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Abstract: Mammalian lung development starts from a spe-
cific cluster of endodermal cells situated within the ventral
foregut region. With the orchestrating of delicate choreog-
raphy of transcription factors, signaling pathways, and
cell–cell communications, the endodermal diverticulum
extends into the surrounding mesenchyme, and builds the
cellular and structural basis of the complex respiratory
system. This review provides a comprehensive overview of
the current molecular insights of mammalian lung devel-
opment, with a particular focus on the early stage of lung cell
fate differentiation and spatial patterning. Furthermore, we
explore the implications of several congenital respiratory
diseases and the relevance to early organogenesis. Finally,
we summarize the unprecedented knowledge concerning
lung cell compositions, regulatory networks as well as the
promising prospect for gaining an unbiased understanding
of lung development and lung malformations through state-
of-the-art single-cell omics.
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Mammalian lung development:
fascinating voyage to the first
breathe

Until theWHO chief declares an end to COVID-19 as a global
health emergency, the pandemic, caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2), con-
tinues to inflict devastating impacts to daily lives of hu-
man [1]. The proper operation and development of the
respiratory system, which is usually exposed to the
external environment, hold pivotal importance in safe-
guarding us from harmful intrusions. Thus, it’s of great
significance to advance the comprehension of the
mammalian lung development.

The mammalian respiratory system is a sophisticated
network that encompasses organs and tissues to breathe.
Generally, it is composed of the airway, lung, blood vessels as
well as muscles powering the lungs. The major biological
function of the mammalian respiratory system is gas ex-
change, during which oxygen is delivered throughout the
body andwaste gases like carbon dioxide are cleaned out [2].
Alveoli within the distal lung tissues are acinar structures
where gas exchange occurs. Meanwhile, the conducting
airways, including the trachea, bronchi and bronchiole,
are proximal branching tubules that connect the external
environment to alveoli and remove various harmful parti-
cles, such as viruses and bacteria, to protect alveoli from
invasion [3]. Developmental defects in the respiratory
system can result in life-threatening breathing disorders
at birth [4].

The embryonic development of the respiratory system
starts just at the early organogenesis stage, and can be
divided into five sequential stages. To specify, the embryonic
stage (embryonic week 3–7 in humans and embryonic day
8.0–9.5 in mice), the lung primordium is specified within the
foregut during this stage; the pseudo-glandular stage
(embryonic week 7–17 in humans and embryonic day
9.5–16.5 in mice), following the primary lung bud forms,
extensive airway branching occurs at this stage; the cana-
licular stage (week 17–27 for human embryos and day
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16.5–17.5 for mouse embryos), bronchioles and alveolar
epithelium evolves at this stage; the saccular stage
(embryonic week 27–36 in humans and embryonic day 17.5
to postnatal day 5 in mice), the alveolar duct and air sacs
keep develop at this stage; and the final alveolar stage, which
is characterized by the maturation of the alveoli, and this
stage usually takes years from the late fetal life to childhood
age [5–8] (Figure 1).

Pioneering studies have underscored the crucial roles of
systematic coordination of signaling pathways and tran-
scription factors in orchestrating the precise development of
the respiratory system. An increasing understanding of the
molecular pathways important for lung development also
sheds light on exploring postnatal lung regeneration, as
many of these pathways and processes are recapitulated
during injury and regeneration [9, 10]. Notably, it is recently
demonstrated that in vitro differentiation of pluripotent
stem cells into self-renewal epithelial progenitors under the
instruction of developmental morphogens represents a
promising therapy for diseases that result from alveolar
damage [11].

Here, in this review, we will mostly focus on the current
progresses concerning the molecular mechanisms underly-
ing the mammalian lung development, especially for the
early developmental stage, and also explore the develop-
mental cues for the congenital lung disease. We also
appreciate the forthcoming explosion of knowledge in the
field ofmammalian lung development using the cutting-edge
technologies of single-cell or spatial transcriptomics. We
believe with all these efforts, proper development of the
respiratory system must be ready for new lives when they
come into the world, take their first breath, and let their first
cry out.

Foregut morphogenesis and
specification of the respiratory
lineage: prepare to be competent
lung progenitors

During mouse embryo development, following gastrulation,
gut endoderm cells, which are derived from the definitive
endoderm and intermediate visceral endoderm cells [12–15],
endure complex morphogenetic movements and finally
form the primitive gut tube. According to the cellular loca-
tion and prospective fates, the gut tube can be majorly
dissected into the foregut, which represents the most ante-
rior region of the gut tube, and the midgut and hindgut,
which locate progressively at more posterior regions [16].
Generally, the mammalian respiratory system is specified at
the anterior foregut region, marked by the specific expres-
sion of the transcription factor NKX2-1 (TTF1) [4, 17, 18] and
the gradual formation of an endodermal diverticulum in the
ventral wall of the foregut [19]. Actually, the earliest
morphological appearance of the lung primordium is not
apparent until a pair of lung buds form at E9.25–E9.5 [20].
However, the presence of Nkx2-1 transcript can be detected
as early as the E8.25 stage [21–23]. Notably, the earliest
expression of Nkx2-1 is not only restricted in the lung pro-
genitors but also in the forebrain [24] and thyroid cells [25].
Thus, the determination and characterization of specific
respiratory markers are needed to more accurately depict
the early events of respiratory specification.

