
sources, which are realized by the reactive and resistive components of
the circuit, respectively, can be varied between different measurements.
Then, the potential (for example, force) acting on an internal coordinate
of a component embedded in the circuit can be measured as a function
of the parameters of the environment while keeping the internal de-
grees of the component (for example, the separation between capac-
itor plates) fixed. This new possibility may have several advantages as
discussed below.
RESULTS
Electronic zero-point potential
Consider first the source of quantum fluctuations in circuits. The
electric conductors that comprise electronic circuits absorb the energy
of electromagnetic fields. Hence, following the fluctuation-dissipation
theorem, their electronic degrees of freedommust fluctuate.Within cir-
cuit theory, this can be accounted for by accompanying any resistanceR
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in the circuit by a shunt fluctuating current source, IN(t), with a zero
mean and a spectrum (Fig. 1A)

SIN ðwÞ ¼ ∫
∞

�∞dte
iwt〈INðtÞINð0Þ〉 ¼ 2ħw

RðwÞ
1

1� e�ħw=T
ð1Þ

where T is the temperature. Such a treatment of quantum noise in
circuits is equivalent to the explicit quantization of the circuit (36), as
was recently shown also in the context of Casimir forces (10). For large
T compared with ħw, the thermal noise is the well-known Johnson-
Nyquist noise of resistors; here, we focus on fluctuations in circuits at
zero temperature and the forces they cause.

After having established the noise spectrum of the quantum
fluctuations in a circuit with resistance (Fig. 1A), we now consider
the resulting zero-point energy in a capacitor connected to the circuit
(Fig. 1B). The time-averaged electromagnetic energy stored inside the
capacitor C is given by

U ¼ C
2
∫
∞

�∞
dw
2p

SVðwÞ; SVðwÞ ¼ 〈VðwÞVð�wÞ〉
Te

ð2Þ

where VðwÞ ¼ ∫
∞

�∞dte
iwtVðtÞ is the Fourier transform of the voltage

V(t) across the capacitor, SV(w) is its fluctuation spectrum, and

Te→∫
∞

�∞dt ¼ 2pdðw ¼ 0Þ is the duration of the experiment. There-

fore, the potential energy U is determined by the spectrum of the volt-

age V(w) that depends on the circuit in which the capacitor is
embedded. In the absence of any external sources, a general linear cir-
cuit can always be characterized by its total impedance Z(w) = R(w) +
iX(w), where R is the resistive part and X is the reactive part (both real)
with Z(−w) = Z*(w). Taking into account the quantum noise, we replace
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the resistance by the circuit of Fig. 1A. The voltage across the capacitor
is equal to the voltage over the left side of the circuit (Fig. 1B)

V ¼ i
I
wC

¼ RðIN � IÞ þ iXI ð3Þ

where I is the current charging the capacitor. We solve for I in terms
of IN and express V(w)V(−w) of Eq. 3 in terms of the spectrum, Eq. 1
for T = 0. From Eq. 2, we then obtain

U ¼ ħ∫
∞

0

dw
2p

RðwÞCw
½1þ XðwÞCw�2 þ ½RðwÞCw�2

ð4Þ

which is the electronic zero-point fluctuation–induced energy stored
in the capacitor.

It should be emphasized that the potential (Eq. 4) was obtained
using only elementary circuit theorywith the addition of quantumnoise
(Eq. 1). Other potentials, such as the standard zero-point Casimir force
between the capacitor plates, may exist in addition. From a quantum-
electrodynamic point of view, the potential of Eq. 4 is the contribution
to the total zero-point potential, which is mediated and driven solely by
quantum fluctuations of the fundamental transverse-electromagnetic
mode guided by the circuit wires (10). The standard Casimir force can
then be attributed to quantum fluctuations of the rest of the electro-
magnetic modes, which are not accounted for by circuit theory and
Eq. 4 (see the Supplementary Materials).

Renormalization and the relative force
It turns out that in most cases, the zero-point energy U needs to be re-
normalized to extract the physically meaningful force: One sees in Eq. 4
that U diverges if neither X nor R grows sufficiently with frequency.
Note that the lumped-element description used in circuit theory is
based on a quasistatic approximation valid forw≪ c/l, where l is a typ-
ical element size. Therefore, this possible divergence implies that circuit
theory cannot account well for the total zero-point energy.

