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Simple Summary: Glycerol is widely used as a feed supplement in ruminant nutrition. However,
its administration at moderate and high doses results in an increase in plasma osmolality and in an
alteration of red blood cell (RBC) indices. The present study aimed at further elucidating the effect of
glycerol on RBCs’ functionality by evaluating the effect of different glycerol concentrations on RBC
homeostasis under in vitro conditions. Obtained results showed that glycerol permeates the RBC
membrane and leads to hemolysis when glycerol concentration exceeds 200 mg/dL. However, RBCs’
antioxidant defenses appear to protect cell membranes without causing an increase of oxidative
stress markers. Moreover, no alteration in RBCs’ intracellular Ca2+ ion concentrations and metabolic
activity were found. In conclusion, glycerol-based nutritional treatment should be designed in sheep
to avoid exceeding 200 mg/dL glycerol circulating concentration to prevent RBC osmotic stress.

Abstract: The use of high doses of glycerol as a livestock feed supplement is followed by a rapid
increase in plasma concentrations and consequently in plasma osmolality. Moreover, glycerol is a
highly diffusible molecule that can readily permeate the red blood cell (RBC) membrane following a
concentration gradient. A rise in glycerol plasma concentrations can thus alter RBC homeostasis. The
present study aimed at investigating both glycerol osmotic effects on sheep RBCs and their oxidative
response under in vitro conditions. Sheep blood samples were suspended in media supplemented
with increasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL), which
reflected those found in vivo in previous studies, and incubated at 37 ◦C for 4h. Thereafter, osmolality
and hemolysis were determined in spent media, while cell extracts were used to assay intracellular
concentration of glycerol, ATP, Ca2+ ions, oxidative stress markers and reactive oxygen species
(ROS).The study confirmed that glycerol intracellular concentrations are directly related with its
concentration in the incubation media, as well as hemolysis (p < 0.001) which increased significantly
at glycerol concentrations higher form 200 mg/dL. ROS intracellular level increased at all glycerol
concentration tested (p < 0.01) and total thiols decreased at the highest concentrations. However,
RBCs proved to be able to cope by activating their antioxidant defense system. Superoxide dismutase
activity indeed increased at the highest glycerol concentrations (p < 0.001), while total antioxidant
capacity and malonyldialdehyde, a typical product of lipid peroxidation by ROS, did not show
significant changes. Moreover, no alterations in intracellular Ca2+ ions and ATP concentrations were
found. In conclusion, glycerol-induced hemolysis can be related to the induced osmotic stress. In
sheep, nutritional treatments should be designed to avoid reaching glycerol circulating concentrations
higher than 200 mg/dL.
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1. Introduction

Glycerol is widely used as a feed supplement in small ruminant nutrition, both as
replacer of corn grain in the diet [1–5] and to increase productive performance [6–12].
Glycerol is a hyperosmotic agent, lipid soluble, and it can pass cell membrane by simple
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diffusion, following a concentration gradient [13,14]. In previous studies [15,16], we re-
ported that oral administration of glycerol-based formulation in ewes causes a significant
increase in circulating glycerol concentration (from 14.19 to 289.8 mg/dL) and in plasma
osmolality (from 0.316 to 0.378 osmol/kg). These changes were associated with significant
alteration in red blood cell (RBC) indices with a dose-related effect, which included shape
alterations (increase in RBCs volume and distribution width) and a dilution in the amount
of hemoglobin per volume unit [16]. These alterations were found 2 h after the oral admin-
istration of glucogenic formulations when glycerol concentrations in the bloodstream were
higher than ≈ 200 mg/dL. Similar effects were described in in vitro human glycerolized
RBCs and were associated with an impaired functionality and reduced cell deformability,
which in turn can affect the cells’ capability to enter and transit the capillaries and to
exchange gases, nutrients, and cell waste [17,18].