To trace the earliest lung fate during mouse embryo-
genesis, Perl et al., have established an inducible tracing
system by preparing SP-C-rtTA/tetO-Cre/ZAP (Sftpc promoter
driven rtTA expression plus Dox dependent temporal con-
trol) mouse embryo to identify the timing of cell fate
restriction and lineage relationships among cells that serve
as progenitors of the respiratory epithelium during lung

Figure 1: The developmental timeline of mammalian lung. Mammalian
lung development starts from the early organogenesis stage to early
post-natal stage. Five sequential stages could be divided as highlighted in
different colors. The specific developmental timepoints for both mouse
and human embryos were also included.
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morphogenesis [26]. They found that progenitors of the
distal respiratory system (peripheral lung tubules) may be
set aside before or coincident with gastrulation [26].
Recently, single cell analyses of both molecular and cellular
phenotypes have been revealed as crucial to delineate and
interrogate the process of lineage commitment [27–31].
Interestingly, a sub-cluster of foregut (Foregut 2) at the stage
of E8.25 and E8.5 was identified as the potential lung pre-
cursors, which express lung-associated genes Ripply3 and
Irx1 but with limited Nkx2-1 transcript abundance [23].
However, whether this earlier cell type truly represents the
lung fate-restricted cells still requires further experimenta-
tion through strict lineage tracing and functional analyses.
Moreover, two developmental origins of gut endoderm cells
can be identified as the extra-embryonic endoderm and
embryonic endoderm [12–14, 23]. The specific contributions
to foregut, especially to lung fate restricted foregut, from
these two progenitors derived gut progeny remain to be
clarified.

Moreover, previous studies have indicated that epige-
netic priming usually precedes the transcriptional transition
that directs the acquisition of a new cellular identity during
embryogenesis [32–34], and proper activity of regulatory
elements could serve as ideal lineage progenitor markers
with spatial-temporal specificities [35, 36]. In fact, a specific
Tbx4 enhancer has been used as a specific marker to track
the developmental trajectory of lung mesenchyme [37].
Geusz et al. found that FOXA1 could bind to a subset of
priming lung enhancers (class I enhancers) [38], which may
be candidates for determining the lung progenitors during
early development. Therefore, strict lineage tracing and
systematic evaluation of lung development with broader
dimensions, including both transcriptional and epigenetic
signatures, are required to determine and validate the
earliest lung primordium and related regulators.

Complex gene regulatory networks have been revealed
to control respiratory lineage induction. As previously
mentioned, Nkx2-1 acts as one of the available early lung
markers. However, mouse with genetic mutation of Nkx2-1
still developed normal primary lung bud, even though
further branching and trachea development process were
largely compromised [22]. This result indicates that NKX2-1
may be only responsible for a subset but not all lung cells, or
acts later than the lung cell fate specification. Transcriptome
profiling of the Nkx2-1 mutant mouse embryo revealed that
an NKX2-1-independent transcriptional program exists
within the developing trachea and esophagus [39]. In
contrast, embryos with double mutation ofWnt2 andWnt2b
or endoderm-specific deletion of β-catenin lead to complete
lung agenesis but without abnormalities in other endoderm
derived organs [40]. Thus, Wnt2/2b-β-catenin signaling

pathway seems to function as the master regulator of the
lung fate specification prior to Nkx2-1. Given Wnt2/2b are
mostly derived from the splanchnic mesoderm (SM) sur-
rounding the gut tube, the coordinations that synchronize
the development of mesenchyme and epithelial lineages
should be the key regulatory factors during the formation of
functioning lung, and a systematic measurement of the
endoderm as well as the surrounding mesoderm and ecto-
derm cells will promote a comprehensive understanding of
the lung development.

To chart the inductive signals for Nkx2-1 expression,
Rankin et al., isolated foregut tissues and arranged three
explant culture combinations: (1) intact explants containing
the endoderm with adjacent mesoderm, and non-neural
ectoderm; (2) endoderm-only explants, in which the meso-
derm and ectoderm were removed; and (3) mesoderm and
ectoderm-only explants (referred to as mesoderm) [41].
They found that only co-culture of both endoderm and
mesoderm explants could induce the expression of respira-
tory marker-Nkx2-1. Mechanistically, they revealed that RA
signal pre-patterns the lateral plate mesoderm and then
promotes Hedgehog (Hh) ligand expression in the foregut
endoderm; then, Hh subsequently signals back to the pre-
patterned mesoderm to induce the expression of the
lung-inducing ligands Wnt2/2b and Bmp4; and finally, reti-
noic acid (RA) regulates the competence of the endoderm to
activate the Nkx2-1 positive respiratory program in response
to the mesodermal WNT and BMP signals [41]. Ikonomou
et al., directly compared the transcriptome of E9.0 NKX2-1
positive lung cells, E9.0 NKX2-1 positive forebrain cells, and
E13.5 NKX2-1 positive thyroid cells, and they revealed that
Wnt, Hedgehog, Tgf-β superfamily, and Hippo pathways
were exclusively upregulated in lung primordial progenitors
upon specification [42]. Moreover, pharmacological inter-
ruption and genetic manipulation were further applied to
validate the critical roles of these signals during lung fate
specification [42]. Actually, the critical inductive role for
the mesenchyme in gut tube organogenesis was firstly
established in the 1960s, where it showed that SM trans-
planted from different anterior-posterior regions of the
embryo could direct the adjacent epithelium to adopt the
organ identity consistent with the original SM posi-
tion [43, 44]. Amanda et al. were able to identify that it is
cardiac mesoderm derived fibroblast growth factor (FGF)
signals are required for the patterning of ventral foregut
cells into lung cells by using embryo tissue explants [45].
Furthermore, FGF signaling plays a dosage-dependent role
during lung specification, in which high concentration of
FGF can induce the expression of Nkx2-1 in the original
midgut dorsal endoderm cells [45]. Recent study using 3D
organoid system further demonstrate that the cell fate of the
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foregut and hindgut can be switched by the regional niche
factors, including FGFs and RA [46].