For the complete renormalization of the potential U, microscopic
details, not accounted for by lumped-circuit theory, should be con-
sidered. These may include the physical details of the capacitor, such
as in the excellent ab initio paper (30) or the finite lengths and configu-
ration of the connecting wires (see below). However, we now show that
one does not have to give up the generality of the above macroscopic
description to obtain an observable finite result. In fact, circuit theory
can account for the relative zero-point energy due to variations in cir-
cuit parameters, as long as the frequency range over which X and R
differ is smaller than c/l. To give an example, consider a capacitor C0

and a resistor R in series (both independent of frequency) coupled to C
(case I in Fig. 2A). Inserting the reactance of the capacitor,X= 1/(wC0), in
Eq. 4,we see that the integral diverges logarithmically.However, ifwe take
the difference between U and the corresponding energy for X = 0—
the zero-point energy URC of a pure RC circuit (where C0 is shorted)—
we obtain the difference between two logarithms, which gives the finite,
exact result

U I ¼ U � URC ¼ � ħ
2pRC

ln 1þ C
C0

� �
ð5Þ

In general, for every circuit with a diverging energy, wemay define a
reference circuit by taking the limit w → ∞, where capacitors become
Fig. 1. Generalized potentials induced by electronic quantum fluctuations.
(A) Quantum noise source: Resistive circuit elements are modeled by a resistor R
in parallel with a current noise source IN with the spectrum of Eq. 1 (or equiva-
lently, in series with a voltage VN = RIN). (B) Capacitor embedded in a general
passive circuit represented by its impedance Z = R + iX. The zero-point–induced
potential built on the capacitor, Eq. 4, gives rise to a generalized force f = −∂U/∂x
on its internal degree of freedom x. (C) Examples of electromechanical capacitors:
For the parallel-plate capacitor with separation x = y (31, 32), f is a force normal to
the plates, whereas for the variable capacitor with rotation angle x = q (50), f is a
torque. (D) Superconducting qubit (SCQ) capacitively coupled to a circuit Z (bottom:
specific example of an RC circuit). The zero-point fluctuations from Z induce shifts in
the energy levels of the SCQ in analogy to the Lamb shift.
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short-circuited (and inductors disconnected). The zero-point energy of
the reference circuit cannot be calculated with circuit theory in general,
but it may be subtracted to get the relative energy. This is analogous to
the renormalization of the vdW potential within the dipole approxima-
tion, where the diverging Lamb shift of each atom is subtracted (8, 9).

When the capacitance C depends on an internal mechanical de-
gree of freedom x, the potential U leads to a generalized force

f ¼ � ∂U
∂x

¼ � ∂U
∂C

∂C
∂x

ð6Þ

acting on x. Examples include a force between the plates of a parallel-
plate capacitor with a plate separation x = y (wherein C º 1/y) or a
torque in a rotary variable capacitor with an angle x = q (Fig. 1C). The
generalization to forces in variable inductors or other quantum piezo-
electric devices (33–35) should be straightforward.

Unlike the case of vdW/Casimir forces, here, a divergence in the
potential U implies a similar divergence in the force f (see the Supple-
mentary Materials). Therefore, in the cases where U diverges, we use
the renormalized, relative potential inside the expression (Eq. 6) for
the force, leading to a relative force. For example, the finite, renorma-
lized result for the relative potential UI in Eq. 5 leads to a finite result
for a relative force fI = −∂UI/∂x = f − fRC, which is understood as the
difference in the force due to the addition of a capacitor C0 to the
reference RC circuit (here, fRC = −∂URC/∂x). More generally, the rela-
tive force is the difference between the force acting inside C due to the
full circuit and the force acting inside C due to its reference circuit.
When U diverges and has to be renormalized, the relative force is
the only force component that can be calculated using macroscopic
circuit theory. In the following, we demonstrate the predictive power
and generality of such a macroscopic approach.

Examples
For the resistor and capacitor C0 in series coupled to a parallel-plate
capacitor (case I of Fig. 2A), the internal coordinate x º 1/C. With
this, we obtain from Eq. 5 a repulsive force fI = − ∂UI/∂x (Fig. 2B). Re-
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pulsive Casimir forces are normally caused by the phase relationship
between the virtual electromagnetic waves reflected inside a Casimir
cavity; if the wave is out of phase upon reflection on one boundary and
in phase on the other, the force is repulsive. This is the case for electric
and magnetic mirrors (37) and was demonstrated (17) for a sandwich
of three materials with dielectric constants e1 < e2 < e3, where the
Fresnel coefficients change sign. Here, we have seen that the electronic
environment wherein the capacitor C is embedded may also cause a
repulsive force component. Coupling C to another capacitor C0

changes the phases as well (also see section S2). Note, however, that
within our renormalized circuit theory, we can only predict the rela-
tive force due to C0, which exists on top of the force contributed by the
reference RC circuit. In addition, force components not accounted for
by circuit theory, such as the standard Casimir force between the ca-
pacitor plates, may also matter. It depends on the relative strengths of
the force components whether repulsion prevails.