The previously reported changes in RBC volume homeostasis consequent to the in-
crease in glycerol concentration in the bloodstream are driven by glycerol entering the cells
and by the consequent water drawing [19]. Changes in RBCs’ volume homeostasis can
affect their membrane integrity, leading to impaired functionality and increased erypto-
sis [20,21]. Previous studies indeed reported that glycerol is able to induce hemolysis of
mammalian RBCs, likely consequent to the induced osmotic stress [22,23].

The above-mentioned alterations in RBC volume homeostasis may also result in ox-
idative stress [24]. In various cell types, ROS production is increased following hypotonic
exposure [25,26]. Oxidative stress is caused by increasing productions or decreasing elim-
ination of reactive oxygen species (ROS) in the cells [24], and, therefore, it can also be
described as an imbalance between the prooxidants and antioxidants in the cells. Mal-
onyldialdehyde (MDA), a typical product of lipid peroxidation by ROS, can crosslink
phospholipids and proteins and oxidize protein sulfhydryl groups, thus damaging the
cell membrane and causing hemolysis [27]. Moreover, both oxidative stress and hyperos-
molarity can causes eryptosis by determining an increase in Ca2+ ions in the cytosol by
the activation Ca2+ penetration through non-selective cation channels [28]. Normally cells
have efficient antioxidant defense systems to face oxidative stress. Reduced glutathione
(GSH) is the primary RBCs endogenous antioxidant and, given its ability to detoxify hydro-
gen peroxide and others electrophilic compounds, it is in the first line of defense against
ROS. GSH have been reported to play a crucial role in maintenance in reduced state of
hemoglobin -SH groups and in other enzymes [29]. However, the cellular redox defense
system can also be altered by hyperosmotic conditions though a depletion in intracellular
glutathione (GSH) availability [30]. Other antioxidant enzymes as superoxide dismutase
(SOD) also provide primary protection from oxidative stress. SOD protects cells from
toxic oxygen metabolites by converting superoxide radical into molecular oxygen and
hydrogen peroxide. Superoxide radical is one of the more representative ROS in cells, and
consequently SOD plays a key role on antioxidant defense [31]. Furthermore, the cells
have a parallel non-enzymatic antioxidant system, and the Trolox equivalent antioxidant
capacity (TEAC) is used to evaluate its capacity to face oxidative stress [32].

Starting from these premises, we hypothesized that elevated plasma glycerol can
alter RBC homeostasis directly through changes in RBC volume and indirectly by leading
to oxidative stress. The present study was thus designed to elucidate these direct and
indirect consequences of RBCs’ exposure to glycerol. RBCs were incubated in vitro with
increasing glycerol concentrations, in the range of those found in in vivo studies after
glycerol oral administration in ewes [15,16]. Cell lysis was measured and oxidative status
was evaluated by assaying ROS intracellular concentration, SOD activity, total thiols, TEAC,
and MDA in cell extracts. Moreover, to assess whether the alterations found could trigger
eryptosis in vivo and alter cell metabolisms, intracellular concentration of Ca2+ ions and
ATP were determined. Furthermore, to evaluate the possible effect of changes in cell
volume on ROS production, sheep RBCs were exposed to hyper-osmotic and hypo-osmotic
solutions and their intracellular ROS concentration was determined. Results obtained
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aimed at elucidating the possible side effects of glycerol administrations in ruminants on
RBC viability.