Beyond the mesoderm-derived signals can regulate the
cell differentiation of gut tube, signals derived from endo-
derm cells can also pattern the surrounding splanchnic
mesoderm. Han et al., dissected the foregut cells that are
spatially located between the posterior pharynx and the
midgut from three embryonic stages spanning the period of
early patterning and lineage induction: E8.5 (5–10 somite),
E9.0 (12–15 somite), E9.5 (25–30 somite), and then applied
single cell transcriptomic profiling of these foregut single
cells [44]. Based on the established transcriptomic atlas, they
have identified the diversity of transcriptome features of
distinct organ-specific epithelium related splanchnic meso-
derm lineages, and inferred a spatiotemporal signaling
network of endoderm-mesoderm interactions that orches-
trate foregut organogenesis. These results indicate that the
signaling roadmaps of both the foregut epithelium and
splanchnic mesoderm are vital for the lung primordium
specification and following development.

These studies highlight the essential roles of
mesenchyme-derived signals during the initial development
of lung fate and the developmental plasticity for gut cells in
response to SM-derived signals along rostral-caudal axis.

Lung patterning and
differentiation: step-by-step
process through integrating both
extrinsic commands from the
surrounding mesenchyme and
intrinsic regulators of epithelium

Appropriate body axes formation at the individual level or
correct tissue patterning at the organ or tissue level relies on
the major morphogenetic events controlled by intricate
molecular networks during mammalian embryo develop-
ment [47]. Following the specification of anterior gut endo-
derm into the lung primordium, the patterning of three
major orthogonal axes (dorsal-ventral axis, proximal-distal
axis, and left-right axis) starts, which finally build the
structural basis for a functioning lung (Figure 2).

Dorsal-ventral patterning

During early mouse lung development, signals from sur-
rounding tissues, including the notochord and splanchnic

mesoderm, begin to establish a dorsal-ventral pattern in the
gut tube [48, 49]. The correct dorsal-ventral (D-V) patterning
of the single foregut tube is related to the future separation
of the esophagus (dorsal) and the trachea (ventral) [50, 51].
Failure of normal D-V patterning is associated with common
birth defects, including esophageal atresia and trache-
oesophageal fistula [52].

Molecular dissection of the respiratory-specified gut
tube along the dorsal-ventral axis revealed a complementary
pattern between NKX2-1 and SOX2 [53], which indicates
the molecular establishment of the original D-V axis for the
lung gut tube. The dorsal-enriched SOX2 orchestrates the
separation of the trachea and esophagus and regulates
subsequent epithelial morphogenesis. Meanwhile, SOX2
could also interact with other transcription factors and
signaling pathways to modulate the proliferation and dif-
ferentiation of the lung epithelium [54]. Molecularly, ana-
lyses of the direct target genes for the transcription
factor SOX2 and NKX2-1 by ChIP-seq indicate that SOX2 and
NKX2-1 shared some common target genes while also regu-
lating a unique set of targets [55, 56]. The transcription
factors of SOX2 and NKX2-1 seem to function reciprocally
during the early D-V patterning of the mouse lung. In the
mutant esophagus of Sox2 compound mutant embryos
(Sox2EGFP/COND mouse), strong nuclear staining for NKX2-1
could be detected in the dorsal region; meanwhile, in the
NKX2-1 null embryo, an elevated level of SOX2 exists in the
abnormal foregut [57]. Phenotypic analyses of the Sox2
compound mutant embryo also identified that about 60 % of
mutant embryos exhibit distal tracheoesophageal fistula,
with proximal esophageal atresia (EA), and nearly 100 % of
P0 mutant mice show labored breathing and die with air in
the stomach [57]. To precisely pinpoint the roles of Sox2 in
early lung morphogenesis, Machiko et al. generated
the mouse line with endoderm-specific deletion of Sox2
(Foxa2EGFP−CreERT2Sox2flox/flox mouse) [58]. They confirmed
the aberrant overexpression ofNkx2-1 at the dorsal foregut
tube region. Besides, they found that airway epithelia in the
absence of SOX2 showed normal tissue growth and
branching patterns identical to wild-type embryos [58].
These results indicate that the balance of NKX2-1 and SOX2
play crucial roles in demarcating the D-V axis of the foregut
tube and following physical separation between the
future esophagus and the trachea, but may be dispensable
for the early lung morphogenesis. Additional markers for
the dorsal-ventral patterning were also identified in the
single-cell RNA-seq atlas, such as Klf5, Lrig1, Krt19, and
Dcn [39]. Ventral foregut endoderm enrichment of Shh [59]
also plays a crucial role in the dorsal-ventral compart-
mentalization of the foregut [49]. Mice with genetic muta-
tion of Shh or the core components of Hedgehog signaling
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Gli2 or Gli3 exhibit typical phenotypes of abnormal sepa-
ration or hypoplasia between the trachea and
esophagus [49, 60].

It has been revealed that the D-V pattern depends on
signals from the surrounding mesenchyme including
BMPs, Fgfs, and Wnts. In the E10.5 mouse embryos, FGF10
is expressed in the mesoderm surrounding the ventral
foregut and phospho-ERK1/2 is specifically distributed in the
ventral gut endoderm [57]. Moreover, ex vivo treatment of
the embryo foregut with 50 ng/mL FGF10 led to a significant
downregulation of Sox2 expression. Bmp signaling aswell as
Wnt signaling were also found to participate in the regula-
tion of dorsal-ventral patterning of the foregut
tube [40, 61, 62]. BMP4 and BMP7 are the predominant BMPs
expressed in the foregut mesenchyme region [63]. Mean-
while, the BMP antagonist Noggin and Chordin derived from
the notochord counteractswith BMPs, and directs the dorsal-
ventral patterning of the gut tube [63, 64].