Consider now an inductor L coupled to the capacitor C (case II in
Fig. 2A). There, we have X = −wL and obtain from Eq. 4 a finite zero-
point energy without the need of renormalization. Convergence is
guaranteed by the inductor L in series; its impedance − iwL discon-
nects the circuit at high frequencies. In this case, circuit theory can
predict the total Casimir force of the circuit and not only the relative
one. As noted above, there may exist an additional contribution to the
force beyond the one mediated by the circuit; however, this contribu-
tion will not depend on the inductor (see below).

Proceeding to the parallel RLC circuit, case III of Fig. 2A, we find
the impedance R(w) + iX(w) = (wL + iR) × wLR/[R2 + (wL)2] and re-
normalize the integral in Eq. 4 by subtracting the RC result. The re-
sulting energy potentialsUn ¼ ħðR=LÞFn for both cases, n = II, III, are
obtained analytically as a function Fn(r) of the parameter r = L/(CR2)
(see Methods) and are plotted in Fig. 2B. For x º r, such as in a
parallel-plate capacitor, the force now becomes attractive in both cases.
At the limits R→ 0 and R→ ∞ for circuits II and III, respectively, the
corresponding asymptotic forms, FIIðr ≫ 1Þ; FIIIðr ≪ 1Þ ≈ ffiffi

r
p

=4,
both yield the potential, U≈ðħ=4Þ= ffiffiffiffiffiffi

LC
p

, equal to half the zero-point
energy of an isolated LC circuit.

As the last simple example, consider circuit IV of Fig. 2A. At high
frequencies, the inductor is effectively disconnected, approaching cir-
cuit I that gave a repulsive force, whereas at very low frequencies, C0 is
disconnected, leading to an isolated LC circuit with an attractive force.
These competing high and low frequency behaviors both contribute to
the potential in Eq. 4, which is found as a function of two parameters,
r = C0/C and a ¼ ffiffiffiffiffiffiffiffiffiffi

L=C0

p
=R (see Methods). Figure 2C presents the

potential as a function of r for both a = 0.5 (solid line) and a = 2
(dashed line), showing the possibility of attractive and repulsive forces,
respectively, for x º r. In such a circuit, one can tune the sign of the
relative force.

It should be noted that the convergence of the energy of circuit II,
due to a series inductor, suggests that the potential (Eq. 4) of any cir-
cuit can be made finite without the need of renormalization by only
considering the finite lengths of wires in the circuit. This is because
wires carry an inductance L0 proportional to their length. However,
the converging finite result will then depend on L0 and hence on the
specific wire lengths. Moreover, even the arrangement of the wires itself
may matter, owing to the wires’ finite mutual capacitance. This situ-
ation again highlights an essential simplification allowed by our mac-
roscopic approach: For wires of a short enough length, the predictions
for the relative forces are general and independent of such system-specific
microscopic details. This idea is further explained and demonstrated
(I) (II) (III)

(IV)

I

II

III

2 4 6 8 10 r

–1.0
–0.5

0.5

U /U0

5 10 15 20 r

0.2

0.4
U /U0

Fig. 2. Potential energy inside a capacitor. (A) Four simple cases for the general
circuit of Fig. 1B. (B) Potential energy U, Eq. 4. For case I, U from Eq. 5 is plotted in
units of U0 ¼ ħ=ð2pRC0Þ and as a function of r = C0/C (solid line). For a parallel-plate
capacitor with plate separation y º r, the resulting relative force between the plates
is repulsive. Dashed and dotted lines: Same as the solid line, for cases II and III with
U0 ¼ ħR=L and U0 ¼ ðħ=2pÞR=L, respectively, and r = L/(CR2), both yielding an
attractive force for a plate capacitor. (C) Same as (B) for case IV with U0 ¼
ħ=ðRC0Þ and r = C0/C. Depending on the parameter a ¼ ffiffiffiffiffiffiffiffiffiffi

L=C0
p

=R, both attractive
(a = 0.5, solid line) and repulsive (a = 2, dashed line) potentials are possible.
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in the Supplementary Materials considering the inductance of fi-
nite wires.