2. Materials and Methods
2.1. Reagents and Animals

Unless otherwise specified, all chemical and reagents were purchased from Sigma. All
procedures involving animals in this study were approved by the Local Animal Care and
Use Committee (authorization code: 2899 of 17/01/2018). Ewes were confined outdoors
with access to a sheltered area, at the experimental facilities of the Department of Veteri-
nary Medicine at the University of Sassari, Italy, IT (40◦43′40.33” N, 8◦33′1.33” E). Blood
samples from four ewes were collected at fasting (07:00 a.m.) from the jugular vein using
9 mL vacuum collection tubes containing EDTA K2 (Vacutainer Systems Europe; Becton
Dickinson, Meylan Cedex, France). Mean erythrocyte concentration was 12 × 109/mL.
Blood was then diluted to 0.12 × 109 cells/mL with Hanks’ Balanced Salt Solution (HBSS;
Sigma code H6648). Whole blood was portioned in 10 samples and then diluted at the
concentration of 0.10 × 106 RBCs/µl (0.10 × 109/mL) with HBSS supplemented with in-
creasing glycerol concentrations (0, 25, 50, 100, 150, 200, 250, 300, 350, 400 mg/dL). Samples
were then incubated at 37 ◦C during 4 h. Glycerol stock solutions were prepared at 90%
using H2O and vegetal Glycerol at 99.5% by Farmalabor (Canosa di Puglia, Provincia di
Barletta-Andria-Trani, Italy; cod 018916). Following the incubation period, blood samples
were gently centrifuged (100 g for 3 min), and blood cells were separated from supernatant.
Blood cell were used for the assay of intracellular glycerol, SOD, TEAC, total thiols, MDA,
ATP, and CA2+ ions while supernatant was used for hemolysis. A separate set of samples
was diluted at 7× 106 RBCs/mL with glycerol and HBSS and incubated at 37 ◦C during 4 h
for ROS assay. All analyses for each sample (1 sample/ewe) were repeated in 4 replicates.

2.2. Intracellular Glycerol Assay

Glycerol assay was performed using Cell Biolabs’ Free Glycerol Assay Colorimetric
Kit (DBA Italia, Segrate, Milan, Italy; STA-398). Triton X100 extract RBC was used for
measuring intracellular glycerol by a coupled enzymatic reaction system. The glycerol was
phosphorylated and oxidized, producing hydrogen peroxide which reacts with the kit’s
Colorimetric Probe with maximum absorbance at 570 nm [16]. The glycerol concentrations
were calculated using a standard curve with seven different points of standard glycerol
concentrations from 0.06 to 3.68 mg/dL and expressed in µg/109 erythrocytes.

2.3. Haemolysis

The absorbance of the hemoglobin in the supernatant was assessed at 405 nm. The
absorbance of the supernatant of sheep RBC lysed in H2O was taken as 100% hemolysis [33].

2.4. Osmolality Measurement

Dilution media osmolality measurement (Osm/kg) was performed using a freezing
point osmometer (Osmomat 030, Gonotec, Berlin, Germany).

2.5. ROS Assay

Blood samples diluted at the concentration of 7 × 106 RBCs/mL were added with the
2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) probe at the final concentration of
3 µM. Within the cell, the esterases cleave the acetate groups on H2DCF-DA, thus trapping
the reduced form of the probe 2′,7′-dichlorodihydrofluorescein (H2DCF). Intracellular
ROS oxidize H2DCF, yielding the fluorescent product, DCF. Fluorescence was measured
using FLUOstar Omega microplate reader (BMG LABTECH). Excitation and emission
wavelengths used for fluorescence quantification were 485 and 535 nm, respectively. All flu-
orescence measurements (relative fluorescence unit—RFU) were corrected for background
fluorescence. Data were expressed as means ± SE [34,35].
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2.6. SOD, TEAC, Total Thiols, and MDA Assays

Blood cells were treated with HBSS containing TritonX100 to 0.1% to obtain the cellar
extract samples for SOD, TEAC, MDA, and total thiols assays. These assays were performed
as reported in previous works [36,37]. All data were normalized for total cells and were
assayed using an automatic cell counter instrument (Hematology analyzer Alcyon Mindray
BC-5000, Shenzhen, China).

2.6.1. SOD Assay

SOD activity was assayed in cellular extracts and was measured enzymatically (at
470 nm) as a decrease of the XTT (3′-(1- [(Phenylamino) -carbonyl] -3,4-tetrazolium) –
bis (4-methoxy-6-nitro) benzenesulphonic acid hydrate) reduction by superoxide anion
generated by xanthine oxidase [38].

The values of SOD in the samples were calculated using a standard curve
(0.065–0.8 U/mL) and expressed in U/109 erythrocytes. The number of erythrocytes was
considered, taking the % of hemolysis for each group, and one enzyme unit (IU) was
defined as the amount of SOD capable of transforming 1.0 mmole/min of O2•−.