Proximal-distal patterning

During mouse lung morphogenesis, NKX2-1 positive endo-
derm cells give rise to the lung epithelium and are
patterned in a proximal-distal fashion in part through a
process called branching morphogenesis [65]. Throughout
this temporally regulated process, early endodermal pre-
cursors undergo fate decisions along the highly patterned
proximal-distal (P-D) axis. As the primary buds evaginate
from the ventral foregut into the surrounding splanchnic
mesenchyme, the elongating distal lung buds launch a se-
ries of reiterated branching processes, lining the airways to
a diverse population of specialized epithelial cells that
differentiate along the P-D axis, and finally form the ste-
reotypic morphology of the pulmonary tree [4]. Two levels

of the P-D axis could be dissected as to the P-D axis of the
mouse lung. One level of the P-D axis exists in the early
embryonic stage manifested as the distinction between the
trachea (proximal) and the lung (distal), this forms just
after the emergence of the Nkx2-1 positive lung epithelium
diverticulum in the foregut region of the mouse embryo;
and the other P-D axis exists in the mature lung manifest as
proximal bronchiolar epithelium and the distal respiratory
epithelium [20, 66].

Generally, proximal epithelial precursors, marked by
expression of Sox2, will give rise to airway lineages, such as
ciliated and secretory cells. The distal epithelial precursors,
marked by Sox9, will ultimately give rise to alveolar lineages,
alveolar type 1 (AT1) and type 2 (AT2) cells, which form the
surface for gas exchange and produce pulmonary surfac-
tant, respectively [67]. A number of genes encoding signaling
molecules and transcription factors, such as Tgfβ2, Id2, Sox9,
and Etv5, have been identified to be differentially expressed
in the epitheliumandmesenchyme of the distal buds [68, 69].
Meanwhile, genes, such as the Clara cell 10-kDa protein
(CC10) and Foxj1, are expressed exclusively in the proximal
epithelium [70]. Through conditional control of Sox2
expression, Gontan et al. found that Sox2 deletion in mouse
lung results in an increase of club cells, ciliated cells, and
basal cells, whereas its overexpression leads to elevated
levels of committed progenitor cells, including p63+ cells and
neuroendocrine cells [71]. Meanwhile, interruption of Sox9
expression leads to branching defects with decreased
domain branches and the presence of terminal cystic
structures [72, 73].

Through in vitro grafting experiments, Shannon et al.
found that epithelial cells of embryonic lung were pluripo-
tent, displayed plasticity, and proposed that their fate
toward a proximal or distal phenotype was dictated by lung
mesenchyme [74, 75]. The counteracting equilibrium

Figure 2: Spatial patterning of the mouse lung.
The morphological distinctions for the mouse
lung appear following the extension of the
specified lung foregut into the surrounding
mesenchyme. Crucial developmental
signaling pathways and regulators play roles
in the spatial patterning of the lung.
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between extracellular secreted signals and epithelium-
derived antagonists was instrumental to the P-D patterning
of lung epithelium. The BMP antagonist gremlin is specially
enriched at the proximal region of lung epithelium [70].
Lung-specific overexpression of the Gremlin gene would
lead to proximalization of the distal lung tubules [70].
Moreover, the BMP signaling target gene-Id2, was identified
to specifically distribute in the distal epithelial tip region.
Lineage tracing by genetic knocking-in the CreERT2
expression cassette into the Id2 enhancer locus, Rawlins
et al., successfully labeled the distal epithelium tip and found
that Id2 labeled epithelium cells not only maintain the
capacity of self-renewal but also are able to contribute to
both the bronchiolar and alveolar compartments during the
pseudoglandular stage [76]. Wnt/β-catenin signaling is also
involved in the regulation of proximal-distal differentiation
of airway epithelium. Inhibition of Wnt/β-catenin signaling,
either by expression of Dkk1 or by tissue-specific deletion of
β-catenin, results in disruption of distal airway development
and expansion of proximal airways [77, 78].

There also exists regionalized enrichment of prolifer-
ating cells along the P-D axis. Okubo et al., have found that
cells in the distal tips of the lung bud possess a higher pro-
liferation index than the proximal counterpart, as revealed
by a higher level of BrdU incorporation and N-Myc expres-
sion. Mechanistically, they found that lung tissue-specific
over-expression of N-Myc could specifically enhance the
ratio of Sox9-positive cells while conditional deletion of
N-Myc led to defective proliferation and differentiation of
the lung epithelium and mesenchyme [79].

Epigenetics are also involved in the regulation of the P-D
patterning of the lung. Enzymes critical for the writing,
maintaining, or erasing the epigenetic modifications are
responsible for the differences in gene expression patterns
along the proximal-distal axis. Distinct members of the his-
tone deacetylases (HDACs) family have been reported to
execute factor-specific functions. To specify, HDAC1 and
HDAC2 are responsible for the maintenance of Sox2
expression in the proximal lung epithelium [80]. Meanwhile,
HDAC3 plays a role in the regulation of AT1 cell spreading
and the subsequent distal alveolar maturation [81, 82]. The
core component of Polycomb repressive complex 2 (PRC2),
EZH2, seems to play an essential function in repressing the
basal cell lineage and restricting the smooth muscle lineage
during lung development [83]. Apart from the histone
modification level, DNAmethylation also plays specific roles
in the proximal-distal patterning of mammalian lung
development. Lung endoderm-specific deletion of Dnmt1
through ShhCre:Dnmt1Flox/Flox leads to the expansion of the
distal epithelium and a concomitant loss of proximal endo-
derm cell fate [67].