Space dependence of forces in a parallel-plate capacitor
Consider now the specific case of a parallel-plate capacitor, C = Ae0/y,
where the internal coordinate and corresponding force are the sep-
aration x = y and the force between the plates, respectively (A is the
plate area). The plots in Fig. 2 (B and C) as a function of rº 1/Cº y
then effectively display the dependence of the potential on the dis-
tance y, whose derivative is the force. We then observe that the scaling
of the potential/force with the separation y is not universal and cru-
cially depends on the circuit in which the capacitor is embedded. Not
only the sign of the relative force but also its functional structure can
be altered. For example, the asymptotics of the forces (or relative
forces) at long distances y are given by fI º 1/y2, f IIº1=

ffiffiffi
y

p
; and

fIII º ln (y)/y2, yielding distinct scalings for the different circuits I, II,
and III. This behavior is analogous to the modified spatial dependence
of the vdW and Casimir forces in different electromagnetic environments:
For example, the vdW potential mediated by the one-dimensional pho-
ton modes supported by a transmission-line waveguide asymptotically
scales as 1/r3, whereas the Casimir force scales as 1/r2 instead of 1/r7

and 1/r4, respectively, in free space (r is the distance between the in-
teracting objects) (10, 38). In contrast to the standard situation of the
Casimir/vdW forces, however, where changing the electromagnetic
environment amounts to building a totally different and challenging
photonic setup (for example, placing the interacting objects in a wave-
guide), here, this is achieved by varying the impedance of a circuit Z
connected to the capacitor. This means that tuning the spatial depen-
dence of zero-point forces in circuits may become as simple as tuning
the inductance of a circuit element.

As mentioned above, in addition to the electronic zero-point force,
the more standard Casimir force due to free-space vacuum fluctuations
also exists between the capacitor plates (see the Supplementary Ma-
terials for more details). It is therefore interesting to compare the
two: For the electronic zero-point force, we take the series RLC circuit,
case II in Fig. 2A, for which we obtained the full force (without re-
normalization), whereas for the Casimir force, we consider the Lifshitz
formula using a plasmamodel for themetallic capacitor plates (see the
SupplementaryMaterials) (8). Motivated by recent experiments (31, 32),
we consider aluminum plates at different diameters and plot the result-
ing forces as a function of plate separation (Fig. 3). The zero-point
electronic force can become much stronger at sufficiently large separa-
tions due to its long-range asymptotic scaling, f IIº1=

ffiffiffi
y

p
. Nevertheless,
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it would be interesting to consider how one may be able to distinguish
the electronic zero-point force from the standard Casimir force even in
situations where the Casimir force is much stronger. Moreover, as it is
well known from Casimir force measurements, other existing spurious
forces, such as those due to electrostatic patch potentials (39–41), may
also mask the electronic force. As discussed below, however, these pro-
blems turn out to be irrelevant in circuits, where the electronic zero-
point force may be measured independently of all reference forces.

Measurement as a function of circuit parameters
One of the most appealing features of electronic circuits, also revealed
throughout this work, is their tunability: This feature may also offer a
novel route in the characterization and measurement of zero-point
forces. Casimir forces are typically measured and characterized as a
function of a distance between interacting objects or, more generally,
in our context, as a function of the internal coordinate of the capacitor
x on which the force acts. However, keeping x [and hence C(x)] fixed,
we may still vary other parameters of the system the capacitor is em-
bedded in, which is generally represented by its impedance Z. Such a
possibility typically does not exist in other Casimir-like setups. In prac-
tice, this can be achieved by tuning the parameters of circuit compo-
nents such as variable capacitors, inductors, and resistors. While the
electronic zero-point force may highly depend on parameters within
Z, this should not be the case for other forces that act on x, such
as the standard Casimir force induced by the electromagnetic vacuum
(see the Supplementary Materials). Therefore, measuring the force on
x at a fixed value of x, but as a function of the circuit parameters in Z,
may enable distinguishing the electronic zero-point force from all other
forces, regardless of their magnitude. This is because these other forces
only contribute a constant offset to the measured force. For the mea-
surement of the relative electronic zero-point force, the same principle
applies also for the distinction from the contribution of the reference
circuit: For example, in circuit I, the potential from Eq. 5 is extracted
by additionally fixing R such that the contribution of the reference RC
circuit to a force measurement as a function of C0 is constant.