2.6.2. Total Thiols

Total Thiols was assayed using the Ellman’s Reagent 5,5-dithio-bis-(2-nitrobenzoic
acid) (DTNB) solved in PBS. Thiols react with this compound (Figure 1), cleaving the
disulfide bond to give 2-nitro-5-thiobenzoate (TNB−), which ionizes to the TNB2− dianion
in water at neutral and alkaline pH. This TNB2− ion has a yellow color.
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Figure 1. Ellman’s reaction.

The TNB2—was quantified in a spectrophotometer by measuring the absorbance of
visible light at 412 nm, using an extinction coefficient of 14,150 M−1 cm−1 for dilute buffer
solutions [39]. The values of Thiols in the samples were expressed in nmol/109 erythrocytes.

2.6.3. TEAC Assay

TEAC was determined using the method described by Re et al. and modified by Lewin-
ska et al. [40]. Briefly, a fresh solution was prepared by dissolving 19.5 mg 2,20-azinobis
(3- ethylbenzthiazoline -6-sulphonic acid [ABTS]) and 3.3 mg potassium persulphate in
7 mL of 0.1 mol/L phosphate buffer, pH 7.4. This solution was stored in the dark for
12 h for completion of the reaction. ABTS solution was diluted (usually approximately
1:80) in 0.1 mol/L phosphate buffer, pH 7.4, to give an absorbance reading at 734 nm
of 1.0 and mixed thoroughly. The antioxidant capacity was expressed as TEAC, that is,
the concentration of trolox producing the same effect as the sample studied. The values
of TEAC in the samples were calculated using a standard curve (5–20 mM trolox in a
total volume of 550 mL) and were expressed as µmoles of trolox equivalent/Cell extract
(µmolTEAC/109 erythrocytes).

2.6.4. MDA Assay

MDA, one of the several low-molecular-weight end-products of lipid peroxidation,
was evaluated by the TBARS assay using thiobarbituric acid and a spectrophotometric
method according to the TBA test described by Spanier and Traylor [41], with some
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modifications. The values of MDA in the samples were calculated using a standard curve
(2–100 µM) and expressed in nmol/109 erythrocytes.

2.7. Ca2+ Ions Assay

The determination of intracellular Ca2+ ions concentration was performed using the
Ca2+ ions Assay Kit (Hagen Diagnostica cod. 001-0037). HBSS containing CaCl2 1mM
and MgCl2 0.5 mM (0.285 osmol/Kg) was used for blood dilution. After incubation
with different concentrations of glycerol and centrifugation, blood cells were treated with
PBS containing TritonX100 0.1% and the cell extract was assayed (at 570nm) with a direct
colorimetric assay based on the O-Cresolphtalein (OCPC) method without deproteinization
of the sample [42].

Ca2+ ions concentrations were expressed in nmol/109 erythrocytes using a Ca2+ ions
standard of 25 µM and normalized for cell number.

2.8. Extraction and Measurement of Intracellular ATP

Determination of intracellular ATP concentration was performed by the enzymatic
assay as described by Bergmeyer et al. [43]. Briefly, cells were treated with 0.1 mL of ice-cold
0.6 M perchloric acid added to each Eppendorf tube containing erythrocytes with different
glycerol concentrations and kept for 15 min, for the extraction of nucleotides. After, the sus-
pension was centrifuged in an Eppendorf Microfuge (3 min at 6000 g) and the supernatant
was neutralized with 15 µL of 3.5 M K2CO3 [44] and measured spectrophotometrically
at 340 nm using NADH-linked enzyme-coupled assays. The glucose 6 phosphate dehy-
drogenase (G6PD) and hexokinase (HK) were used with glucose, nicotinamide adenine
dinucleotide phosphate (NADP+), sample (25 µL), all in TRAP buffer (0.1 M, pH 7.6). ATP
was determined from the formation of NADPH. The values of ATP in the samples were
calculated using a standard curve (0.055–50 µM) and expressed in nmol/109 erythrocytes.