It is worth mentioning that the exact molecular
demarcation of the P-D axis in the lung epithelium is not
exactly conserved between rodents and primates [73].
Different from mouse lung epithelium, SOX2 and SOX9 are
co-expressed in the human distal lung epithelium during
early morphogenesis [84]. Currently, it was found that SOX2
and SOX9 double-positive human distal lung epithelium cells
are crucial for the P-D patterning [85, 86]. Themolecular and
cellular differences along the P-D axis between human
and mouse indicate that there may exist species-specific
regulatory mechanisms for lung morphogenesis as well as
the P-D axis defects-related lung disease pathogen-
esis [87, 88]. However, limited knowledge could be acquired
for the embryonic development of human lung tissue at the
current stage. Therefore, future exploration of the native
human lung tissues or human embryonic stem-cell based
lung organoids will be of great significance.

Left-right patterning

Globally, the internal mammalian body plan is laterally
asymmetric with a consistent handedness, and the organs as
well as vasculature are conspicuously L-R asymmetric
in their positions and patterns [89]. For example, the
mesoderm-derived organ-heart, loops asymmetrically dur-
ing development and ultimately acquires a leftward position
in the chest. Meanwhile, the endoderm-derived organs-the
stomach and pancreas sit to the left and the liver to the right
in the abdomen [90]. Abnormal left-right asymmetries of
organs, known as heterotaxy, are usually associated with
severe developmental defects.

Interestingly, for the endoderm-derived branched
organ-lung, the left-right asymmetry is apparently shown
as the disparate lobation patterns of the left vs. right lungs
(fewer lung lobes on the left than the right). Murine lungs
characteristically have one lobe on the left and four lobes
on the right [18], while primate lungs have two lobes on the
left and three lobes on the right. Despite the differences in
lobe numbers between left and right, there also exist some
other anatomical differences as well as functional differ-
ences between the left and right lung lobes. Unbiased
alveoli counting based on Euler characteristic and frac-
tionator sampling design reported that the right lobes
contained 47 % more alveoli than the left in adult rats [91].
Tsai et al., also reported that there are significant differ-
ences in PT (the total power), F50 (equally divided the power
spectrum of lung sounds), and RI/E (the ratio of inspiration
power to expiration power) between the left and right lungs
detected by dual-channel auscultation [92]. A significantly
higher blood flow was also found through the left upper
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pulmonary zone than the right counterpart of normal
subjects [93]. These results indicate that there may also
exist functional variations between the left and right lung
lobes beyond the anatomical differences. In fact, through
experimental infection of Pb18 yeast cells, Tristão et al.
found that the left lungs were preferentially targeted by
Pb18 yeast cells, while the right lungs showed increased
production of nitric oxide and interferon-c (IFN-c) when
facing infection [94]. Thus, measurement of the lung
development, anatomy, and functions in both normal and
disease conditions will broaden the understanding of the
pulmonary system.

The left-right asymmetry of the lung can be develop-
mentally traced as early as E9.5 to E10, when two primary
lung buds (left and right lung anlage) have begun to form
and extend caudally [95]. The two original lung buds have
shown size differences with the right lung bud larger than
the left [4]. Currently, it is well known that the left-right
organ asymmetries are instructed by the early organogen-
esis stage-established left-right molecular axis (Nodal-Pitx2
molecular cascade). Enormous progress has been made in
the understanding of the early-stage left-right axis estab-
lishment. Both the newly identified gastrulation-stage sym-
metry-breaking event in the proximal mesenchyme and
lateral mesoderm cells [96] and node-centered Nodal
flow [97, 98] play roles in the molecular finalization of the
left-right asymmetry in the lateral plate mesoderm (LPM).
Genetic mutations of key components of early left-right
patterning-related molecular pathways usually lead to
defects of organ laterality [99–104]. In the lung, these defects
commonly manifest as isomerism, the presence of equal
numbers of lobes (with either right or left pattern) on both
sides [18]. For example, the iv mice, in which the dynein
gene-iv was mutated, exhibit severe organ situs defects
such as left pulmonary isomerism (both left and right side
develop one lobe) and right pulmonary isomerism (both left
and right side develop four lobes) [99]. Interestingly, most of
these left-right axis-related genes are only transiently
expressed (E8.0–E8.5) in the splanchnic mesoderm, except
for Pitx2 [18]. And even for Pitx2, only the specific isoform-
Pitx2c seems to play roles in the regulation of lung later-
ality [105]. Previous study also demonstrated that different
organs exhibit organ-specific responsiveness to
LPM-enriched Pitx2 [105]. Thus, how does each organ pri-
mordium interpret and transfer the left-right signal, and
what are the organ-specific downstream cellular mecha-
nisms responsible for the asymmetric morphological pat-
terns remain as open questions. Pioneering work has
proposed an accelerator-brake mechanical model of Pitx2

function in gut tilting and rotation [106]. However, whether
this model could be applied to explain the molecular
mechanisms of lung morphogenesis remain unknown.
Considering the distinct abundance of lung lobes between
left and right is apparently different from the gut tilting and
rotation issue, more work is required in elucidating this
fascinating biological event.

Congenital lung disorders:
developmental disasters resulted
from interruption of the highly
regulated lung patterning process

Congenital lung disorders refer to abnormal conditions
that usually affect the lung development of babies during
pregnancy. The fascinating but highly regulated lung
development process involves cell proliferation, cell fate
differentiation, as well as intricate cell–cell interactions.
Disruption at any step in these processes can lead to
congenital malformations of the foregut and later lung or-
gan. A summary of congenital lung malformations has been
listed in previous reviews [107–109] or by referencing the
public database like RespiRare. Here, we will list several
congenital lung diseases related to early development, the
current pathological understanding of these diseases, and
briefly discuss the potential developmental cues for the
diseases.