The dependence on circuit parameters is illustrated in Fig. 4.
For the capacitor C, we consider the recently realized supercon-
ducting parallel-plate capacitor with a movable plate, cooled to
its motional ground state (31, 32). The plates, 15 mm in diameter,
are kept at a fixed separation x = y = 50nm. Forces on the movable
plate are balanced by a restoring potential, leading to a small
displacement in the separation y, which is measured at high precision
(31). For circuit I, we plot the repulsive force f between the plates of C
as a function of the resistor R and capacitor C0, obtaining f at the fem-
tonewton scale (Fig. 4A). The attractive forces of circuits II and III are
plotted as a function of the parameters R and L (Fig. 4, B and C). We
estimate that these femtonewton-scale forces are detectable with cur-
rent technology by using the so-called dynamic method (9). Namely,
around each value of a circuit parameter at which the force is to be
measured, a weak modulation of this parameter is introduced. This
leads to a measurement of the derivative of the force with respect
to and as a function of the circuit parameters. Considering the device
from Teufel et al. (31), with a displacement sensitivity of ~ 10−32 m2

Hz−1, we estimate that sub-femtonewton–scale forces are detectable
(see Methods for details). It should also be noted that there is nothing
fundamental leading to the femtonewton scale of the forces: This
order of magnitude only reflects the parameters of a specific, recently
realized electromechanical setup chosen here to illustrate the predict-
ability and applicability of our approach.
0.3 1 3
y (µm)

1
102

105

A

20 50 100
y (µm)

10–4
0.01

1
B–f (10–15 N) –f (10–15 N)

Fig. 3. Comparison between the electronic zero-point force (blue solid line)
and the standard Casimir force (red dashed line) acting between the plates
of a parallel-plate capacitor. The capacitor with a capacitance C = Ae0/y is as-
sumed to be connected in series to a resistor, R = 10 W, and an inductor, L = 0.1 nH
(circuit II of Fig. 2A). The forces are plotted as a function of the plate separation y,
and the plate diameter is taken to be (A) 15 mm and (B) 200 mm. Because of its long-
range scaling, the electronic zero-point force can become much stronger [see case
(B) and text].
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Level shifts in an SCQ
In addition to forces, the electronic zero-point fluctuations may in-
duce shifts in the quantized energy levels of components such as
SCQ embedded in the circuit, in analogy to the Lamb shift in
atoms. We consider an SCQ capacitively coupled to an arbitrary
circuit represented by a complex impedance Z (Fig. 1D) and study
the dependence of the shift on the circuit parameters. We note that
a similar effect was observed before in a current-biased Josephson
junction connected to an adjustable admittance (42, 43). For weak
coupling Cg ≪ CJ, where CJ is the total capacitance of the SCQ, the
voltage fluctuations at the node a of Fig. 1D, Va(t), are determined
by Z and form an effective reservoir coupled to the charge QJ of the
SCQ via the Hamiltonian HI ≈ (Cg /CJ)Va(t)QJ (36, 44). Using
lowest-order perturbation theory, we find the correction (shift) to
the energy difference between the two lowest energy states |0〉 and |1〉
of a transmon SCQ (see Methods)

d ≈
b2

ħZJ
∫
∞

0

dw
2p

SVaðwÞ P
w10

w2
10 � w2

� 1
wþ w21

� �
ð7Þ

with the corresponding linewidth g ≈ SVaðw10Þb2=ð2ħZJÞ and the spec-
trumSVaðwÞ ¼ 〈VaðwÞVað�wÞ〉=Te. Here,ħwnm is the energy difference
between the levels n andm, b = Cg/CJ, andZJ ¼ ðħ=e2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EC=2EJ

p
, where

EC and EJ are the charging and Josephson energies of the SCQ and
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e is the electron charge (36, 44), whereas P denotes Cauchy’s princi-
pal value.