2.9. ROS Production Using Solutes with Different Osmolality without Glycerol

Blood samples were diluted at the concentration of 7 × 106 RBCs/mL in 5 different
hyper-osmotic solutions and 6 different hypo-osmotic solutions (Table 1). The hyperosmotic
solutions were prepared with the addition of an impermeant solute (starch from Merck,
C.I.20470), covering the range of osmolarity induced by glycerol in this work. Hypo-
osmotic solutions were prepared by adding purified water to a PBS solution to obtain the
osmolarity range reported in Table 1. After dilution, blood samples were incubated at
37 ◦C during 4 h. At the end of the incubation period, ROS production was determined as
above described.

Table 1. Osmolality values of 5 different hyper-osmotic solutions and 6 different hypo-osmotic
solutions. Hyperosmotic solutions were prepared by adding starch to a PBS solution. Hypo-osmotic
solutions were prepared adding purified water to a PBS solution.

Osmol/Kg Starch Concentrations mg/mL

Hyper-osmotic
solutions

0.370 3.50
0.349 2.91
0.337 2.23
0.326 1.69
0.319 1.44

Iso-osmotic solution 0.299 0.00

Hypo-osmotic
solutions

0.270 0.00
0.260 0.00
0.251 0.00
0.237 0.00
0.280 0.00
0.217 0.00
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2.10. Statistical Analysis

Data are expressed as means ± SE. Results were analyzed by a one-way ANOVA
test, used to compare intracellular glycerol, oxidative stress markers, and hemolysis, using
Minitab 17 Statistical Software (Minitab, Inc., 2010, State College, PA, USA). As post-hoc
test, Tukey’ test was used to highlight differences between groups. Statistical significance
was accepted at p < 0.05. The number of RBCs used to express the results was corrected
taking into consideration the % of hemolysis in each group.

3. Results

The osmolality of dilution media supplemented with increasing glycerol concentra-
tions is shown in Table 2. As expected, media osmolality increased proportionally with
glycerol concentration. These osmolality values are in the range of those found in vivo
(from 0.316 to 0.378 osmol/Kg) [16] in ewe’s plasma after oral administration of glycerol as
nutritional supplement.

Table 2. Osmolality values of media supplemented with increasing glycerol concentrations. Upper-
case letters indicate differences between groups (p < 0.01—one-way ANOVA-Tukey post hoc test).

[Glycerol (mg/dL)] Osmolality (Osm/Kg) ± S.E.

0 0.299 ± 0.002 A

25 0.312 ± 0.001 B

50 0.319 ± 0.001 BC

100 0.324 ± 0.002 CD

150 0.332 ± 0.002 DE

200 0.337 ± 0.001 EF

250 0.344 ± 0.002 FG

300 0.351 ± 0.002 GH

350 0.360 ± 0.001 HI

400 0.367 ± 0.002 I

Intracellular glycerol concentrations significantly increased after RBC incubation in
media containing glycerol at concentrations higher than 200 mg/dL (p < 0.01; Figure 2,
panel A). At the same concentration range (from 200 to 400 mg/dL), hemolysis significantly
increased (p < 0.01; Figure 2, panel B).
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Figure 2. Intracellular glycerol concentrations after RBC incubation in media supplemented with
glycerol in concentrations ranging from 0 to 400 mg/dL (panel A); Hemolysis (%) after RBC incuba-
tion in media supplemented with glycerol in concentrations ranging from 0 to 400 mg/dL (panel B).
Uppercase letters indicate significant differences between groups (p < 0.001; one-way ANOVA–Tukey
post hoc test).

ROS production increased significantly in RBC incubated with all glycerol supple-
mented media compared to the control (p < 0.01; Figure 3, panel A). In contrast SOD activity
increased significantly only at high glycerol concentrations (350 and 400 mg/dL; p < 0.001
Figure 3, panel B). Total thiol variation was not related with glycerol doses (Figure 3,
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panel C). TEAC and MDA did not show changes in respect to the control group (Figure 3,
panels D,E).
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showed a high variability (Figure 4, panel B) and differences among groups could not be
related to glycerol concentrations (Table 3).
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Table 3. Pearson correlation coefficients between intracellular glycerol, oxidative stress markers, and hemolisys. p values
are shown within parentheses.