Bronchogenic cysts

Bronchogenic cysts, also known as foregut duplication, are
generated froman abnormal budding or lesion of the ventral
foregut [109]. Bronchogenic cysts characteristically exhibit
clinical and radiological polymorphism [110]. The location of
a bronchogenic cyst depends on the embryological stage
of development when the anomaly occurs. When the
abnormal budding happens during early development, the
cyst occupies the tracheobronchial tree. Cysts that arise later
are more peripheral and may involve the lung paren-
chyma [111]. The cysts could be filled with fluid or air. Even
though many of them are asymptomatic, however, frequent
symptoms of cough, fever, dyspnea, or even malignancy
have also been reported in patients with bronchogenic
cysts [110]. Even though the bronchogenic cysts form during
embryogenesis, the causes of bronchogenic cysts are largely
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unknown. Bronchogenic cysts are not generally associated
with genetic or chromosomal differences.

Tracheoesophageal fistula

Tracheoesophageal fistula (TEF) refers to an abnormal
connection between the airway and the gastrointestinal
tract [112]. For patients with TEF, swallowed liquids or food
can be aspirated (inhaled) into the lungs of patients with
TEF. Feeding into the stomach directly can also lead to reflux
and aspiration of stomach acid and food. These will further
lead to the symptoms of coughing while feeding and
frequent lung infections. Moreover, TEF usually occurs with
a related condition called esophageal atresia (EA). Esopha-
geal atresia with or without tracheoesophageal fistula
(EA/TEF) is the most common congenital malformation of
the upper digestive tract [113]. It’s estimated that TEF affects
one in every 3,000 to 5,000 births in the United States.

The major developmental causes for TEF could be
partially attributed to unsuccessful separation between
the trachea and the esophagus. During mammalian
embryogenesis, both the trachea and esophagus are devel-
oped from one single gut tube [52]. Following the dorsal-
ventral patterning of the foregut, the fetus’ trachea and
esophagus will be separated into two distinct tubes. Muta-
tions of genes involved in the dorsal-ventral patterning and
the formation of tracheoesophageal septum are highly
related to TEF, such as SOX2 [114], MYCN [115], NOGGIN [116],
FOX family genes [113].

Pulmonary agenesis

Pulmonary agenesis (PA) is a rare congenital anomaly,
defined as the absence of the lung parenchyma, bronchus,
and pulmonary vessels [117]. The estimated prevalence
is about 24–34 per 1,000,000 live births, and one per
10,000–15,000 autopsies with a slight preponderance of
females [118]. Anomalies in the cardiovascular, gastroin-
testinal, genitourinary, or musculoskeletal systems are also
frequent in cases with lung agenesis [118]. More than 50 %
of children with lung agenesis die within 5 years of
birth [118]. Classically, PA can be classified into three types:
type 1 (agenesis) with a phenotype of complete absence of
the lung and bronchus and no vascular supply to the
affected side; type 2 (aplasia) with a phenotype of rudi-
mentary bronchus with the complete absence of pulmo-
nary parenchyma; type 3 (hypoplasia) presents as the
presence of variable amounts of bronchial tree, pulmonary
parenchyma, and supporting vasculature [119, 120].

This deleterious phenotype is usually caused by the
failure of the foregut to specify the lung primordium and
give rise to the two primary lung buds (left and right lung
buds). Disruptions of regulators involved in lung foregut cell
fate specification, proliferation and branching, are highly
related to the occurrence of lung agenesis/aplasia/hypopla-
sia [121]. The right lung is reported to be more severely
affected by agenesis than the left lung [122, 123]. Right lung
agenesis is usually associated with the displacement of the
heart and mediastinum rightwards accompanied by a
distortion of the bronchial and vascular structures, which
worsens the prognosis [118].

Pulmonary isomerism

As mentioned in the above section, the mammalian lung
shows a typical left-right asymmetricmorphological pattern,
manifesting as different numbers of lobes between the left
and right sides. Pulmonary isomerism is an anomaly of the
number of lung lobes. The anomaly in pulmonary isomerism
is frequently associated with situs inversus [109]. Besides,
left isomerism is often associatedwith polysplenia, and right
isomerism is often associated with asplenia [124]. As
revealed in both model animal experiments [101, 125] and
clinical studies [124, 126, 127], genetic mutations of the Nodal-
Pitx2 cascade as well as the primary ciliary function should
be attributed to the incidence of isomerism. Beyond the
genetic cues, it was recently reported that the infection of
SARS-CoV2 is associated with an increment of situs inversus
during early gestation [128]. They reported over four times
increment of fetal situs inversus in China since the “zero-
Covid” policy was lifted. Even though the contribution of
genetic abnormalities related to primary ciliary dyskinesia
remains verifying, this report also suggests environmental
factors, such as SARS-CoV2 infection here, may also play
roles in the correct development of organ situs.

Scimitar syndrome

Scimitar syndrome is a rare congenital disease that usually
affects the function of the heart and the lung [109]. Only
about 1 to 3 out of 100,000 newborns are born with this
disease [129]. For people who are diagnosed with scimitar
syndrome, a typical anatomic feature that resembles a
backsword can be detected in chest radiography [129]. The
constant feature of scimitar syndrome is the partial or total
anomalous pulmonary venous return to the inferior vena
cava. Some variable features, including dextrocardia,
hypoplasia of the right lung, as well as hypoplasia of the
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right pulmonary artery, are also found in patients with
scimitar syndrome. The higher frequency of right lung
development defects indicates the molecular causes for
scimitar syndrome may be related to early stage of lung
specification and pattern formation. However, the specific
genetic causes for scimitar syndrome remain largely un-
known [130]. Surgery to directly reroute the pulmonary vein
or remove the hypoplastic lung can efficiently alleviate the
symptoms.