As a specific example, consider a circuit consisting of a resistor R
and a capacitor C in parallel (bottom of Fig. 1D). For weak coupling,
we find SVaðwÞ ≈ SIN ðwÞR2=ð1þ w2C2R2Þ so that the integral (Eq. 7)
converges, yielding d ≈ −w0(R/ZJ)b

2/(2b) for b ≡ w0RC ≪ 1, with
w0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8ECEJ
p

=ħ (see Methods). We note that in this regime, the shift
overwhelms the acquired width, |d|/g ≈ 1/(2b) ≫ 1. As in the discus-
sion of forces, the shift can be measured as a function of the circuit
parameters R and C, as illustrated in Fig. 4D, using typical transmon
parameters (44). Shifts of the order of 0.1 % of the original qubit
resonance, w10 ¼ w0 � EC=ħ, are realistic.
DISCUSSION
Recent studies of quantum phenomena in electrical circuits have indi-
cated their relevance to Casimir physics (38, 45, 46). Our results suggest
that the recent realization of quantum electromechanical systems
(31–35) opens more opportunities for the exploration of fluctuation
phenomena. A central theme is the ability to manipulate the electro-
magnetic environment experienced by a system embedded in a circuit.
This results in several important and previously unexplored con-
sequences. First, a variety of tunable fluctuation forces or level shifts
may arise, exhibiting, for example, repulsive or attractive relative forces
with a controllable space dependence. Second, the new possibility to
measure these zero-point electronic potentials as a function of the para-
meters of the environment, rather than as a function of an interaction
distance, may entail several advantages: (i) The ability to distinguish
these potentials from other random potentials, such as electrostatic
patch potentials (39–41), means that the limitation on measurement
precision imposed by the distance dependence of the latter now
becomes irrelevant. (ii) The potentially sensitive dynamicmeasurement
method (9) is natural to apply here, where circuit parameters might be
simple to modulate.

More generally, this work identifies quantum electromechanical
circuits as a promising platform for the exploration of Casimir physics
beyond the sphere-plate configuration, which is conceptually different
from other recent approaches, for example, using integrated silicon
chips (47) or optical tweezers (48). In this respect, the possibilities
allowed by these systems might go well beyond those found by the
above analysis of a few simple circuits, especially considering the gen-
erality of our approach. The macroscopic description presented above
should allow the study of novel zero-point forces in a variety of quan-
tum electromechanical devices and circuits, by only characterizing them
with an electric impedance, as opposed to more detail-sensitive micro-
scopic approaches (30). Considering the potential application of electro-
mechanical devices in quantum hybrid technologies (31, 33–35), the
study of the zero-point potentials therein may also play a role in the
characterization and operation of these devices. Moreover, the tun-
ability of the forces found above may prove useful for future nano-
electromechanical systems wherein control of zero-point potentials is
essential (49).
METHODS
Calculation of zero-point energy and force
Consider first the circuit I. The renormalized potential energy is
obtained by subtracting from the “bare” potential ~U I , given by
Eq. 4 with R(w) = R and X(w) = 1/(wC0), the reference RC potential,
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Fig. 4. The ability to measure fluctuation potentials as a function of param-
eters of the environment (circuit) presents an interesting possibility opened
by circuits for fluctuation-induced phenomena. (A to C) The force between the
capacitor plates in circuits I, II, and III from Fig. 2A is plotted as a function of circuit
parameters. Circuit I exhibits repulsive relative forces, whereas circuits II and III exhibit
attractive forces. In the limits of small R for fII and large R for fIII, both forces become
identical to that in the isolated LC circuit. All three cases are plotted using the physical
parameters of the parallel-plate electromechanical capacitor of Teufel et al. (31),
whose displacement-measurement sensitivity of ~ 10−32 m2 Hz−1 is estimated to
be sufficient to detect the sub-femtonewton forces we find (text). (D) Shift in the
transition frequency of a superconducting transmon qubit with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=8EJ

p ¼ 0:1,
Cg/CJ = 0. 1, and w0 = 2p × 5 GHz. Shifts of the order of 0.1 % of the original transition
frequency are observed, much larger than the acquired level width.
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given by Eq. 4 with R(w) = R and X(w) = 0, yielding

U I ¼ ~U I � URC ¼ �∫
∞

0

dw
2p

ħwRC

�
C
C0

2þ C
C0

� �
1þ C

C0

� �2
þ ðRCwÞ2 1þ 1þ C

C0

� �2
� �

þ ðRCwÞ4
ð8Þ

Upon calculating the integral analytically, we arrived at Eq. 5.
The integral in Eq. 8 begins converging for w ≫ 1/(RC), where
it behaves as ∫dw/w3. Because the lumped-element circuit theory
we use is essentially a low-frequency theory valid for w ≪ c/l,
the convergence is meaningful only if it begins for w values smaller
than the cutoff of the theory (l is a typical size of a circuit element
and c is the speed of light) (9). This leads to the validity condition,
1/(RC) ≪ c/l, which was satisfied for the parameters in Fig. 4A
(using, for example, l = 10 mm).