Glycerol Osmolality Haemolysis ROS MDA Ca2+ Ions SOD Total Thiols ATP

Osmolality 0.836
(0.003)

Haemolysis 0.915 0.933
(<0.001) (<0.001)

ROS
0.565 0.853 0.669

(0.088) (0.002) (0.034)

MDA
0.631 0.582 0.621 0.382
(0.05) (0.078) (0.055) (0.276)

Ca 2+ 0.425 0.537 0.393 0.662 0.420
(0.221) (0.11) (0.262) (0.037) (0.227)

SOD
0.701 0.514 0.573 0.468 0.669 0.279

(0.024) (0.129) (0.083) (0.173) (0.034) (0.435)

Total
Thiols

−0.282 −0.424 −0.511 −0.455 −0.012 −0.022 −0.083
(0.43) (0.223) (0.131) (0.186) (0.973) (0.953) (0.819)

ATP
−0.274 −0.059 −0.117 0.059 −0.208 0.234 −0.471 −0.108
(0.444) (0.871) (0.748) (0.872) (0.565) (0.515) (0.169) (0.767)

TEAC
0.248 −0.189 −0.07 −0.327 0.119 0.074 0.357 0.604 −0.049

(0.489) (0.6) (0.847) (0.356) (0.742) (0.839) (0.311) (0.064) (0.893)

As reported in Table 3, the intracellular glycerol concentrations were positively corre-
lated with media osmolality, hemolysis (p < 0.01), SOD activity, and MDA concentration
(p < 0.05). In turn, osmolality and hemolysis were positively correlated with intracellular
ROS production (p < 0.05), and SOD had a positive correlation with MDA (p < 0.05).

The effect of cell shrinkage or volume expansion on ROS production has been also
studied. As reported in Figure 5, ROS production in RBCs did not change after incubation
in hyper-osmotic solutions, showing a significant decrease only at the highest osmolality
values. On the other hand, when RBCs were exposed to hypo-osmotic solutions, ROS
production increased significantly in all the osmolality values tested.
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4. Discussion

The EU legislation approved glycerol as an animal feed additive with no restrictions
on animal species or quantity that may be fed [45]. However, as recently reported, the
increase in plasma glycerol circulating concentrations following its administration may pose
negative effects on animal welfare such as increasing plasma osmolality and consequent
alterations of RBCs indices [16].

After glycerol oral administration, its concentrations indeed increase sharply in the
bloodstream [15,16]. Glycerol is lipid soluble and passes the RBC membrane following
a concentration gradient [19]. In sheep, glycerol is transported in RBCs only via simple
diffusion [13], and hence it has a lower permeability coefficient compared to humans [14]
where it also enters by facilitated diffusion through aquaporins [13]. In this study, we
showed that intracellular glycerol concentrations in sheep RBCs increased significantly
compared to the control group after incubation in media supplemented with concentrations
higher than 200 mg/dL. Above this concentration, hemolysis also increased significantly
compared to the control group and a highly positive correlation between hemolysis and
intracellular glycerol concentrations was observed. Previous studies reported that glycerol
is able to induce hemolysis of mammalian RBCs, likely consequent to the induces osmotic
stress [22,23]. This effect is probably correlated to the entry of glycerol into RBCs, which
can cause water drawing [45]. Before glycerol and water diffuse into the cells and cause
cellular swelling, an osmotically driven water efflux and a concomitant decrease in cell
volume occur [46]. In this process, it is necessary to maintain the cell volume within the
osmotic tolerance limits, defined as the extent of volume excursions the cell can withstand
before irreversible damage occurs [47]. Glycerol is able to induce a severe osmotic stress to
the cells [48] and, according to our findings, concentrations higher from 200 mg/mL are
above the osmotic tolerance limits of sheep RBCs. In the sheep, these blood concentrations
are obtained when administering 170–220 mL of glycerol per dose (22.5–27.4% of the dry
matter intake in Sarda adult ewes). Based on our previous findings, lower doses should
be preferred for flushing dairy ewes (70 mL, 12.9% of the dry matter intake in Sarda adult
ewes), as they proved to be effective at metabolic level without causing alterations in RBC
indexes and possibly their functionality [16].