Although most congenital lung malformations are rare
diseases, it has been reported that they account for up to 18 %
of all congenital anomalies [109]. Moreover, the specific
developmental or genetic cues for these disorders remain
largely elusive. A brief summary of lung development-
related key genes and their implications in lung diseases has
been listed in Table 1. Efforts to identify the molecular ar-
chitecture and novel regulators underlying lung morpho-
genesis, and determine the developmental and genetic
causes for aberrant lung development should be made
firmly.

Revisiting mammalian lung
development at single-cell
resolution

Since the first bona fide single-cell transcriptomics was
developed [148], we have witnessed an exponential
increment of versatile single-cell profiling technolo-
gies [149] and embraced the subsequent revolutionized
new understanding of biology. As to the field of develop-
mental biology, single-cell omic technologies have shown
promising prospects in identifying new cell types, recog-
nizing cellular heterogeneities, reconstructing the devel-
opmental trajectories, delineating the cellular regulatory
networks, recapitulating the intricate cell–cell in-
teractions, and determining the molecular abnormalities
for anomalies [150–154].

Traditionally, the developmental stages and trajectories
of the lung were largely based on histologically descriptive
features [8] or a limited number of molecular signa-
tures [20, 66]. Recently, through integrating the known
biology with single-cell sequencing data, several previous
unappreciated cell types, novel developmental patterns, and
new regulators of lung cells were revealed [87, 155, 156]. The
first single-cell study of lung development was published in
2014 [28], when the single-cell technology was in its infancy,
and thus the sequence depth and throughput remained
limited. Treutlein B et al. profiled the transcriptome of
198 cells from the distal lung epithelium tip, encompassing

four developmental stages of alveolar differentiation [28].
The authors were able to identify the existence of Ciliated
cells, Clara cells, AT1 cells, and AT2 cells within the distal
lung epithelium [28]. Interestingly, they identified a group of
bipotent cells with the co-expression of AT1 andAT2markers
(Sftpc+/Ptpn+) [28]. By characterizing the intermediates
during AT1 and AT2 cell fate specification, they successfully
reconstructed the lineage hierarchies of the distal lung
epithelium [28]. Interestingly, a later study in 2019
combining both single-cell RNA-seq and strict lineage tracing
revealed that the fate of the majority of AT1 and AT2 cells
were specified from Nkx2-1 and Id2 double-positive cells
before E13.5, and the bipotent alveolar cells reported by
Treutlein et al. [28], that give rise to AT1 and AT2 cells, are a
minor contributor to the alveolar epithelial population [157].
The differences in the characterization of bipotent cells may
highlight the significance of sufficient cell coverage when
using single-cell technologies. The more comprehensive
single cell atlas of mouse lung morphogenesis were also
published [158, 159]. Zepp et al. applied single-cell RNA-seq as
well as single-cell ATAC-seq of the developing murine lung
tissues, and they found that AT1 epithelial cells seem to
function as a signaling hub with a pervasive expression of
signal ligands [158]. Meanwhile, Negretti et al. also generated
a single-cell atlas of the developingmouse lung ranging from
the stage of E12 to P14. Based on this atlas, they were able to
capture the cell type diversification process of epithelial,
endothelial, aswell asmesenchyme lineages. Moreover, they
reported the asynchronous features of cell fate specification
and differentiation process during lung development [159].

However, for the very early stage of organogenesis,
systematic transcriptomic analyses by using single cell or
limited cell number RNA-seq were usually challenging due
to limited cell numbers of relevant tissues. It was not until
2020 that the single-cell surveys of the early embryonic
stages of the lung were reported. Kuwahara et al. took
advantage of the single-cell RNA-seq of the dissected foregut
epithelial cells from E10.5 and E11.5 embryos [39]. Based on
the transcriptome from normal control as well as multiple
genetic mouse models, they identified several dorsoventral
populations of the foregut and also found that themajority of
the tracheal and esophageal transcriptome is NKX2-
1-independent [39]. Meanwhile, Han et al., micro-dissected
the early foregut tissues, which are located between the
posterior pharynx and the midgut, at three time-points that
span the period of early patterning and lineage induction:
E8.5 (5–10 somites; s), E9.0 (12–15 s), and E9.5 (25–30 s). They
found that an extensive diversification of the early
splanchnic mesoderm into distinct organ-specific mesen-
chyme subtypes, the diversities of splanchnic mesoderm cell
types are closely registered with the organ-specific
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Table : The expression pattern, known functions, and typical mutant phenotype of key lung development-related genes.

Gene Expression pattern (initial
timepoint, regions)

Known functions (especially for early lung
development)

Typical mutant phenotype, disease or trait
annotations

. Epithelial genes

Nkx- E., lung epithelium Transcription factor; regulates pattern specification of
the lung primordium and following morphogenesis

Abnormal lungmorphology, impaired branching involved
in respiratory bronchiole morphogenesis [, ]; lung
adenocarcinoma, neonatal respiratory distress etc.

Shh E., lung epithelium Signal ligand; regulates epithelial tube branching and
associated mesenchyme development during lung
morphogenesis

Single-lobe hypoplastic lungs with decreased epithelium/
mesenchyme; malformations of the trachea and trachea-
esophageal fistula [] etc.