We calculated analytically the potentials in circuits II and III in
a similar fashion, recalling that circuit II does not require re-
normalization, and obtained

U II ¼ ħ
R
L

q
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4q� 1

p 1þ 2
p
arctan

2q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4q� 1

p
� �� �

U III ¼ ħ
R
L
q
8p

4
q
� 2

� �
ffiffiffiffiffiffiffiffiffiffiffi
4
q
� 1

r arctan

2
q
� 1ffiffiffiffiffiffiffiffiffiffiffi
4
q
� 1

r
0
BB@

1
CCAþ p

2
q
� 1

� � ffiffiffiffiffiffiffiffiffiffiffi
1

4
q
� 1

vuuut þ 2ln q

2
6664

3
7775

ð9Þ
with the dimensionless circuit parameter q = L/(R2C). The con-
vergence properties of the integrals that lead to these results, in
analogy to those of the integral (Eq. 8) for circuit I, give the validity
conditions c=l ≫ 1=

ffiffiffiffiffiffi
LC

p
;R=L (circuit II) and c=l ≫ 1=

ffiffiffiffiffiffi
LC

p
; 1=ðRCÞ

(circuit III), which are again satisfied for the parameters in Fig. 4 (B
and C). The above analytical results were also verified by comparing
them to a direct numerical evaluation of the integral as a function of q.
For circuit IV, we obtained the renormalized potential in a converg-
ing integral form, and as a function of the dimensionless parameters
r = C0/C and a ¼ ffiffiffiffiffiffiffiffiffiffi

L=C0

p
=R

U IV ¼ ħ
RC0

r
4p
∫
∞

0 dx

�
x
n
2a2rðr þ 1Þ � r2 � xa2r½2ða2 � 1Þr2 þ a2r�

o
� 1

ð1þ xÞ
n
r2xð1� a2rxÞ2 þ ½1� xa2rðr þ 1Þ�2

o ð10Þ

This integral can be evaluated numerically for different values of
r and a. Its convergence properties imply the validity condition
c=l ≫ 1=

ffiffiffiffiffiffi
LC

p
; 1=ðRCÞ.

To calculate the force in Fig. 4, we considered a parallel-plate
capacitor with a plate area A and separation y, where C = Ae0/y.
The force was then found either analytically by a simple differen-
tiation or numerically by differentiating the potential in its integral
form and performing the resulting integral numerically.
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Measurement of forces in the dynamical method
Considering the capacitor realization from Teufel et al. (31), the
forces from Fig. 4 that were calculated using the physical para-
meters of this plate-capacitor realization act on the drumhead
mechanical mode of the capacitor. This mechanical mode was
modeled as a harmonic oscillator with amplitude x(t), resonant fre-
quency W, and damping rate G. The zero-point electronic force f(Z)
acting on the plate depends on a parameter of the circuit, generally
denoted by Z. For a given circuit with a constant Z, the resulting
static force will shift the plate by xdc(Z) = f(Z)/(mW2), where m is
the mass of the mechanical oscillator. Therefore, in principle, one
can infer the function f(Z) by measuring the plate position x as a
function of Z, provided that the signal value xdc(Z) is larger than
the standard deviation of the noise on x. This is the essence of the
static method. In the dynamic method (9), we further considered a
weak modulation of the circuit parameter around its Z value in which
we wish to measure, dZ(t) = u cos (wpt), where u ≪ Z and wp is the
modulation frequency. Solving for x(t) influenced by the force f ½Z þ
dZðtÞ� ≈ f ðZÞ þ dZðtÞ∂f∂Z jZ , we find the displacement signal for a
modulation with a bandwidth B ≪ G around the mechanical
resonance wp = W

xs≡ ∫
wpþB

2

wp�B
2

dw
2p

jxðwÞj2
� �1

2

¼ ffiffiffi
p

p
QhðZÞxdcðZÞ ð11Þ

Here, Q = W/G is the quality factor of the mechanical resonance
and hðZÞ ¼ u∂f

∂Z jZ=f ðZÞ≪ 1. To be able to measure the force, this
signal has to be much larger than the noise in x contained in the
bandwidth B.