In the present study, each glycerol concentration tested caused a significant increase in
the production of intracellular ROS, which was also positively correlated with hemolysis.
In other studies, incubation of RBCs with glycerol was not associated with an increase
in RBCs’ ROS production [49]. The concentration used in the above-mentioned study
(3.5 mg/dL) [49] was, however, significantly lower than the ones tested in the present one.
The increase in RBCs’ ROS production found in the present study may thus be linked
directly to glycerol entry in the cells, to the alterations in cell volume, or to a combination
of both. ROS production may be directly linked to cell swelling as it also increased in
hypo-osmotic conditions. This hypothesis is supported by previous studies reporting in
various cell types an increase in ROS production following hypotonic exposure [25,26].

However, the increase of SOD activity found at the highest glycerol concentrations,
i.e., 350 and 400 mg/dL, suggest that RBCs were able to activate their antioxidant defense
systems in response to the glycerol addition in incubation media. Even though total thiols
decreased at these concentrations, no changes in MDA intracellular concentrations and
total antioxidant capacity were found after incubation in glycerol supplemented media.
The increase in MDA concentration is indeed significantly correlated with a decrease in the
cell antioxidant capacity [50]. In the present study, RBCs thus proved to be able to cope
with the increased ROS production: in fact, MDA did not increase and the antioxidant
defenses did not decrease following the glycerol treatment.

Under in vivo conditions, oxidative stress can induce eryptosis through an increase
in cellular Ca2+ ions [51]. Changes in intracellular Ca2+ ions concentrations under stress
conditions represent indeed one of the most important trigger mechanisms of metabolic reg-
ulation finally underlying death or adaptation of RBCs to the extreme treatments [52]. High
intracellular Ca2+ ion concentration is responsible for the activation of the phospholipid
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scramblase [53]. Scramblases destroy the asymmetric distribution of lipids, transferring
them from one layer to another by a concentration gradient without energy consump-
tion [54]. These membrane modifications recall macrophages, thus preventing hemolysis
from occurring [55]. Instead, under in vitro conditions, damaged erythrocytes cannot be
eliminated and undergo hemolysis [33]. In the present study, incubation of RBCs in glycerol
supplemented media did not change intracellular Ca2+ ion concentration. In the range
of glycerol concentrations tested, the RBC systems that control Ca2+ ions concentrations
thus proved to be able to maintain a low Ca2+ level. Erytroptosis can also result from
ATP depletion [56]. ATP values found in sheep RBCs in the present study confirm that
functional metabolic activity was preserved at all concentrations tested. Therefore, we may
speculate that observed hemolysis is caused by osmotic stress, rather than by changes in
intracellular Ca2+ ions and ATP concentrations.

5. Conclusions

In conclusion, results found in the present study showed that the exposition of sheep
RBCs to glycerol concentration above 200 mg/dL can cause hemolysis under in vitro
conditions. Hemolysis is likely caused by the severe osmotic stress induced by glycerol,
rather than by oxidative stress, since RBCs proved to be able to cope with the increased
ROS production. The reported increase in ROS production was likely linked to cell swelling
consequent to glycerol entry in the cells, even if we cannot rule out a possible direct effect
of glycerol. In addition, no alterations in intracellular Ca2+ ions and ATP concentrations
were found after incubation at the range of glycerol concentrations tested. These results
thus suggest that, in sheep, to avoid RBCs’ osmotic stress, glycerol-based nutritional
treatments should be designed to reach circulating concentrations not exceeding the limit
of 200 mg/dL. This conclusion is supported by a previous in vivo study reporting that
when this threshold level is exceeded, RBC shape alterations are observed [16].
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