Sox E., dorsal gut endoderm
and proximal airway
epithelium

Transcription factor; controls dorsal-ventral patterning
of foregut tube, and following branch morphogenesis
and airway differentiation

Tracheoesophageal fistula []; lung adenocarcinoma
etc.

Fgfr E., distal lung bud
epithelium

Signal receptor; regulates proximal-distal patterning as
well as lung branch morphogenesis []

Small epithelial outgrowths that arise arbitrarily along the
main bronchi []; idiopathic pulmonary fibrosis, lung
adenocarcinoma etc.

Bmp E., distal lung bud epithe-
lium and mesenchyme

Signal ligand; regulates lung bud outgrowth, extension
and branching []

Abnormal foregut morphology, severe reduction in distal
epithelial cell types and a concurrent increase in proximal
cell types [, ] etc.

P E., proximal lung bud and
proximal airway epithelium

Transcription factor; plays critical roles in the develop-
ment of a normal esophageal and tracheobronchial
epithelium []

Abnormal esophageal epithelium morphology, increased
lung adenoma incidence; lung adenocarcinoma etc.

Id E., distal lung bud
epithelium

Transcription factor; marks multipotent progenitors in
distal tip lung epithelium []

Lung small cell carcinoma etc.

Etv E., distal lung bud
epithelium

Transcription factor; acts downstream of Fgf signaling
and is essential for lung branchmorphogenesis and the
maintenance of alveolar type II cells []

Lung small cell carcinoma etc.

Sox E., distal lung bud
epithelium and proximal
lung mesenchyme

Transcription factor; plays roles in the lung epithelium,
balancing proliferation and differentiation and regu-
lating the extracellular matrix []

Developmental abnormalities in the lung during
branching morphogenesis [], unable to breathe and
died at birth, with noticeable tracheal defects [];
neonatal respiratory distress, lung carcinoma etc.

N-Myc E., distal lung bud
epithelium

Transcription factor; regulates lung progenitor prolif-
eration and differentiation []

Reduced proliferation, epithelial differentiation and high
levels of apoptosis in both epithelium and mesenchyme
[]

Wntb E., distal lung bud
epithelium

Signal ligand; activates an autocrine and a paracrine
canonical signaling cascade in adjacent pools of endo-
derm and mesenchyme []

Pulmonary hypoplasia, abnormal mesenchymal cell pro-
liferation involved in lung development, and abnormal
lung vasculature morphology [, ]

. Mesenchymal genes

Wnt/
b

E., lung bud mesenchyme Signal ligand; specifies lung progenitors in the foregut
[]

Pulmonary hypoplasia, abnormal lung associated
mesenchymal development []

Fgf E., lung bud mesenchyme Signal ligand; plays central roles in the formation of
lung mesenchymal cells with dosage dependency []

Smaller lobes with a reduced number of branches
[, ]; lung adenocarcinoma

Gli E., proximal trachea and
distal lung budmesenchyme

Transcription factor; mediates Shh signaling and regu-
lates cyclin expression during lung development [,
]

Hypoplastic lungs with severe patterning defects (single
lobe right lung) and diminished epithelium/mesenchyme,
mildly hypoplastic trachea and esophagus []

Gli E., intermediate mesen-
chyme between lung buds

Transcription factor; mediates Shh signaling [] Hypoplastic lungs of decreased size and abnormal shape
of the lobes []

Tbx E., ventral lung
mesenchyme

Transcription factor; regulates lung bud formation Severely reduced lung branching []

Tbx E., ventral lung
mesenchyme

Transcription factor; initiates lung development [] A unilateral loss of lung bud specification and absence of
tracheal specification []

Tbx E., ventral lung
mesenchyme

Transcription factor; controls lung growth and branch
morphogenesis []

Pulmonary hypoplastic and reduced branching morpho-
genesis, decreased mesenchymal proliferation, and pre-
mature mesenchymal differentiation into fibrocytes
[, ]
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epithelium, and underscore the importance of endoderm-
derived signals in mesoderm patterning [44].

It’s noteworthy that the lung development process is
not completely evolutionary conserved between the mouse
model and humans [88, 160, 161]. It’s also of great signifi-
cance to establish a comprehensive molecular roadmap of
human lung development. Due to continuous efforts from
the scientific community, the direct delineation of the
sequential dynamics of cellular compositions and molecular
architectures during human lung development is now
emerging [87, 156, 162–165].

These studies offer comprehensive insights into
mammalian lung development from foregut specification to
alveolarization, and provide novel information about the
developmental trajectories of epithelial, endothelial, as well
as mesenchymal lineages. Future endeavors aim to exten-
sive survey of the inter-cellular interactions by expanding
data dimensions to include the epigenome and spatial
transcriptome, integrating data across multiple develop-
mental stages and multiple species, and systematically
comparing the molecular landscape with samples of defec-
tive lungs will largely boost the knowledge of mammalian
lung development.

Conclusions

The investigation of mouse lung development has yielded
crucial insights into the complex processes underlying
mammalian lung morphogenesis and cellular differentia-
tion. Through the dissection of key molecular pathways,
cellular interactions, and morphogenetic events by inte-
grating versatile toolkits, such as induced pluripotent stem
cells, in vitro organoid system, genome editing technology,
and next-generation sequencing, the molecular landscape
and specific details of mammalian respiratory system
development are increasingly getting clear. These founda-
tional studies will lay a robust groundwork for our under-
standing of lung development and related diseases.
Continued explorations in the future will offer opportunities
to unravel the intricate complexities of lung disorders
caused by diverse genetic mutations or environmental
conditions, and hold promising prospects for the develop-
ment of novel therapeutic approaches to tackle lung
disorders.
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