Considering the f ~ 1 femtonewton-scale forces from Fig. 4 and
the physical parameters of the electromechanical capacitor,m = 48 pg,
W = 2p × 10.56 MHz, and Q = 3.3 × 105 (31), we find static dis-
placements of the order xdc ≈ 4.7 × 10−18 m, much smaller than the
mechanical zero-point motion of the plate, xzp = 4.1 × 10−15m,
making the static method irrelevant. Turning to the dynamical
method, the displacement sensitivity (noise spectrum) of the device
described in Teufel et al. (31), which depends on the magnitude of a
probe signal used in the measurement, reaches an optimum of 5.5 ×
10−34 m2 Hz−1. Considering nonoptimal operation, we take SN(w) ~
10−32 m2 Hz−1 over the bandwidth of interest. The noise signal, xN ¼ffiffiffiffiffiffiffiffi
SNB

p
, for a bandwidth of B = 0.01 G, is xN = 1.4 × 10−16 m.

Comparing it to the signal, Eq. 11, with a modulation strength of h =
0.05, we find xs ≈ 1.4 × 10−13 m, three orders of magnitude larger than
the noise. Such a signal-to-noise ratio is likely to be sufficient to resolve
forces like those shown in Fig. 4.

Calculation of level shifts in an SCQ
Following the Hamiltonian description of circuits (36), the relevant
degrees of freedom of the circuit in Fig. 1D are the nodes a and J,
representing the impedance Z and the SCQ, respectively. Each cir-
cuit node was represented by a dynamical variable (operator), for
example, the voltage V̂mðtÞ (m = a, J), or more commonly the “flux”

defined by f̂mðtÞ ¼ ∫
t

0dt′V̂mðt′Þ. Then, the interaction between the

systems Z and J, coupled by the capacitor Cg, is given by (36, 44)

HZJ ¼ bV̂ aQ̂J ð12Þ
6 of 8



SC I ENCE ADVANCES | R E S EARCH ART I C L E
where Q̂J is the canonical conjugate of f̂J, b = Cg/(Cg + CJ) ≈ Cg/CJ,
and CJ ≫ Cg is the total capacitance of the SCQ. Moving to the in-
teraction picture, the Hamiltonian isHIðtÞ ¼ b~VaðtÞ~QJðtÞ, where the
tilded operators are dynamically evolved using the individual free dy-
namics (Hamiltonian) of each system. For the system Z, this means
that ~VaðtÞ may be found by solving the Kirchhoff equations for the
voltage VaðwÞ ¼ ∫dteiwt ~VaðtÞ in the limit Cg → 0, obtaining the
spectrum SVaðwÞ ¼ 〈VaðwÞVað�wÞ〉=Te . Then, for weak coupling
b ≪ 1, we treat the circuit/impedance Z as a reservoir and obtain
the lowest-order non-Hermitian correction it induces on the SCQ
Hamiltonian (see the Supplementary Materials)

Heff ¼ ∑
n;m

Eð2Þ
nmjn〉〈mj

Eð2Þ
nm ¼ b2

ħ
∑
n′
Qnn′Qn′m

�
� Dðwnn′Þ � i

2
SVaðwnn′Þ

�
ð13Þ

Here, the pairs of states n, m are either identical or degenerate,

Qnn′ ¼ 〈njQ̂J jn′〉 , and DðwÞ ¼ 1
2p P∫

∞

�∞dw′
SVa ðw′Þ
w′�w . For a transmon

SCQ, we have (44)

jQnn′j ≈ 2e
EJ

8EC

� �1
4

dn′;nþ1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
2

r
þ dn′;n�1

ffiffiffi
n
2

r" #
ð14Þ

and Enþ1 � En ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p � ECðnþ 1Þ , yielding the shift, d ¼
RefEð2Þ

11 � Eð2Þ
00 g, and the width correction, g ¼ �2ImfEð2Þ

11 g, from
Eq. 7 in the main text. Finally, considering the specific case of the
RC circuit (bottom of Fig. 1D), we easily find Va(w) = IN(w)R/(1 −
iwCR) so that SVaðw > 0Þ ¼ 2ħwR=ð1þ w2C2R2Þ, leading to the
results from the main text (see the Supplementary Materials for more
details).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/eaaq0842/DC1
section S1. Divergence of the potential implies divergence of the force
section S2. Repulsive forces
section S3. Distinction between electronic zero-point forces and vacuum-induced Casimir forces
section S4. Effect of the finite wire length
section S5. Evaluation of the standard Casimir force between capacitor plates
section S6. Calculation of level shifts induced in an SCQ
fig. S1. Casimir forces induced by the electromagnetic vacuum in a transmission line circuit
(see section S3).
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